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Preface

This manual contains complete solutions to all exercises not fully solved in Appendix B of the third
edition of Discrete Mathematics with Applications, and suggestions for how to teach the material
in the book. The suggestions are directed primarily toward those who have not previously taught
discrete mathematics at the freshman-sophomore level. Most are based on my own experience and
are offered modestly and with apologies to those whose pedagogical insights are deeper than my
own. Comments and suggestions from users of this manual are always welcome. The manual also
contains review material for each chapter, additional problems to use for extra practice or exams,
and ideas for projects. The review material is also included in the Student Solutions Manual and
Review Guide for Discrete Mathematics with Applications, 3rd edition.

The primary aim of Discrete Mathematics with Applications is to help students attain the knowl-
edge and reasoning skills they need to be successful in upper-level computer science and mathematics
courses. Three parallel threads run through the book: exposition of standard facts of discrete math-
ematics, incremental development of mathematical reasoning skills, and discussion of applications.
Almost every section contains exercises designed to help students explore facts, theory, and appli-
cations. You can assign whatever mix you wish of exercises of the three types.

The book contains unusually complete explanations and a very large number of illustral ive
examples on the theory that it is easier for a student who has caught on to an idea to skim over
a passage than for a student who is still mystified to fill in the reason for something that is not
understood. The extensiveness of the exposition should also make it possible to use the book in
courses that use class time primarily for collaborative learning and problem solving rather than
lecturing. Each section contains exercises of several different levels of difficulty so that you can
choose those most appropriate for your students.

Like many other skills, the skill of mathematical reasoning, once acquired, becomes such a fun-
damental part of a person's being that it passes from consciousness to instinct. It is natural for
mathematicians to think that things that seem totally obvious and trivial to them are equally ob-
vious and trivial to their students. However, the habit of reasoning according to standard logical
principles is thought to be innate in only about 4% of the population. Large numbers of students
confuse a statement with its converse, do not intuitively understand the equivalence between a state-
ment and its contrapositive (which means that the idea of proof by contradiction is foreign to them),
think that the negation of "All mathematicians wear glasses" is "No mathematicians wear glasses,"
and have the dim impression that an irrational number is any decimal that goes on forever (such as
0.333333. . .). Of course, the extent to which students have such misconceptions varies from school
to school, but no institution is immune and at many the problem is epidemic.

Because of the wide variety of backgrounds and abilities of students typically enrolled in a discrete
mathematics course, it is important to stay in close touch with how your students are doing. The
following are various techniques that have been found helpful:

* Increasing the discussion part of a lecture-discussion class by encouraging students to interrupt
lectures with questions and by asking frequent, non-rhetorical questions of students. To coun-
teract the problem of having only a small group of students respond to questions, you might
call on students by name, using a class list if necessary. If you find that students are unable
to answer simple questions on the material being presented, you can backtrack immediately
to find common ground. A side benefit of increased class participation is that it improves
students' ability to use mathematical language correctly.

* Having students present their solutions to selected homework exercises at the board, following
each presentation with class discussion and (tactful) critique. This technique is especially
useful when covering topics that involve proof and disproof and is an effective means both
of giving feedback on how students are doing and of conveying to students the standards of
exposition required in the course.

iv
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* Giving frequent quizzes and grading them promptly. This technique gives both you and your
students feedback on the kinds of problems students are having at a point in the course when
both you and they can take measures to correct them.

* Assigning a few problems to be done on an "until correct" basis, or allowing students to hand
in "draft solutions" that are read by you and are handed back for redoing if they are not
entirely correct.

It is likely that some, perhaps even many, of your students will do excellent work. But it is also
likely that some will have considerable difficulty, especially if asked to write proofs or justify answers
to questions. If you are teaching discrete mathematics for the first time, you may be appalled by
the awkwardness and illogic of some of your students' efforts. But the very fact that students have
difficulty expressing mathematics logically and coherently attests to the value and importance of
trying to teach them how to do it. It takes months for a child to learn to walk, days or weeks
to learn to ride a bicycle, swim, or play tennis, and years to learn to read at an advanced level.
We should not be discouraged if students catch on slowly to new modes of thinking. Prospective
employers of students of mathematics and computer science are looking for brain power in those
whom they hire, and students enjoy the feeling that they are increasing their mental capacity. It is
in everyone's interest to help students develop as much reasoning capability as possible.

Students often come to a discrete mathematics skeptical of its practical usefulness, especially of
those parts that seem abstract. One reason for including the large number of applications in the
book is to overcome such skepticism. You can also encourage students to broaden their perspective
by referring, whenever possible, to relationships between the topics and modes of thought under
discussion and actual uses in computer science. You do not need to be an expert to convey these
ideas effectively. Much can be learned by spending some time looking through computer science
texts in such areas as data structures, design and analysis of algorithms, relational database theory,
theory of computation, and artificial intelligence. It is also desirable, if possible, to coordinate the
topics of the course with those of a computer science course that students take concurrently. Hardly
anything more effectively convinces students of the utility of discrete mathematics than to hear
references to it in their computer science courses.

The part of the Brooks/Cole website (www.brookscole.com) devoted to Discrete Mathematics
with Applications, 3,rd edition contains a variety of material that may be useful for students and for
instructors. Because additional material is being added on an ongoing basis, you may want to check
the website from time to time. The material available both to students and instructors includes
links to websites with discrete mathematics applets and information about discrete mathematical
topics, review material, a list of errata, and a set of exercises using Derive that are coordinated with
the book. The instructor's portion of the website gives access to PowerPoint slides, to additional
review material, and to all the supplementary exercises and exam questions that are contained in
this manual.

Acknowledgements
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and understanding of language made an invaluable contribution to this volume. I am also most
grateful to my husband, Helmut Epp, who constructed all the diagrams and provided much support
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Chapter 1: The Logic of Compound Statements

The ability to reason using the principles of logic is essential for solving problems in abstract math-
ematics and computer science and for understanding the reasoning used in mathematical proof and
disproof. Because a significant number of students who come to college have had limited opportunity
to develop this ability, a primary aim of both Chapters 1 and 2 is to help students develop an inner
voice that speaks with logical precision. Consequently, the various rules used in logical reasoning are
developed both symbolically and in the context of their somewhat limited but very important use
in everyday language. Exercise sets for Sections 1.1-1.3 and 2.1 2.4 contain sentences for students
to negate, write the contrapositive for, and so forth. Virtually all students benefit from doing these
exercises. Another aim of Chapters 1 and 2 is to teach students the rudiments of symbolic logic as
a foundation for a variety of upper-division courses. Symbolic logic is used in, among others, the
study of digital logic circuits, relational databases. artificial intelligence, and program verification.

Suggestions

1. In Section 1.1 many students apply De Morgan's law to write the negation of, for example,
"1 <r K< 3" as "1 > x > 3." You may find that it takes some effort to teach them to avoid making
this mistake.

2. In Sections 1.1 and 1.4, students have more difficulty than you might expect simplifying statement
forms and circuits. Only through trial and error can you learn the extent to which this is the case
at your institution. If it is, you might either assign only the easier exercises or build in extra time to
teach students how to do the more complicated ones. Discussion of simplification techniques occurs
again in Chapter 5 in the context of set theory. At this later point in the course most students are
able to deal with it successfully.

3. In ordinary English, the phrase "only if' is often used as a synonym for "if and only if." But
it is possible to find informal sentences in which the intuitive interpretation is the same as the
logical definition, and it is helpful to give examples of such statements when you introduce the
logical definition. For instance, it is not hard to get students to agree that "The team will win the
championship only if it wins the semifinal game" means the same as "If the team does not win the
semifinal game then it will not win the championship." Once students see this, you can suggest that
they remember this translation when they encounter more abstract statements of the form "A only
if B."

Through guided discussion, students will also come to agree that the statement "Winning the
semifinal game is a necessary condition for winning the championship" translates to "If the team
does not win the semifinal game then it will not win the championship." They can be encouraged
to use this (or a similar statement) as a reference to help develop intuition for general statements of
the form "A is a necessary condition for B."

With students of lower ability, you may find yourself tying up excessive amounts of class time
discussing "only if' and "necessary and sufficient conditions" with little success. You might just
assign the easier exercises or you might assign exercises on these topics to be done for extra credit
(putting corresponding extra credit problems on exams) and use the results to help distinguish
A from B students. It is probably best not to omit these topics altogether, though, because the
language of "only if' and "necessary and sufficient conditions" is a standard part of the technical
vocabulary of textbooks used in upper-division courses.

4. In Section 1.3, many students mistakenly conclude that an argument is valid if, when they
compute the truth table, they find a single row in which both the premises and the conclusion are
true. To help counteract this misconception, you could give examples of invalid arguments whose
truth tables have eight rows, several of which have true premises and a true conclusion. The source
of students' difficulty understanding the concept of validity appears to be their tendency to ignore
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2 Solutions for Exercises: The Logic of Compound Statements

quantification and to misinterpret if-then statements as "and" statements. Since the definition of
validity includes both a universal quantifier and if-then, it is helpful to go back over the definition
and the procedures for testing for validity and invalidity after discussing the general topic of universal
conditional statements in Section 2.1.

5. Also in Section 1.3, you might suggest that students just familiarize themselves with, but not
memorize, the various forms of valid arguments covered in Section 1.3. It is wise, however, to have
them learn modus ponens and modus tollens (because these terms are used in some upper-division
computer science courses) and converse and inverse errors (because these errors are so common).

Section 1.1

2. common form: If p then q.
-q

Therefore, p.

b. all prime numbers are odd; 2 is odd

4. common form: If p then q.
If q then r.
Therefore, if p then r.

b. x equals 0; the guard condition for the while loop is false; program execution moves to the
next instruction following the loop

5. b. The truth or falsity of this sentence depends on the reference for the pronoun "she.' Con-
sidered on its own, the sentence cannot be said to be either true or false, and so it is not a
statement.

c. This sentence is true; hence it is a statement.

d. This is not a statement because its truth or falsity depends on the value of x.

7. mA'-c

8. b. w A (h A s)

c. wA - h A - s

e. wA (h A s) (w A (a h V - s) is also acceptable)

9. (n V k)A - (n A k)

10. b. pA q d. (- p A q)A r e. pV(qAr)

13. (jaguar AND cheetah)AND (speed OR fastest) AND NOT (car OR automobile OR auto)

15.
P q paA Vq 1-(pAq) (pAq)V -(pVq)

T T T rT F T
T F F T T T
F T F T T T
FF F F T T
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Section 1.1 3

p q pAq 1p q (pA q) p A - q

T T T FF F F
T F F F T T F
F T F T F T F
FF F T T T T

different truth values in rows 2 and 3

The truth table shows that (p A q) and p A q do not always have the same truth values.
Therefore they are not logically equivalent.

22.
p t pAt p

T T T T
F T F F

same truth values

The truth table shows that pA t and p always have the same truth values. Thus they are
logically equivalent. This proves the identity law for A.

17.
p q r I- , qVr p A (- qVr)

T T T F T T
T T F F F F
T F T T T T
T F F T T T
F T T F T F
F T F F F F
F F T T T F
F F F T T F

18.

20.

p (pV ( pVq))

p q r - pp r -pVq qA-r -(qA-r) V A

(~~ p V q) .(q A - r)
T T T F F T F T T T
T T F F T T T F T F
T F T F F F F T T T
T F F F T F F T T T
F T T T F T F T T T
F T F T T T T F T F
F F T T F T F T T T
F F F T T T F T T T
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4 Solutions for Exercises: The Logic of Compound Statements

24.

26.

28.

p q r qVr pAq pAr pA(qVr) (pAq)V(pAr)

T T T T T T T T
T T F T T F T T
T F T T F T T T
T F F F F F F F
F T T T F F F F
F T F T F F F F
F F T T F F F F
F F F F F F F T

same truth values

The truth table shows that p A (q V r) and (p A q) V (p A r) always have the same truth values.
Therefore they are logically equivalent. This proves the distributive law for A over V.

p q r pVq pAr (pVq)V(pAr) (pVq)Ar

T TT T T T T
T T F T F T F
T F T T T T T
T F F T F T F
F T T T F T T
F T F T F T F
F F T F F F F
F F F F F F F

different truth values

4-

The truth table shows that p V q pA r (p V q) V (pA r) and (p V q) Ar have different truth values
in rows 2, 3, and 6. Hence they are not logically equivalent.

| r |( rV |(rVp)A

p q r rVp ~-r ppAq V rVq (pAq)) |(rrV(pAq)) pAq
(pAq) A(rVq) A(rVq)) ____

T|T|T T F T T T T T T
T T F T T T T T T T T
T F|T T F F F T F F F
T F F T T F T F F F F
F|T T T F F F T F F F
F|T F F T F T T T F F
F F|T T F F F T F F F
F F F F T F T F F F F

same truth values

The truth table shows that (r Vp) A ((- r V (pA q)) A (r V q)) and pA q always have the same
truth values. Hence they are logically equivalent.

30. Sam is not an orange belt or Kate is not a red belt.

32. This computer program does not have a logical error in the first ten lines and it is not being
run with an incomplete data set.

33. The dollar is not at an all-time high or the stock market is not at a record low.

34. The train is not late and my watch is not fast.
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Section 1.1 5

36. -10>xorx>2

38. 0 < x or x < -7

40. The statement's logical form is (p A q) V ((r A x) A t), so its negation has the form

((pAq)V((rAs)At)) - (pAq)A-((rAs)VA t))
- (- pV -q) A (- (r A s)V t))

= (- pV -v q) A ((- rV -s)V -t)).

Thus a negation is (num-orders > 50 or num instock < 300) and ((50 > num-orders or
num-orders > 75) or num-instock < 500).

43.
p A q) A (q Ar))

p q r p -q -pAq qAr (ppAq)A(qAr)) A
- q

T T T F F F T F F
T T F F F F F F F
T F T F T F F F F
T F F F T F F F F
F T T T F T T T F
F T F T F T F F F
F F T T T F F F F
F F F T T F F F F

all F's

Since all the truth values
contradiction.

of ((- p A q) A (q A r))A q are F, ((> p A q) A (q A r))A q is a

p q Ip Aq I pVq I pVq)V(p A-q)

T T F F T FT
T F F T F T T

F T T F T F T

F F T T T F T

all T's

Since all the truth values of (- p V q) V (pA - q) are T, (Q- p V q) V (p A q) is a tautology.

46. a. the commutative law for V

c. the negation law for A

b. the distributive law

d. the identity law for V

48. Solution 1: p A (- q V p) - pA (pV q) commutative law for V

p absorption law

- (pA-q)V(pAp)
- (pA'-.q)Vp

p

49. -(pV-q)V(' pA'-q) - (- pA -(-q))V (

(-p A q) V (-pA
-p A (qV - q)

pA t
- p

distributive law
identity law for A
by the steps of exercise 47.

- p A - q) De Morgan's law
q) double negative law

distributive law
negation law for V
identity law for A

44.

Solution 2: p A ( q V p)
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6 Solutions for Exercises: The Logic of Compound Statements

(p A (p )Aq)) V (p A q)
(p A(pA -q))V(p A q)
((p A p)A -q)) V (p A q)

(pA q)) V (pA q)
pA (- q V q)
p A (qV q)

pAt

p

De Morgan's law
double negative law
associative law for A
idempotent law for A
distributive law
commutative law for V
negation law for V
identity law for A

52. b. Yes.
p q r pfflq qfr (pfflq)ffr p fl(q flr)

T T T F F T T
T T F F T F F
T F T T T F F
T F F T F T T
F T T T F F F
F T F T T T T
F F T F T T T
F F F F F F F

same truth values

The truth table shows that (p ff q) f r and p f (q f r) always have the same truth values. So
they are logically equivalent.

c. Yes.
p q r I peBq pAr qAr I(pfDq)Ar (p Ar) fl(qAr)

T T T F T T F F
T T F F F F F F
T F T T T F T T
T F F T F F F F
F T T T F T T T
FT F T F F F F

F T F F F F F
FFF F F F F . F

same truth values

The truth table shows that (p ED q) A r and (p A r) f (q A r) always have the same truth values.
So they are logically equivalent.

54. The conditions are most easily symbolized as p V (qA (r A (s At))), but may also be written
in a logically equivalent form.

Section 1.2

2. If I catch the 8:05 bus, then I am on time for work.

4. If you don't fix my ceiling, then I won't pay my rent.

6.

51- (pA(-(-pVq)))V(PAq)
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Section 1.2 7

p q I q p-q | -^(p- q) Ip A -q
T T F T F F
T F T F T T
F T F T F F
F F T T F F

same truth values

The truth table shows that (p - q) and p A q always have the same truth values. Hence
they are logically equivalent.

8.
p q r Ip p V q p V q -r

T T T F T T
T T F F T F
T F T F F T
T F F F F T
F T T T T T
F T F T T F
F F T T T T
F F F T T F

10.

11.

p q r p-r q-r (p -r)-(q -- r)

T T T T T T
T T F F F T
T F T T T T
T F F F T F
F T T T T T
F T F T F F
F F T T T T
F F F T T T

p q r q(r p- (q - r) pAq) Aq- r(p (q r))- (p A q - r)
TTT T T T T T
T T F F F T F T
T F T T T F T T
T F F T T F T T
F T T T T F T T
F T F F T F T T
F F T T T F T T
F F F T T F T T

13. b.
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8 Solutions for Exercises: The Logic of Compound Statements

14. a.

same truth values

The truth table shows that the three statement forms p -q V r, p A q - r, and p A r - q
always have the same truth values. Thus they are all logically equivalent.

b. If n is prime and n is not odd, then n is 2.

And: If n is prime and n is not 2, then n is odd.

15.
p q r q -*r p -*q p -(q-r) (p -q) -r

T TT T T T T
T T F F T F F
T F T T F T T
T F F T F T T
F T T T T T T
F T F F T T F
F F T T T T F
F F F T T T F

different truth values

The truth table shows that p -* (q - r) and (p - q) - r do not always have the same truth
values. (They differ for the combinations of truth values for p, q, and r shown in rows 6, 7,
and 8.) Therefore they are not logically equivalent.

17. Let p represent "Rob is goalkeeper," q represent "Aaron plays forward," and r represent "Sam
plays defense." The statement "If Rob is goalkeeper and Aaron plays forward, then Sam plays
defense" has the form p A q -* r. And the statement "Rob is not goalkeeper or Aaron does
not play forward or Sam plays defense" has the form - p V q V r.

p q r - P 7 q pAq I pAq-r 7 pV-qVr

T T T F T T T T
T T F F T T F F
T F T F F F T T
T F F F F F T T
F T T T T F T T
F T F T T F T T
F F T T F F T T
F F F T F F T T

same truth values

The truth table shows that p A q r and p V - q V r always have the same truth values.
Therefore they are logically equivalent.

pA-q pA-r

p q r q -r qVr pA-q pA-r p--qVr -r q

T T T F F T F F T T T
T T F F T T F T T T T
T F T T F T T F T T T
T F F T T F T T F F F
F T T F F T F F T T T
F T F F T T F F T T T
F F T T F T F F T T T
F F F T T F F F T T T
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Section 1.2 9

18. Part 1: Let p represent "It walks like a duck," q represent "It talks like a duck," and r represent
"It is a duck." The statement "If it walks like a duck and it talks like a duck, then it is a duck"
has the form p A q -* r. And the statement "Either it does not walk like a duck or it does not
talk like a duck or it is a duck" has the form - p V - q V r.

p q r -- P Aq pAq V pV q Ip Aq-*r (apV-q)Vr

T T T F F T F T T
T T F F F T F F F
T F T F T F T T T
T F F F T F T T T
F T T T F F T T T
F T F T F F T T T
F F T T T F T T T
F F F T T F T T T

same truth values

The truth table shows that p A q r and (' p V - q) V r always have the same truth values.
Thus the following statements are logically equivalent: "If it walks like a duck and it talks like
a duck, then it is a duck" and "Either it does not walk like a duck or it does not talk like a
duck or it is a duck."

Part 2: The statement "If it does not walk like a duck and it does not talk like a duck then
it is not a duck" has the form - pA A q - r7.

p q r -p -q -r pAq -pA-q p A q r (-pA'. q)--r

T T T F F F T F T T
T T F F F T T F F T
T F T F T F F F T T
T F F F T T F F T T
F T T T F F F F T T
FT F T F T F F T T
F F T T T F F T T F
F F F T T T F T T T

different truth values

4-

4-

The truth table shows that p A q - r and (- p A - q) - r do not always have the same
truth values. (They differ for the combinations of truth values of p, q, and r shown in rows 2
and 7.) Thus they are not logically equivalent, and so the statement "If it walks like a duck
and it talks like a duck, then it is a duck" is not logically equivalent to the statement "If it
does not walk like a duck and it does not talk like a duck then it is not a duck." In addition,
because of the logical equivalence shown in Part 1, we can also conclude that the following
two statements are not logically equivalent: "Either it does not walk like a duck or it does not
talk like a duck or it is a duck" and "If it does not walk like a duck and it does not talk like a
duck then it is not a duck."

20. b. Today is New Year's Eve and tomorrow is not January.

c. The decimal expansion of r is terminating and r is not rational.

e. x is nonnegative and x is not positive and x is not 0.

Or: x is nonnegative but x is not positive and x is not 0.

Or: x is nonnegative and x is neither positive nor 0.

g. n is divisible by 6 and either n is not divisible by 2 or n is not divisible by 3.
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10 Solutions for Exercises: The Logic of Compound Statements

21. By the truth table for -4, p -* q is false if, and only if, p is true and q is false. Under these
circumstances, (b) p V q is true and (c) q -- p is also true.

22. b. If tomorrow is not January, then today is not New Year's Eve.

c. If r is not rational, then the decimal expansion of r is not terminating.

e. If x is not positive and x is not 0, then x is not nonnegative.

Or: If x is neither positive nor 0, then 2 is negative.

g. If n is not divisible by 2 or n is not divisible by 3, then n is not divisible by 6.

23. b. Converse: If tomorrow is January, then today is New Year's Eve.

Inverse: If today is not New Year's Eve, then tomorrow is not January.

c. Converse: If r is rational then the decimal expansion of r is terminating.

Inverse: If the decimal expansion of r is not terminating, then r is not rational.

e. Converse: If x is positive or x is 0, then x is nonnegative.

Inverse: If x is not nonnegative, then both x is not positive and x is not 0.

Or: If x is negative, then x is neither positive nor 0.

25. - l

different truth values

The truth table shows that p -* q and p -d q have different truth values in rows 2 and 3,
so they are not logically equivalent. Thus a conditional statement is not logically equivalent
to its inverse.

27.
p q P -q q- p p

T T F F T T
T F F T T T
F T T F F F
F F . T T T

same truth values

The truth table shows that q -* p and - p -- q always have the same truth values, so they
are logically equivalent. Thus the converse and inverse of a conditional statement are logically
equivalent to each other.

28. The if-then form of "I say what I mean" is "If I mean something, then I say it."

The if-then form of "I mean what I say" is "If I say something, then I mean it."

Thus "I mean what I say" is the converse of "I say what I mean." The two statements are not
logically equivalent.

30. The corresponding tautology is p A (q V r) - (p A q) V (p A r)

p q 1 p -q P rp-vq -p q
T T F F T T
T F F T F T
F T T F T F
F F T T T T
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Section 1.2 11

p q r qVr p Aq p Ar p A(qVr) (p Aq)V(p Ar) p A(qVr) -
(p Aq) V(p Ar)

T TT T T T T T T
T T F T T F T T T
T F T T F T T T T
T F F F F T F F T
F T T T F F F F T
F T F T F F F F T
F F T T F F F F T
F F F F F F F F T

all T's

The truth table shows that p A (q V r) (p A q) V (p A r) is always true. Hence it is a tautology.

31. The corresponding tautology is (p - (q -* r)) - ((p A q) -* r).

p q r p-q pAq p-(q-r) (pAq)-r) p-(q--r)-(pAq)- r

TTT T T T T T
T T F F T F F T
T F T T F T T T
T F F T F T T T
F T T T F T T T
F T F F F T T T
F F T T F T T T

F F F T F T T T

all T's

The truth table shows that (p (q r)) ((p A q) r) is always true. Hence it is a
tautology.

33. If Sam is not an expert sailor, then he will not be allowed on Signe's racing boat.

If Sam is allowed on Signe's racing boat, then he is an expert sailor.

34. The Personnel Director did not lie. By using the phrase "only if," the Personnel Director set
forth conditions that were necessary but not sufficient for being hired: if you did not satisfy
those conditions then you would not be hired. The Personnel Director's statement said nothing
about what would happen if you did satisfy those conditions.

36. If it doesn't rain, then Ann will go.

37. b. If a security code is not entered, then the door will not open.

39. a. pV q -r Vq (pV q) V (r V q)
- ('-pA-(-q))V(rVq)

(- p A q) V (r V q)

fan acceptable answer]
by De Morgan's law
[another acceptable answer/
by the double negative law
[another acceptable answer

b. pV q-r Vq - ('-p Apq)V(r Vq)

- - (-' ( p A q)A - (r V q))
- (- (, p A q) A (- r A -v q))

by part (a)
by De Morgan's law
by De Morgan's law

The steps in the answer to part (b) would also be acceptable answers for part (a).
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12 Solutions for Exercises: The Logic of Compound Statements

41. a. (p - (q ((p Aq) r) - ~V (q -r)] -[-(p Aq) Vr]
-[pV(-qvr)]- [4(pAq)vr]

- '[-pV(-qVr)]v[(pAq)vr]
A- [- (p Aq)Vr]V[-pV(-qvr)]

b. By part (a), De Morgan's law, and the double negative law,

(p - (q r)) ((pAq) - r) - [-pv (- qvr)] V [- ((pAq) Vr]
A- [- (p A q) V r] V [p V ( q V r)]

p V ( q V r)]A [- (pA q) V r]
A [(p A q)A r]A- [ p V (- q V r)]

- -pA-(-qVr)]A[(pAq)A'-r]
A - [(p A q)A r] A [p A -( q V r)]

[p A (qA r)] A [(p A q)A r]
A [(p A q)A r] A [p A (qA r)].

The steps in the answer to part (b) would also be acceptable answers for part (a).

42. Yes. As in exercises 29-32, the following logical equivalences can be used to rewrite any
statement form in a logically equivalent way using only and A:

p -q p Vq p-q -( pV q) A (-qVp)
pVq - (-pA q) (-p)- p

The logical equivalence p A q - - p V - q) can then be used to rewrite any statement form
in a logically equivalent way using only - and V.

44. If this triangle has two 450 angles, then it is a right triangle.

46. If Jim does not do his homework regularly, then Jim will not pass the course.

If Jim passes the course, then he will have done his homework regularly.

48. If this computer program produces error messages during translation, then it is not correct.

If this computer program is correct, then it does not produce error messages during translation.

49. c. must be true d. not necessarily true e. must be true f. not necessarily true

Note: To solve this problem, it may be helpful to imagine a compound whose boiling point is
greater than 150° C. For concreteness, suppose it is 200° C. Then the given statement would
be true for this compound, but statements a, d, and f would be false.

Section 1.3

2. This is a while loop.

4. This figure is not a quadrilateral.

5. They did not telephone.

9. premises conclusion

:critical row

critical row

p q r -q- pAq pAq-Adr pV-q q-p r
T T T F F T T T T F
T T F F T T F T T T
T F T T F F T T T Fe
T F F T T F T T T T
F T T F F F T F T F
F T F F T F T F T T
F F T T F F T T F F
F F F T T F T T F T
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Section 1.3 13

Rows 1 and 3 of the truth table show that it is possible for an argument of this form to have
true premises and a false conclusion. Hence the argument form is invalid.

premises conclusion

- critical row

- critical row

- critical row

- critical row

- critical row

The truth table shows that in every situation (represented by rows 1, 3, 5, 7, and 8) in which
all the premises are true, the conclusion is also true. Therefore, the argument is valid.

premises conclusion

- critical row
- critical row

- critical row
- critical row

Row 3 of the truth table shows that it is possible for an argument of this form to have true
premises and a false conclusion. Hence the argument form is invalid.

premises conclusion

- critical row

The truth table shows that in the only situation (represented by row 4) in which both premises
are true, the conclusion is also true. Therefore, modus tollens is valid.

13. b. premises conclusion

- critical row

- critical row

Row 3 of the truth table shows that it is possible for an argument of this form to have true
premises and a false conclusion. Hence the argument form (inverse error) is invalid.

10.

p q r pV -q p -r q -r p Vq -r

TTT T T T T
T T F T F F F
T F T T T T T
T F F T F T F
F T T T T T T

F T F T T F F

F F T F T T T
FFF F T T T

11.

p q r -p - -r qVr p-qVr qV-r I pV r

T T T F F F T T F F
T T F F F T T T T T
T F T F T F T T T F
T F F F T T F F T T
F T T T F F T T F T
F T F T F T T T T T
F F T T T F T T T T
F F F . T T T F T T T

12.

p q pq q I -p

TT T F F
T F F T F
F T T F T
F F | T T

P q p-q P 11 q

TT T F F
T F F F T
F T T T F
F F T T | T -
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14 Solutions for Exercises: The Logic of Compound Statements

premise conclusion

p q q pVq

T T T T

TF F T
F T T T
F F F F I

- critical row

- critical row

The truth table shows that in the two situations (represented by rows 1 and 3) in which the
premise is true, the conclusion is also true. Therefore, the the second version of generalization
is valid.

premise conclusion

p q P p I

T T T TV
T F F T
F T F F
F F F F I

- critical row

The truth table shows that in the only situation (represented by row 1) in which both premises
are true, the conclusion is also true. Therefore, the the first version of specialization is valid.

premise conclusion

p q p Aq q

TT T T
TF F F
F T F T
F F IF F I

- critical row

The truth table shows that in the only situation (represented by row 1) in which both premises
are true, the conclusion is also true. Therefore, the second version of specialization is valid.

premises conclusion

- critical row

The truth table shows that in the only situation (represented by row 3) in which both premises
are true, the conclusion is also true. Therefore, the the second version of elimination is valid.

premises conclusion

- critical row

- critical row

- critical row

- critical row

15.

16.

17.

19.

20.

p q pVq - p q

T T T F T
T F T F F
F T T T T

FF F IT F

p q r p-q q - r pe-r

T T T T T | T
T T F T F F
T F T F T T
T F F F T F
F T T T T T
F T F T F T
F F T T T T
F F F T T T
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Section 1.3 15

The truth table shows that in the two situations (represented by rows 1, 5, 7, and 8) in which
both premises are true, the conclusion is also true. Therefore, the argument form (transitivity)
is valid.

premises conclusion

- critical row

- critical row

- critical row

The truth table shows that in the three situations (represented by rows 1, 3, 5) in which all
three premises are true, the conclusion is also true. Therefore, proof by division into cases is
valid.

23. form: p Vq
p-- r

.. qV r

premises conclusion

- critical row

- critical row

- critical row

- critical row

Row 3 of the truth table shows that it is possible for an argument of this form to have true
premises and a false conclusion. Hence the argument form is invalid.

28. form: p -* q invalid, converse error
q

.. p

29. form: p q
p

.. - q

invalid, inverse error

30. form: p - q invalid, converse error
q

.. p

21.

p q r pVq |p-r q--r r

T T T T T T T
T T F T F F F
T F T T T T T
T F F T F T F
F T T T T T T
F T F T T F F
F F T F T T T
F F F F T T F

p q p r I Vq p-r qV r

T T T F T T T .
T T F T T F T
T F T F T T F.
T F F T T F T
F T T F T T T
F T F T T T T
F F T F F T F
F F F T F T T
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16 Solutions for Exercises: The Logic of Compound Statements

31. form: p A q valid, generalization
.. q

32. form: p r valid, proof by division into cases
q r

.. p V q

33. An invalid argument with a true conclusion can have premises that are either true or false. In
the following example the first premise is true for either one of two reasons: its hypothesis is
false and its conclusion is true.

If the square of every real number is positive, then some real numbers are positive.

Some real numbers are positive.

Therefore, the square of every real number is positive.

34. A valid argument with a false conclusion must have at least one false premise. In the following
example, the second premise is false. (The first premise is true because its hypothesis is false.)

If the square of every real number is positive, then no real number is negative.

The square of every real number is positive.

Therefore, no real number is negative.

35. A correct answer should indicate that for a valid argument, any argument of the same form
that has true premises has a true conclusion, whereas for an invalid argument, it is possible to
find an argument of the same form that has true premises and a false conclusion. The validity
of an argument does not depend on whether the conclusion is true or not. The validity of an
argument only depends on the formal relationship between its premises and its conclusion.

38. b. 1. Suppose C is a knight.
2.. . C is a knave (because what C said was true).
3... C is both a knight and a knave (by (1) and (2)), which is a contradiction.
4... C is not a knight (because by the contradiction rule the supposition is false).
5. . . What C says is false (because since C is not a knight he is a knave and knaves
always speak falsely).
6.. . At least one of C or D is a knight (by De Morgan's law).
7... D is a knight (by (4) and (6) and elimination).
8... C is a knave and D is a knight (by (4) and (7)).
To check that the problem situation is not inherently contradictory, note that if C is a
knave and D is a knight, then each could have spoken as reported.

c. There is one knave. E and F cannot both be knights because then both would also be
knaves (since each would have spoken the truth), which is a contradiction. Nor can E and
F both be knaves because then both would be telling the truth which is impossible for
knaves. Hence, the only possible answer is that one is a knight and the other is a knave.
But in this case both E and F could have spoken as reported, without contradiction.

d. The following is one of many solutions.
1. The statement made by U must be false because if it were true then U would not
be a knight (since none would be a knight), but since he spoke the truth he would be a
knight and this would be a contradiction.
2. . . there is at least one knight, and U is a knave (since his statement that there are
no knights is false).
3. Suppose Z spoke the truth. Then so did W (since if there is exactly one knight then it
is also true that there are at most three knights). But this implies that there are at least
two knights, which contradicts Z's statement. Hence Z cannot have spoken the truth.
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Section 1.3 17

4. . . there are at least two knights, and Z is a knave (since his statement that there is
exactly one knight is false). Also X's statement is false because since both U and Z are
knaves it is impossible for there to be exactly five knights. Hence X also is a knave.
5. . . there are at least three knaves (U, Z, and X), and so there are at most three
knights.
6. . . W's statement is true, and so W is a knight.
7. Suppose V spoke the truth. Then V, W, and Y are all knights (otherwise there would
not be at least three knights because U, Z, and X are known to be knaves). It follows
that Y spoke the truth. But Y said that exactly two were knights. This contradicts the
result that V, W, and Y are all knights.
8... V cannot have spoken the truth, and so V is a knave.
9... U, Z, X, and V are all knaves, and so there are at most two knights.
10. Suppose that Y is a knave. Then the only knight is W, which means that Z spoke
the truth. But we have already seen that this is impossible. Hence Y is a knight.
11. By 6, 9, and 10, the only possible solution is that U, Z, X, and V are knaves and W
and Y are knights. Examination of the statements shows that this solution is consistent:
in this case, the statements of U, Z, X, and V are false and those of W and Y are true.

40. Suppose Socko is telling the truth. Then Fats is also telling the truth because if Lefty killed
Sharky then Muscles didn't kill Sharky. Consequently, two of the men were telling the truth,
which contradicts the fact that all were lying except one. Therefore, Socko is not telling the
truth: Lefty did not kill Sharky. Hence Muscles is telling the truth and all the others are lying.
It follows that Fats is lying, and so Muscles killed Sharky.

42. (1) q - r premise b
r premise d

. q by modus tollens

(2) p V q premise a
-q by (1)

p by elimination

(3) -2 q- u A s premise e
-v q by (1)

u A s by modus ponens

(4) uA s by (3)
. . s by specialization

(5) p by (2)
s by (4)
p A s by conjunction

(6) pA s -t premise c
p A s by (5)
t by modus ponens

44. (1) - q V s premise d
s premise e

- q by elimination
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18 Solutions for Exercises: The Logic of Compound Statements

(2) p -* q premise a
- q by (1)

. . p by modus tollens

(3) r V s premise b
s premise e

.*. r by elimination

(4) -p by (2)
r by (3)
- p A r by conjunction

(5) -p A r - u
-p Ar

.. U

premise f
by (4)
by modus ponens

(6) -s -t premise c
s premise e

.-. t by modus ponens

(7) w V t premise g
t by (6)

*. w by elimination

(8) u by (5)
w by (7)

.*. u A w by conjunction

Section 1.4

2. R=1

4. S= 1

6. The input/output table is as follows:

Input Output

P Q R
1 1 0
1 0 1
0 1 0
00 0

8. The input/output table is as follows:
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Section 1.4 19

Input Output I

P Q R S
11 1 1
1 1 0 1
1 0 1 1
1 0 0 1
0 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

10. (P V Q)A - Q

12. (P V Q)V (Q A R)

14.

NOT R

15.

-R

17.

ID ORH S

19. a. (P A QA R) V (PA QA R) V (- P A QA R)
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20 Solutions for Exercises: The Logic of Compound Statements

b. One circuit having the given input/output table is the following:

-S

I----- )
NT

21. a. (P AQA-R)V(-P A Q AR)V(-P AQA-R)

b. One circuit having the given input/output table is the following:

P

Q- AN

NOT

C /NOT>-

23. The input/output table is as follows:

Input Output]

P Q R S
1 1 1 1
1 1 0 0
1 0 1 0
1 00 0
0 11 0
0 1 0 0
O 0 1 0
0 0 0 1

Jr

Q-
F, -

��-I

~~- .1 I

.K -
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One circuit (among many) having this input/output table is the following:

S

25. Let P, Q, and R indicate the positions of the switches, with 1 indicating that the switch is in
the on position. Let an output of 1 indicate that the security system is enabled. The complete
input/output table is as follows:

Input Output]

P Q R S
1 1 1 1
1 1 0 1
1 0 1 1
1 00 0
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 0

One circuit (among many) having this input/output table is the following:

Dn

S

Note: One alternative answer interchanges the l's and 0's.

27. The Boolean expression for circuit (a) is P A (- (- P AQ)) and for circuit (b) it is - (P VQ).
We must show that if these expressions are regarded as statement forms, then they are logically
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22 Solutions for Exercises: The Logic of Compound Statements

equivalent. But

-P A(-(-PA Q) - P A (- (- P)V - Q)
-P A(PV-Q)
(- P A P) V (- PA - Q)
C V(- PA - Q)
-PA-Q
- (P VQ)

by De Morgan's law
by the double negative law
by the distributive law
by the negation law for A
by the identity law for V
by De Morgan's law.

29. The Boolean expression for circuit (a) is (P A Q) V (- P A Q) V (P A Q) and for circuit
(b) it is P V Q. We must show that if these expressions are regarded as statement forms, then
they are logically equivalent. But

(P A Q) V (- P A Q) V (PA Q)

((PA Q)VH(P A Q)) V(PA -

((Q A P) V (QA - P)) V (P A
(Q A (PV - P)) V (PA - Q)
(QA t) V(P A -Q)

Q V (PA - Q)

(Q V P) A (QV - Q)
(Q V P)A t
QVP
PVQ

31. (HPA-Q)V( PAQ)V(PA-Q)-

(- P A (- Q V Q)) V (PA Q)
-(P A (QV - Q)) V (PA - Q)

- ~PA t) V(PA - Q)
PV (PA - Q)
PV P) A (PV Q)

(PV - P) A (V PV Q)
t A(- PV -Q)
-( PV - Q)A t
- PV Q
- (PA Q)

,Q) by inserting parentheses (which is
legal by the associative law for V)

Q) by the commutative law for A
by the distributive law
by the negation law for V
by the identity law for A
by the distributive law
by the negation law for V
by the identity law for A
by the commutative law for V.

(( P A - Q) V (- P A Q)) V (P A Q)
by inserting parentheses (which is
legal by the associative law)
by the distributive law
by the commutative law
by the negation law
by the identity law
by the distributive law
by the commutative law
by the negation law
by the commutative law
by the identity law
by De Morgan's law.

32. (PA Q AR) V((PA-~Q AR) V(PA-~QA-~R)

((P A (Q A R)) V (P A (- Q A R))) V (P A (- QA - R)) V (PA - Q)
by inserting parentheses (which is legal by the associative law)

(P A [(Q A R) V (' Q A R)] V (P A [- QA - R]) by the distributive law
P A ([(Q A R) V (' Q A R)] V [' QA - R]) by the distributive law
P A ([(R A Q) V (RA - Q)] V [' QA - R]) by the commutative law for A
P A ([(R A (QV - Q)] V [- QA - RI) by the distributive law
P A ([(RA t] V[- QA - R]) by the negation law for V
P A (R V [- QA - R]) by the identity law for A
P A ((RV - Q) A (RV - R)) by the distributive law
P A ((RV - Q) A t]) by the negation law for V
P A (R V - Q) by the identity law for A.

33. a.

(P I Q) I (P I Q) - [(P I Q) A (P I Q)]

- (PIQ)
- - [ (P A Q)]

- PAQ

by definition of I
by the idempotent law for A
by definition of I
by the double negative law.
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b.
PA(-QVR) - (PI(-QVR))I(Pl(-QVR))

by part (a)
(P1 [(- Q i Q) I (R R)]) (P1 [(- Q i Q) I (R R)])

by Example 1.4.7(b)
(PI[((QIQ)I(QIQ))|(R R)])I(PI[((QIQ)I(QIQ))I(RIR)])

by Example 1.4.7(a)

34. b.
P V Q - -'(a (P V Q)) by the double negative law

- (P 1 Q) by definition of I
(P I Q) 1 (P I Q) by part (a).

C.

P A Q - (a PV Q) by De Morgan's law and the double negative law
- P l Q by definition of l

(P I P) I (Q I Q) by part (a).
d.

P -* Q - ' P V Q by Exercise 13(a) of Section 1.2

(a P t Q) 1 (a P I Q) by part (b)
- ((P I P) I Q) t ((P I P) I Q) by part (a).

e.

PQ - (P- Q)A(Q- P)

by the truth table on page 24 of the text
- ((P l P) l Q] l [(P l P) l Q)]) A ([(Q 1 Q) l P] l [(Q 1 Q) l P)])

by part (d)

(([(P I P) l Q] l [(P I P) I Q)]) I ([(P l P) I Q] I [(P l P) I Q)]))
I (([(Q I Q) I P] I [(Q I Q) I P)]) I ([(Q Q) I P]I [(Q I Q) I P)]))

by part (c)

Section 1.5

2. 55=32+16+4+2+1=1101112

3. 287=256+16+8+4+2+1=1000111112

5. 1609 = 1024 + 512 + +64 + 8 + 1 = 110010010012

6. 1424 = 1024 + 256 + 128 + 16 = 101100100002

8. 101112 = 16 + 4 + 2 + 1 = 23jo

9. 1101102 = 32 + 16 + 4 + 2 = 5410

11. 10001112 =64+4+2+1 =71o

10012

14. + 10112
101002

1101110112

16. + 10010110102
100000101012

110102
18. - 11012

11012
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24 Solutions for Exercises: The Logic of Compound Statements

10101002
20. - 101112

1111012

21. b. S=O,T=1 c. S=O,T=0

22. Note that
111111112

+ 12

1000000002

and 1000000002 = 2 8l Because 12 = 110, we have that

111111112 + 12 = 2810
- 12 - 110

1lllllll2 = (2` - I)IO

24. 671o = (64 + 2 + 1)1o = 010000112 10111100 -4 10111101.

So the two's complement is 10111101.

26. 11510 = (64 + 32 + 16 + 2 + 1)10 = 11100112 - 01110011 10001100 + 1 10001101

So the two's complement is 10001101.

28. 10011001 - (01100110 + 1)2 -011001112 = -(64 + 32 + 4 + 2 + 1)jo -1031o

30. 10111010 -(01000101 + 1)2 -010001102 = -(64 + 4 + 2)io = -70jo

34. 8 9 1o = (64 + 16 + 8 + 1)1o = 010110012

-55io = -(32 + 16 + 4 + 2 + 1)1o = -00110111 2  (11001000 + 1)2 --- 4 11001001

So the 8-bit representations of 79 and -43 are 01001111 and 11010101. Adding the 8-bit
representations in binary notation gives

01011001
+ 11001001

100100010

Truncating the 1 in the 28 th position gives 00100010. Since the leading bit of this number is
a 0, the answer is positive. Converting back to decimal form gives

00100010 -* 1000102 = (32 + 2),o = 341o.

So the answer is 34.

35. - 1 5 1o = -(8 + 4 + 2 + 1)1o = -11112 - 00001111 -4 11110000 * 11110001

-46jo = -(32 + 8 + 4 + 2)lo = -1011102 ' 00101110 11010001 * 11010010

So the 8-bit representations of -15 and -46 are 11110001 and 10100010. Adding the 8-bit
representations gives

11110001
+ 11010010

111000011

Truncating the 1 in the 28 th position gives 11000011. Since the leading bit of this number is
a 1, the answer is negative. Converting back to decimal form gives

11000011 - (00111100 + 1)2 = -001111012 = -(32 + 16 + 8 + 4 + 1)1( = -611o.

So the answer is -61.
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36. 1231o0 (64 + 32 + 16 + 8 + 2 + 1)o = 01110112

-941o -(64 + 16 + 8 + 4 + 2 )o = -010111102 -* (10100001 + 1)2 - 10100010

So the 8-bit representations of 123 and -94 are 01111011 and 10100010. Adding the 8-bit
representations gives

01111011
+ 10100010

100011101

Truncating the 1 in the 28 th position gives 00011101. Since the leading bit of this number is
a 0, the answer is positive. Converting back to decimal form gives

00011101 111012 = (16 + 8 + 4 + 1)Io = 291o.

So the answer is 29.

37. Suppose a and b are two integers in the range from 1 through 128 whose sum a + b is also in
this range. Since

1 < a + b < 128

then
-1 > -(a + b) >-128 by multiplying through by - 1.

Adding 29 to all parts of the inequality gives

29-1 > 2 9 -(a + b) > 29- 128 > 28,

and so
28 < 2 9 -(a+ b) < 29. (*)

Now observe that

(28 - a) + (28 - b) = 2 .28 - (a + b) = 29 - (a + b).

Hence by substitution into (*),

2 8< (2 -a) + (2 -b) < 29.

Consequently,
(28 - a) + (2" - b) = 28 + smaller powers of 2,

and so the binary representation of (28 - a) + (28 - b) has a leading 1 in the 28 th position.

39. EOD16 = 14 162 + 0 + 13 = 3 5 9 7 lo

40. 39EB1 6 = 3 163 + 9 162 + 14 .16 + 11 = 148271o

42. B53DF81 6 = 1011010100111101111110002

43. 4ADF831 6 = 0100 1010 1101 1111 100000112

45. 10110111 1100 01012 = B7C51 6

47. b. 207638 = 2 .84 + 0 83 + 7 82+ 6 8 + 3 = 86911o

c. To convert an integer from octal to binary notation:

i. Write each octal digit of the integer in fixed 3-bit binary notation (and include leading
zeros as needed). Note that

I octal digit 110 1 12 3 4 15 16 7
3-bit binary equivalent 000 001 010 011 100 101 110 111
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26 Solutions for Exercises: The Logic of Compound Statements

ii. Juxtapose the results.

As an example, consider converting 615028 to binary notation:

68 = 1102 18 = 0012 58 = 1012 08 = 0002 28 = 0102

So in binary notation the integer should be 110001 10100060102. To check this result, write
the integer in decimal notation and compare it to the result of part (a):

1100011010000102 = (1 214 + 1.213 + 1 29 + 1 .28 + 1 .26 + 1 2)1o = 254101, .

It agrees.

(a) To convert an integer from binary to octal notation:

i. Group the digits of the binary number into sets of three, starting from the right and
adding leading zeros as needed;

ii. Convert the binary numbers in each set of three into octal digits;
iii. Juxtapose those octal digits.

As an example consider converting 11010111012 to octal notation. Grouping the binary digits
in sets of three and adding two leading zeros gives

001 101 011 101.

To convert each group into an octal digit, note that

0012 = 18 1012 = 58 0112 = 38 1012 = 58

So the octal version of the integer should be 15358. To check this result, observe that

1 101011012= ( 2 9 +1 28+1. 26 +l. 24 +1 23 +1 .2 2 +)O=8611o

and
1535 = (1 .83 + 5 82 + 3 8 + 5)1o = 861l(

also.
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Chapter 2: The Logic of Quantified Statements

Ability to use the logic of quantified statements correctly is necessary for doing mathematics because
mathematics is, in a very broad sense, about quantity. The main purpose of this chapter is to
familiarize students with the language of universal and existential statements. The various facts
about quantified statements developed in this chapter are used extensively in Chapter 3 and are
referred to throughout the rest of the book. Experience with the formalism of quantification is
especially useful to students planning to study LISP or Prolog, program verification, or relational
databases.

Many students come to college with inconsistent interpretations of quantified statements. In tests
made at DePaul University, over 60% of students chose the statement "No fire trucks are red" as
the negation of "All fire trucks are red." Yet, through guided discussion, these same students came
fairly quickly to accept that "Some fire trucks are not red" conveys the negation more accurately,
and most learned to take negations of general statements of the form "Vx, if P(x) then Q(x)," "Vx,
]y such that P(x, y)," and so forth with reliable accuracy.

One thing to keep in mind is the tolerance for potential ambiguity in ordinary language, which
is typically resolved through context or inflection. For instance, as the "Caution" on page 90 of the
text indicates, the sentence "All mathematicians do not wear glasses" is one way to phrase a negation
to "All mathematicians wear glasses." (To see this, say it out loud, stressing the word "not.") Some
grammarians ask us to avoid such phrasing because of its potentially ambiguity, but the usage is
widespread even in formal writing in high-level publications ("All juvenile offenders are not alike,"
Anthony Lewis, The New York Times, 19 May 1997, Op-Ed page), or in literary works ("All that
glisters is not gold," William Shakespeare, The Merchant of Venice, Act 2, Scene 7, 1596-1597).

Even rather complex sentences can be negated in this way. For instance, when asked to write
a negation for "The sum of any two irrational numbers is irrational," a student wrote "The sum of
any two irrational numbers is not irrational," which is an acceptable informal negation (again, say
it out loud, stressing the word "not"). To avoid such responses, it may be necessary to specify to
students that simply inserting the word "not" is not an acceptable answer to a problem that asks
for a negation.

The modified formal language of the text includes the words "such that" in statements containing
an existential quantifier because when students write multiply-quantified statements "formally," they
often insert the words "such that" in the wrong place. That is, they insert it in a place that changes
the meaning of the statement they were given. If they were not required to include the words "such
that," an opportunity to correct their misunderstanding would be missed. It can also be helpful
to alternate between writing out the words "if-then" (to encourage students to take the word "if'
more seriously than they may be inclined to do1 ) and using an arrow to denote the conditional (to
communicate the dynamic nature of deductive reasoning).

Another aspect of students' backgrounds that may surprise college and university mathematics
instructors concerns their understanding of the meaning of "real number." For instance, when asked
about of the following statement, many students only consider integer values for a and b: 3 a positive
real number a such that V positive real numbers b, a < b. An informal description of the relationship
between real numbers and points on a number line is given in Section 2.1 on page 77. The main
purpose is to illustrate the existence of many real numbers between any pair of consecutive integers.
Examples 2.3.5 and 2.3.6 on page 101 are intended to deepen students' understanding of this fact,
and the discussion on page 449 that precedes the proof of the uncountability of the real numbers
between 0 and 1 describes a procedure for approximating the (possibly infinite) decimal expansion
for a point on a number line.

'Many students (and other people) mistakenly interpret if-then statements as and statements. For instance, when
students are asked to state what it means for a binary relation R to be symmetric, a significant fraction write "aRb
and bRa."
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28 Solutions for Exercises: The Logic of Quantified Statements

Note

Instructors who wish to incorporate more about sets to accompany the material of Chapter 2 can do
so by covering some of the topics from Sections 5.1 and 5.2 at the beginning of Chapter 2. However,
because almost all students have difficulty with element proofs and with some of the subtler issues
concerning sets, the bulk of the material on set theory is best left until students have had experience
working with simpler proofs.

Suggestions

1. The exercises in Sections 2.1-2.3 are designed to try to imprint new language patterns on students'
minds. Because it takes time to develop new habits, it is helpful to continue assigning exercises from
these sections for several days after covering them in class. To prepare for Chapter 3, universal
conditional statements should especially be emphasized. As in Section 1.2, care may need to be
taken not to spend excessive class time going over the more difficult exercises, such as those on
"necessary" and "sufficient" conditions.

2. The most important idea of Section 2.4 is also the simplest: the rule of universal instantiation.
Yet this inference rule drives an enormous amount of mathematical reasoning. If you wish to move
rapidly through Chapter 2, you could focus on this rule and its immediate consequences in Section
2.4 and omit the discussion of how to use diagrams to check validity of arguments.

Section 2.1

1. c. False d. True e. False f. True

4. a. Q(2): 22 < 30 - true because 22 = 4 and 4 < 30, Q(-2): (-2)2 < 30 - true because
(-2)2 =4and4<30

Q(7): 72 < 30 - false because 72 = 49 and 49 : 30, Q(-7): (-7)2 < 30 - false because
(-7)2 = 49 and 49 S 30

c. truth set = In c Z+In 2 < 30} = {1,2,3,4,5}

5. b. Let x =-1 and y = 0. Then x < y because -1 < 0 but x2 4 y2 because (_1)2 = 1 5 02 = 0.
Thus the hypothesis x < y is true and the conclusion x2 < y2 is false, so the statement as a
whole is false.

d. Here are examples of three kinds of correct answers:

(1) Let x = 2 and y = 3. Then x < y because 2 < 3 and x2 < y2 because 22 = 4 < 32 = 9.
Thus both the hypothesis and the conclusion are true, so the statement as a whole is true.

(2) Let x = 3 and y = 2. Then x 5 y because 3 5i 2 and x2 5i y2 because 32 = 9 li 22 = 4.
Thus both the hypothesis and the conclusion are false, so the statement as a whole is true.

(3) Let x = 2 and y =-3. Then x 5t y because 2 St-3 and x2 < be cause 22 = 4 < (-3)2
9. Thus the hypothesis is false and the conclusion is true, so the statement as a whole is true.

6. a. When m = 25 and n = 10,the statement "m is a factor of n2" is true because n2 = 100 and
100 = 4 25. But the statement "m is a factor of n" is false because 10 is not a product of 25
times any integer. Thus the hypothesis is true and the conclusion is false, so the statement as
a whole is false.

b. R(in, n) is also false when n = 8 and n = 4 because 8 is a factor of 42 = 16, but 8 is not a
factor of 4.

c. When m = 5 and n = 10, both statements "m is a factor of n2" and "m is a factor of n" are
true because n = 10 = 5 2 = m 2 and n2 = 100 = 5 * 20 = m * 20. Thus both the hypothesis
and conclusion of R(m, n) are true, and so the statement as a whole is true.
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d. Here are examples of two kinds of correct answers:

(1) Let m = 2 and n = 6. Then both statements "m is a factor of n2" and "m is a factor of n"
are true because n = 6 = 2 3 = m 3 and n2 = 36 = 2 18 = m 18. Thus both the hypothesis
and conclusion of R(m, n) are true, and so the statement as a whole is true.

(2) Let m = 6 and n 2. Then both statements "m is a factor of n2" and "m is a factor of
n" are false because n = 2 :& 6 k, for any integer k, and n2 = 4 4 6- j, for any integer j. Thus
both the hypothesis and conclusion of R(m, n) are false, and so the statement as a whole is
true.

7. b. Truth set = {1, 2, 3, 6}

d. Truth set = {-2, -1,1, 2}

8. b. Truth set = {1, 2, 3, 4, 5, 6, 7, 8.9}

d. Truth set = {-8, -6,-4,-2,0,2,4,6,8}

10. Counterexample 1: Let a = 1, and note that (1 -1)/i = 0 is an integer.

Counterexample 2: Let a =-1, and note that (- 1 -1)/(- 1) = 2 is an integer.

12. Counterexample: Let x = 1 and y = 1, and note that 1 +/1 = vA, vT+ v= 1 1 = 2, and
2 54 v. (This is one counterexample among many. Any real numbers x and y with xy #4 0
will produce a counterexample.)

15. a. Some acceptable answers: All squares are rectangles. If a figure is a square then that figure
is a rectangle. Every square is a rectangle. All figures that are squares are rectangles. Any
figure that is a square is a rectangle.

b. Some acceptable answers: There is a set with sixteen subsets. Some set has sixteen subsets.
Some sets have sixteen subsets. There is at least one set that has sixteen subsets.

16. b. V real numbers x, x is positive, negative, or zero.

d. V logicians x, x is not lazy.

f. V real numbers x, x2 5 -1.

17. b. 3 a real number x such that x is rational.

18. c. Vs, if C(s) then - E(s).

d. 3x such that C(s) A M(s).

20. Some acceptable answers: If a student is in CSC 321, then that student has taken MAT 140.
All students in CSC 321 have taken MAT 140. Every student in CSC 321 has taken MAT 140.
Each student who is in CSC 321 has taken MAT 140. Given any student in CSC 321, that
student has taken MAT 140.

21. b. Vx, if x is a valid argument with true premises, then x has a true conclusion.

Or: V arguments x, if x is valid and x has true premises then x has a true conclusion.

Or: V valid arguments x, if x has true premises then x has a true conclusion.

d. V integers m and n, if m and n are odd then mn is odd.

22. b. Vx, if x is a computer science student then x needs to take data structures.

V computer science students x, x needs to take data structures.

23. b. B a question x such that x is easy.

3x such that x is a question and x is easy.
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24. a. Vx, if x is an integer then x is rational, but 3x such that x is rational and x is not an
integer.

25. c. This statement translates as "There is a square that is above d." This is false because the
only objects above d are a (a triangle) and b (a circle).

d. This statement translates as "There is a triangle that has f above it," or, "f is above some
triangle." This is true because g is a triangle and f is above g.

26. a This statement translates as "0 is a positive real number." This is false: 0 is neither positive
nor negative. (See also the order axiom Ord3 on page A-2 of Appendix A: Properties of the
Real Numbers.)

c. This statement translates as "All integers are real numbers." This is true; each integer
corresponds to a position along the number line.

27. a. This statement translates as "There is a geometric figure that is both a rectangle and a
square." This is true. As an example take any square; it is a rectangle whose sides all have
the same length.

b. This statement translates as "There is a geometric figure that is a rectangle but is not a
square." This is true. Any rectangle whose sides are not all of the same length is a rectangle
that is not a square. For example, one pair of parallel sides could be twice as long as the other
pair of parallel sides.

c. This statement translates as "Every square is a rectangle." This is true. A square is a
rectangle satisfying the additional condition that all its sides have the same length.

28. a. This statement translates as "There is a prime number that is not odd." This is true. The
number 2 is prime and it is not odd.

c. This statement translates as "There is a number that is both an odd number and a perfect
square." This is true. For example, the number 9 is odd and it is also a perfect square (because
9 = 32).

30. b. This statement translates as "For all real numbers x, if x > 2 then X2 > 4," which is true.

d. This statement translates as "For all real numbers x, X2 > 4 if, and only if, Ixl > 2." This
is true because X2 > 4 if, and only if, x > 2 or x <-2, and IxI > 2 means that either x > 2
or x <-2.

31. c. This statement translates as "For all real numbers a and b, if ab = 0 then a = 0 or b = 0,"
which is true.

d. This statement translates as "For all real numbers a, b, c, and d, if a < b and c < d then
ac < bd," which is false. Counterexample: Let a = -2, b = 1, c = -3, and d = 0. Then a < b
because -2 < 1 and c < d because -3 < 0, but ac 54 bd because ac = (-2)(-3) = 6 and
bd = 1 0 = 0 and 6 -t 0.

Section 2.2

2. Statements c and f are negations for the given statement.

3. b. ] a computer C such that C does not have a CPU.

d. V bands b, b has won fewer than 10 Grammy awards.

4. b. Some birds cannot fly.

d. No dogs have spots.
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5. b. Formal negation: 3 a real number x such that x is not positive and x is not negative and x
is not zero.

Some acceptable informal negations: There is a real number that is not positive, negative, or
zero. There is a real number that is neither positive, negative, nor zero.

d. Formal negation: 3 a logician x such that x is lazy.

Some acceptable informal negations: Some logicians are lazy. There is a logician who is lazy.
There is a lazy logician.

f. Formal negation: 3 a real number x such that x2 = -1.

Some acceptable informal negations: There is a real number whose square is -1. The square
of some real number is -1.

6. b. Formal negation: V real numbers x, x is not rational.

Some acceptable informal negations: No real numbers are rational. All real numbers are
irrational.

8. Informal negation of the statement: "There are some simple solutions to life's problems," or
"Some solutions to life's problems are simple."

Formal version of the statement: "V solutions to life's problems x, x is not simple," or "Vx, if
2 is a solution to life's problems then x is not simple."

Informal version of the statement: "None of the solutions to life's problems is simple," or "No
solution to life's problems is simple."

10. 3 a computer program P such that P compiles without error messages but P is not correct.

12. The proposed negation is not correct. Correct negation: There are an irrational number x
and a rational number y such that xy is rational. Or: There are an irrational number and a
rational number whose product is rational.

14. The proposed negation is not correct. There are two mistakes: The negation of a "for all"
statement is not a "for all" statement, and the negation of an "if-then" statement is not an
"if-then" statement. Correct negation: 3 real numbers x1 and x2 such that x2 = x2 and
X£ 5 X2.

15. b. True d. True

e. False: x = 36 is a counterexample because the ones digit of x is 6 and the tens digit is
neither 1 nor 2.

16. b. Some acceptable answers: There is a valid argument with true premises and a false conclu-
sion. 3 a valid argument x such that x has true premises and x does not have a true conclusion.
Some valid arguments with true premises do not have true conclusions.

d. Some acceptable answers: There are two odd integers whose product is even. ] integers m
and n such that m and n are odd and mn is even. 3 odd integers m and n such that mn is
even. For some odd integers m and n, mn is even.

17. Some acceptable answers: Some computer science student does not need to take data struc-
tures. 3 a computer science student x such that £ does not need to take data structures. Some
computer science students do not need to take data structures. There is at least one computer
science student who does not need to take data structures.

19. B an integer d such that 6/d is an integer and d 0 3.

21. B an integer n such that n is prime and both n is not odd and n 54 2.

Or: 3 an integer n such that n is prime and n is neither odd nor equal to 2.
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23. 3 an animal x such that x is a dog and either x does not have paws or x does not have a tail.

25. There is an integer n such that n2 is odd but n is not odd.

Or: There is an integer that is not odd but whose square is odd.

26. b. One possible answer: Let P(x) be "'X2 $ 2." The statements "Vx G Z, X2 / 2" and
"Vx e Q, X2 9 2" are true, but the statement "Vx E R, X2 5 2" is false.

28. The given statement cannot be false because its negation is "There exists an occurrence of the
letter u in the title of this book that is not lower case," which is not true because there are no
occurrences of the letter u in the title of this book. Hence the given statement is true because
it is not false. Recall that in a situation such as this we call the statement "true by default"
or "vacuously true."

30. Contrapositive: V integers d, if d 74 3 then 6/d is not an integer.

Converse: V integers d, if d = 3 then 6/d is an integer.

Inverse: V integers d, if 6/d is not an integer, then d $ 3.

32. Contrapositive: V integers n, if n is not odd and n 5 2 then n is not prime.

Converse: V integers n, if n is odd or n = 2, then n is prime.

Inverse: V integers n, if n is not prime, then both n is not odd and n ? 2.

Or: V integers n, if n is not prime, then neither is n odd nor is n equal to 2.

34. Contrapositive: V animals x, if x does not have paws or x does not have a tail then x is not a
dog.

Converse: V animals x, if x has paws and x has a tail then x is a dog.

Inverse: V animals x, if x is not a dog, then either x does not have paws or x does not have a
tail.

36. Contrapositive: If an integer is not odd, then its square is not odd.

Converse: If an integer is odd, then its square is odd.

Inverse: If the square of an integer is not odd, then the integer is not odd.

37. Possible example 1: Consider the statement: V real numbers x, if x > 0 then x2 > 0. This
statement is true. But its inverse is "V real numbers x, if x 4 0 then x2 / 0,," which is false.
(One counterexample is x = 1 because -1 4 0 but (-1)2 > 0.)

Possible example 2: Consider the statement: V integers n that are greater than 2, if n is prime,
then n is odd. This statement is true. But its inverse is "V integers n that are greater than 2,
if n is not prime, then n is not odd, which is false. (One counterexample is x = 15 because 15
is not prime but it is odd.)

39. If an integer is divisible by 8, then it is divisible by 4.

41. If a person does not pass a comprehensive exam, then that person cannot obtain a master's
degree. Or: If a person obtains a master's degree then that person passed a comprehensive
exam.

43. There is a person who does not have a large income and is happy.

45. There is a function that is a polynomial but does not have a real root.

46. Formal Versions: V computer programs P, if P is correct then P translates without error
messages. However, 3 a computer program P such that P translates without error messages
and P is not correct.

Informal Versions: If a computer program is correct, then it translates without error messages.
But some incorrect computer programs also do not produce error messages during translation.
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Section 2.3

1. c. True: Paris is the capital of France.

d. False: Miami is not the capital of Brazil.

2. c. False: (1)2 = 1 ? 1 d. True: (-2)2 = 4 > 2

3. c. Let y 4 3. Then xy = ()() 1.

4. b. One possible answer: Let n = 103 + 1 c. One possible answer: Let n = 10"O + 1.

6. True.

Given x Choose y = I Is y a circle above x, with a different color from x?

e a,b,orc yes/
g a or c yes/
h a or c yes/
i b yesl

8. True. Let x = f or x = i. The statement "V circles y, y is above x" is true for either choice of
x because all the circles are above both of these triangles.

9. b. True. Solution 1: Let x = 0. Then for any real number r, x + r = r + x = r because 0 is
an identity for addition of real numbers. Thus, because every element in E is a real number,
Vy E E, x + y = y.

Solution 2: Let x = 0. Then x + y = y is true for each individual element y of E:

10. b. This statement says that every student chose a salad. This is false: Yuen did not choose a
salad.

d. This statement says that some particular beverage was chosen by every student. This is
false: There is no beverage that was chosen by every student.

e. This statement says that some particular item was not chosen by any student. This is false:
every item was chosen by at least one student.

f. This statement says that there is a station from which every student made a selection. This
is true. In fact, there are three such stations: every student chose a main course, every student
chose a dessert, and every student chose a beverage.

11. b. One solution: Present all the students in the class with a list of residence halls and ask
them to check off all residence halls containing a person they have dated. If some residence
hall is checked off by every student in the class, then (assuming the students are all truthful)
the statement is true. Otherwise, the statement is false.

c. One solution: Present all the students in the class with a list of residence halls and ask them
to write the number of people they have dated from each hall next to the name of that hall.
If no number written down is a 1, then (assuming the students are all truthful) the statement
is true. Otherwise, the statement is false.

Choose x = O Given y = I Is x + y = y?
-2 yes: 0 + (-2)--2 = /
-1 yes: 0 + (-1) = -1 /

o yes: 0+0=0v/
1 yes: 0 + 1-1 /

_ 2 yes: 0+2=2/
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12. b. Every student has seen Star Wars.

e. There are two different students who have both seen the same movie.

f. There are two different students, one of whom has seen all the movies that the other has
seen.

13. b. first version of negation: V x in D, - (V y in E, x + y = -y).

final version of negation: Vx in D, 3 y in E such that x + y 5 -y.

The negation is true. No matter what number you might try to use for x, someone can give
you a y so that x + y # -y. Here is a table showing how all possible choices for x could be
matched with a y so that x + y 4 -y.:

I Try x = I A person could give y = I Is x + y :A-y? l

=2 2 2+2=0 0 -2 v/
-1 2 -1+2t=_-2_/
0 1 0 + =1 54 -1 2/
1 I I + I = 2 7_ -1 /
2 2 2+2=47 -27

In 15, 17, and 19 there are other correct answers besides those shown.

15. a. There is at least one book that everyone has read.

b. Negation: Given any book, there is a person who has not read that book.

Or: V books b, 3 a person p such that p has not read b.

Or: There is no book that everyone has read.

17. a. Every rational number is equal to a ratio of some two integers.

b. Negation: There is at least one rational number that is not equal to a ratio of any two
integers.

Or: 3r E Q such that Va C Z and Vb E Z, r : a/b.

19. a. There is a real number whose sum with any real number equals zero.

b. Negation: Given any real number x, there is a real number y such that x + y # 0.

Or: Vx e R, By C R such that x + y $ 0.

20. b. Statement (1) says that no matter what circle you might choose, you can find a square of
the same color. This is true. There are only three circles, and the following table shows that
for each, there is a square of the same color.

Given x Choose y = Is y a square and does y have the same color as x?

a or c j yes/
b g or h yes/

Statement (2) says that there is one, single square that is the same color as all the circles.
This is impossible, and hence false, because there are circles of two different colors.

22. a. Given any nonzero real number, a real number can be found so that the product of the
two equals 1. This is true: every nonzero real number has a reciprocal. (See Example 2,3,4 or
axiom F6 on page A-1 of Appendix A: Properties of the Real Numbers.)

b. There is a real number whose product with every real number equals 1. This is false. For
instance, let r = 2. Then because rs = 1, we would have 2s = 1, and so s = . But in that
case, when r = 4 for example, we would have rs = 42 2, and 2 7 1.2 2an21

http://pakimonda.blog.com 
paki.monda@gmail.com 
paki.monda@yahoo.com



Section 2.3 35

23. b.
(3x E D (]y E E (P(x,y)))) = Vx e D (- (By E E (P(x,y))))

= Vx E D (Vy c E (- P(x, y)))

25. a. The statement is false. Circles b and c are not above triangle d.

b. Negation: 3 a circle x and a triangle y such that x is not above y.

27. a. The statement says that there are a circle and a square such that the circle is above the
square and has the same color as the square. This is true. For example, circle a is above square
j and a and j have the same color.

b. Negation: V circles x and V squares y, x is not above y or x and y do not have the same
color.

29. a. VxeR,EyER- suchthatx>y.

b. The original statement says that there is a real number that is greater than every negative
real number. This is true. For instance, 0 is greater than every negative real number.

The statement with interchanged quantifiers says that no matter what real number might be
given, it is possible to find a negative real number that is smaller. This is also true. If the
number x that is given is positive, y could be taken to be -1. Then x > y. On the other hand,
if the number x that is given is 0 or negative, y could be taken to be x -1. In this case also,
x > Y.

34. a. V people x, 3 a person y such that x trusts y.

b. Negation: I a person x such that V people y, x does not trust y.

Or: Somebody trusts nobody.

35. a. B a person x such that V people y, x trusts y.

b. Negation: V people x, 3 a person y such that x does not trust y.

Or: Nobody trusts everybody.

37. a. V actions A, 3 a reaction R such that R is equal and opposite to A.

b. Negation: 3 an action A such that V reactions R, R is not equal to A or is not opposite to
A.

39. b. V purposes under heaven p, 3 a time t such that t is the time for p.

40. c. The statement says that there is a real number that is one greater than every real number.
This is false. For instance, if the number is one greater than 3, then it equals 4 and so it is
not one greater than 4.

d. The statement says that every positive real number has a positive reciprocal. In other words,
given any positive real number, we can find a positive real number such that the product of
the two equals 1. This is true.

f. The statement says that the difference of any two positive integers is a positive integer.
This is false because, for example, 2 - 3 = -1.

g. The statement says that the difference of any two integers is an integer. This is true.

h. The statement says that there is a positive real number u whose product with any positive
real number v is less than v. This is true. For example, let u be any positive real number
between 0 and 1. Then u < 1, and if v is any positive real number we may multiply both sides
of the inequality by v to obtain uv < v.

i. The statement says that no matter what positive real number v might be chosen, it is
possible to find a positive real number u so that uv < v. This statement is also true. For any
positive real number v, u can be taken to be any real number between 0 and 1. The argument
in the solution to h then applies.
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42. B a real number E > 0 such that V real numbers t > 0, 3 a real number x such that a- <
x<a+6 andeitherL- > f(x) or f(x) >L+e.

43. b. This statement is false: there are two distinct integers x such that 1/x is an integer, namely
x = I and x =-1.

c. This statement is true: given any real number x, if x + y = 0 then y =-x and so y exists
and is unique.

44. 3!x G D such that P(x) - 3x C D such that (P(x) A (Vy G D, if P(y) then y = x))

Or: There exists a unique x in D such that P(x).

Or: There is one and only one x in D such that P(x).

46. a. The statement says that there is a triangle that is above all the circles. This is false.
Because circle b is in the top row, no triangle is above b.

b. Bx(Triangle(x) A (Vy (Circle(y) - Above(x, y))))

c. Vx (Triangle(x) A (Vy (Circle(y) -* Above(x, y))))

Vx(-Triangle(x)V '- (Vy(Circle(y) --Above(x, y))))

- Vx(-Triangle(x) V (By (Circle(y)A - Above(x, y))))

48. a. The statement says that given any object, we can find another object that has a different
color. This is true because there are objects of all three colors. So, for example, if we are given
a blue object, we can find another that is black or gray, and we can proceed similarly if we are
givenan object of either of the other two colors.

b. Vx(Ry(x y -*SameColor(x, y)))

c. 3x(Vy(x + yA SameColor(x, y)))

50. a. The statement says that all the circles are to the right of all the triangles. This is false. For
instance, circle b is not to the right of triangle c.

b. Vx(Circle(x) -- (Vy (Triangle(y) -*RightOf(x, y))))

c. 3.x(Circle(x)A - (Vy (Triangle(y) RightOf(x, y))))

- 3x(Circle(x) A (By (Triangle(y)A -RightOf(x, y))))

52. a. The statement says that there are a circle and a triangle that have the same color. This is
false. All the triangles are blue, and no circles are blue.

b. Bx(Circle(x) A (By (Triangle(y)A SameColor(x, y))))

c. Vx(-Circle(x)V (By (Triangle(y)A SameColor(x, y))))

- Vx(-Circle(x) V (Vy (-2Triangle(y)V SameColor(x, y))))

54. These statements do not necessarily have the same truth values. For instance, let D = R.
the set of all real numbers, let P(x) be "x is positive," and let Q(x) be "x is negative." Then
"Bx e D, (P(x) A Q(x)" can be written "3 a real number x such that x is both positive and
negative," which is false. On the other hand, "(Bx G D, P(x)) A (3x E D, Q(x)) can be written
"3 a real number that is positive and B a real number that is negative," which is true.

55. These statements do not necessarily have the same truth values. For example, let D = Z, the
set of all integers, let P(x) be "x is even," and let Q(x) be "x is odd." Then the statement
"Vx c D, (P(x) V Q(x))" can be written "V integers x, x is even or x is odd," which is true.
On the other hand, "(Vx E D, P(x)) V (Vx C D, Q(x))" can be written "All integers are even
or all integers are odd," which is false.
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56. These statements have the same truth values for all domains D and predicates P(x) and Q(x).

If the statement "]x C D, (P(x) V Q(x))" is true, then by definition of the truth values for
3, the predicate P(x) V Q(x) is true for at least one element x in D. Let's call such an element
xO. Then P(xo) V Q(xo) is true, and so by definition of the truth values for V, at least one
of P(xo) or Q(xo) is true. In case P(xo) is true, then the statement "3x C D, P(x)" is true.
In case Q(xo) is true, then the statement "Bx G D, Q(x)" is true. Since at least one of these
cases must occur, the statement "(Br c D, P(x)) V (3x C D, Q(x))" is true by definition of
truth values for V.

If the statement "(3x C D, P(x)) V (rx e D, Q(x))" is true, then by definition of truth
values for V, at least one of the statements "3x C D, P(x)" or "Bx e D, Q(x)" is true.
In case "Bx e D, P(x)" is true, then by definition of truth values for 3, there exists an
element, say x1 , in D such that P(xi) is true. Then by definition of the truth values for
V, P(xl) V Q(x]) is true, and so by definition of the truth values for B, "3x, (P(x) V Q(x))"
is true. Similarly, in case "Bx e D, Q(x)" is true, then by definition of truth values for 3,
there exists an element, say x2 , in D such that Q(X2 ) is true. It follows by definition of the
truth values for V that P(X2 ) V Q(X2 ) is true, and so by definition of the truth values for 3,
"Bx, (P(x) V Q(x))" is true. Since one of the two cases must occur, we can conclude that the
statement "3x G D, (P(x) V Q(x)" is true.

58. a. No b. No c. X = g

59. a. Yes b. X = g c. X = b1, X = wl

Section 2.4

1. a. (x + y)2 = X2 + 2xy + y2

e. (log(tj) + log(t 2))2 = (log(tl))2 + 2(log(t 1))(10g(t 2 )) + (log(t 2 ))2

4. (32)6 = 3(2)(6)

6. This computer program is not correct.

11. invalid, converse error

12. invalid, inverse error

13. valid, universal modus ponens

14. invalid, inverse error

15. invalid, converse error

17. invalid, converse error

18. valid, universal modus tollens

19. c. valid, universal modus tollens

d. invalid, inverse error

20. a. Either of the following diagrams could represent the given premises.
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carnivorous
animals

Aaron dugs

In both, the premises are true, but in (1) the conclusion is true whereas in (2) the conclusion
is false.

b. The answer to (a) shows that there is an argument of the given form with true premises
and a false conclusion. Hence the argument form is invalid. (This shows that the universal
form of inverse error is invalid.)

22. Invalid. Let D be the set of all discrete mathematics students, T the set of all thoughtful
people, and V the set of all people who can tell a valid from an invalid argument. Any one of
the following diagrams could represent the given premises.

1

Only in drawing (1) is the conclusion true. Hence it is possible for the premises to be true
while the conclusion is false, and so the argument is invalid.

24. Valid. The only drawing representing the truth of the premises also represents the truth of
the conclusion.

P l wo eat
meat

26. Valid. The only drawing representing the truth of the premises also represents the truth of
the conclusion.

functions

A . e rnfi7
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27. Valid. The only drawing representing the truth of the premises also represents the truth of
the conclusion.

i gs that

are intelligible

29. 2. (contrapositive form) If an object is a square, then it is above all the black objects.

3. If an object is above all the black objects, then it is to the right of all the triangles.

1. If an object is to the right of all the triangles, then it is above all the circles.

If an object is a square, then it is above all the circles. Or, equivalently: All the squares are
above all the circles.

30. 3. If an object is black, then it is a square.

2. (contrapositive form) If an object is a square, then it is above all the gray objects.

4. If an object is above all the gray objects, then it is above all the triangles.

1. If an object is above all the triangles, then it is above all the blue objects.

. . If an object is black, then it is above all the blue objects.

32. 2. The arguments in these examples are not arranged in regular order like the ones I am used
to.

4. If arguments in examples are not arranged in regular order like the ones I am used to, then
I cannot understand them.

1. (contrapositive form) If I can't understand a logic example, then I grumble when I work it.

5. If I grumble at an example, then it gives me a headache.

3. (contrapositive form) If an example makes my head ache, then it is not easy.
These examples are not easy.

34. 3. Shakespeare wrote Hamlet.

5. If a person wrote Hamlet, then that person was a true poet.

2. If a person is a true poet, then he can stir the human heart.

4. If a writer can stir the human heart, then that writer understands human nature.

1. If a writer understands human nature, then that writer is clever.
Shakespeare was clever.

35. The law of universal modus tollens says that the following form of argument is valid:

Vx in D, if P(x) then Q(x). m - Major premise
Q(c) for a particular c in D. *- minor premise

.P(c).
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Proof of Validity: Suppose the major and minor premises of the above argument form are both
true. /We must show that the conclusion P(c) is true.] By the minor premise, - Q(c) is true
for a particular value of c in D. By the major premise and the rule of universal instantiation,
the statement "If P(c) then Q(c)" is true for that particular c. But by modus tollens, since
the statements "If P(c) then Q(c)" and " Q(c)" are both true, it follows that - P(c) is also
true. /This is what was to be shown.]

36. The universal form of elimination (part a) says that the following form of argument is valid:

Vx in D, P(x) V Q(x). major premise
- Q(c) for a particular c in D. minor premise
P(c)

Proof of Validity: Suppose the major and minor premises of the above argument form are
both true. [We must show the truth of the conclusion P(c).] By definition of truth value for a
universal statement, Vx in D, P(x) V Q(x) is true if, and only if, the statement "P(X) V Q(X)"
is true for each individual element of D. So, by universal instantiation, it is true for the
particular element c. Hence "P(c) V Q(c)" is true. And since the minor premise says that

Q(c), it follows by the elimination rule that P(c) is true. [This is what was to be shown.]
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Chapter 3: Elementary Number Theory and Methods of Proof

One aim of this chapter is to introduce students to methods for evaluating whether a given mathe-
matical statement is true or false. Throughout the chapter the emphasis is on learning to prove and
disprove statements of the form "Vx in D, if P(x) then Q(x)." To prove such a statement directly,
one supposes one has a particular but arbitrarily chosen element x in D for which P(x) is true
and one shows that Q(x) must also be true. To disprove such a statement, one shows that there
is an element x in D (a counterexample) for which P(x) is true and Q(x) is false. To prove such
a statement by contradiction, one shows that no counterexample exists, that is, one supposes that
there is an x in D for which P(x) is true and Q(x) is false and one shows that this supposition
leads to a contradiction. Direct proof, disproof by counterexample, and proof by contradiction can,
therefore, all be viewed as three aspects of one whole. One arrives at one or the other by a thoughtful
examination of the given statement, knowing what it means for a statement of that form to be true
or false.

A cautionary note: A number of students do not immediately recognize that showing that a
statement is false is the same as disproving it, and that, if the statement is universal, the most
common way to disprove it is by providing a counterexample. You may find it necessary to make
these points more than once to convey them to all the students in your class.

Another aim of the chapter is to provide students with fundamental knowledge about numbers
that is needed in mathematics and computer science. Surprisingly many college students have little
intuition for numbers, even integers. Many claim not to be familiar with how to write down a
prime factorization, and even very good students often do not know that a rational number is a
ratio of integers (having been taught to think of rational numbers as certain kinds of decimals). To
accommodate a wide range of student backgrounds and abilities, the exercise sets contain problems
of varying difficulty. It is especially important in this chapter to keep in close touch with how
students are doing so as to assign problems at an appropriate level.

Suggestions

1. The careful use of definitions is stressed throughout the chapter. To bring the idea alive in class,
you might try the following technique. Each time you write the definition for a new term, go through
a few examples, phrasing each as a question. For instance, immediately after defining rational, write
"Is 0.873 rational?" and simultaneously ask the question out loud. To a student's answer of "yes,"
write "Yes, because" and look expectantly at the student. The student may be surprised that you
seem to expect additional words but is generally able to supply the reason without difficulty (or other
students may help out). You move on to slightly more complicated examples (Is -(5/3) rational? Is
0 rational? Is 0.252525 ... rational?), each time acting as if you take it for granted that the student
answering the question will give a reason. Soon students learn to give the reference to the definition
without prompting and gradually they come to understand the value of using the definition as a
test to answer such questions. By the way, if your students dispute that 0 is divisible by, say, 2 (a
common occurrence), you can use the occasion to emphasize that it is the definition, and only the
definition, that determines the answer.

2. On due dates for assignments that ask for proofs, it is helpful to recruit members of the class
to present their proofs to the class as a whole. If the students' proofs are perfect, they serves as
a model for the rest of the class. If they are less than perfect, the class benefits from analyzing
them together. In the early stages, it is especially helpful for students to see what kinds of things
the instructor finds both to correct and to praise in a proof. Corrections must, of course, be made
with regard for the feelings of the student making the presentation. But normally criticism can be
balanced with praise in a way that students find encouraging.
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3. A number of exercises in the book are phrased as open-ended questions, requiring students to
find an answer and justify it with either a proof or a counterexample. After you have assigned one
of these exercises, students will often ask that the answer be shown in class. When this happens,
you might leave the question open for a while for the class to discuss as a group, perhaps suggesting
that students imagine they are the mathematical problem-solving group of a large company and
that the answer to the question carries consequences of considerable importance to the company.
This works best if you act as a leader but stay somewhat in the background, identifying students
who hold opposing points of view and inviting them to come to the board to present their answers
for the rest of the class to critique, but feigning ignorance as to the answer and indicating that it
is the responsibility of the group as a whole to come to a consensus. (The reason you need to lead
the discussion is that if, for instance, the statement is false, you would generally want to arrange
for a false "proof' to be shown before a counterexample.) Determining collectively which proofs are
valid and which are not and which counterexamples work and which do not can be an informative
demonstration of the nature of mathematical truth and a good advertisement for the usefulness of
some of the logic studied in the course.

In cases when the given statement is false, you might ask some of the students who found a
counterexample to try to explain to the other students what reasoning they used to discover it. The
resulting discussion can be quite worthwhile.

4. At some point during this chapter, you might mention proof by handwaving, proof by intimidation,
and so forth, contrasting the feeling of unease produced in the hearer by these methods with the
feeling of "mathematical certainty" produced by careful use of the methods discussed in the chapter.
The question of what is mathematical certainty has been debated in connection with mathematical
results such as the proof of the four-color theorem. At the frontiers of mathematical research this
question does not have a simple answer. But to understand the issues in the current debate, students
need a background of experience in understanding and appreciating simpler proofs, such as those
discussed in this chapter.

5. One of the trickiest issues you will face in teaching proof is what style to use for the proofs you
write in class. Because students catch onto the idea of the proof at dramatically different rates,
it seems best to be careful and complete in class. For instance, you might always start with the
words "let" or "suppose," state the full supposition, and even include a bracketed [We must show
that ... .], pointing out at appropriate times how being aware of what is to be shown helps guide the
steps of the argument. Part of the reason for taking care in this chapter is to encourage students
to develop habits that will serve them well when they encounter mathematics that is more abstract
in later chapters and subsequent courses. For instance, the habit of identifying the supposition and
the conclusion to be shown in a proof of a statement is very helpful to students when they confront
problems in set theory, functions, and relations (e.g., the proof that a composition of one-to-one
functions is one-to-one or that a given binary relation is transitive). Exercises 20-23 of Section 3.1
are designed to lay a groundwork for student appreciation of the power and generality of the method
of generalizing from the generic particular. Although many students come to a full appreciation
only late in the course, pointing out at an early stage that the method depends only on the form of
the statement to be proved creates a point of reference for later discussion.

6. A related and equally tricky issue in teaching proof is how to specify an acceptable range of
proof styles for students' work. Students need reassurance that acceptable proofs may be written in
many different styles, but they also need encouragement to write coherently. To motivate students
to write in sentences and in adequate detail, you might suggest that they imagine writing their
proofs for an intelligent classmate who has missed the last few days of the course or in a style
that they themselves would have been able to understand when they were first learning the subject
matter. To emphasize the importance of precision, you might compare writing a mathematical proof
with writing a computer program. You might also suggest that a proof is fundamentally a work of
communication and point out that employers in business and industry are demanding ever better
communication skills from those whom they hire.
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Particular requirements, such as that all variables used in a proof be introduced or that all
proofs be written in complete sentences, will undoubtedly vary from one instructor to another. In
the answers given in Appendix B, two different versions of the first proof of Section 3.1 are written
out to illustrate some of the variety that is possible. The text itself contains a note to the effect that
students should expect to find out from their instructor what the requirements are to be in their
class. In one of my classes I happened to write "p.b.a.c." for "particular but arbitrarily chosen"
and found that a number of students enthusiastically incorporated this abbreviation in their written
work. Although I tell my students that writing these words is optional, they seem to like to use the
abbreviation because it reminds them of the idea of the generic particular with very little effort.

Comments on Exercises

Exercise Set 3.1: #60 and #61: The solutions use the fact (proved formally in Section 3.4) that
any integer is either even or odd, and they use the concept of argument by contradiction (developed
formally in Section 3.6).
Exercise Set 3.3: #24: This exercise is often effective at stimulating lively class discussion. Oc-
casionally, a very good student will come up with an ingenious "proof," and sometimes students will
propose counterexamples that are not really counterexamples. #31 This is another exercise whose
solution requires proof by contradiction.
Exercise Set 3.7: #5 and #6 are designed to counter student misgeneralizations that any ratio
of two numbers is rational and that any square root is irrational.

Section 3.1

3. a. Yes, because 4rs = 2 (2rs) and 2rs is an integer since r and s are integers and products of
integers are integers.

b. Yes, because 6r + 4s2 + 3 = 2(3r + 2s2 + 1) + 1 and 3r + 2s2 + 1 is an integer since r and s
are integers and products and sums of integers are integers.

c. Yes, because r2 + 2rs + S2 = (r + 8)2 and r + s is an integer that is greater than or equal
to 2 since both r and s are positive integers and thus each is greater than or equal to 1.

5. For example, let m = 1 and n =-1. Then ±+ I = 1I + (11) = l 1)=0. (In fact, if k is
any nonzero integer, then 1 + ( ) + (- 1) = 1 + (-1) 0.)

6. For example, let a = 1 and b = 0. Then ab= 1 = 1 and /E + b- = i + V0- = 1 also.
Hence a = b a + vfb for these values of a and b.(Note that, in fact, if a is any nonzero
integer and b = 0, then a+b = a+0 = a = a + ° = a + v0 = v/- + v.)

8. For example, let x = 60. Note that to four significant digits 260 -1.153 x 1018 and 6010 '
6.047 x 107 , and so 2x > x10. Examples can also be found in the approximate range 1 < x <
1.077. For instance, 2107 2.099 and 1.0710 -1.967, and so 2107 > 1.0710.

10. Note that 2n2 - 5n + 2 (2n- 1)(n -2). Thus, for example, we may let n = 3. Then
2n2 - 5n + 2 = (2 3 -1)(3-2) = 5, which is prime.

12. Counterexample: Let n 5. Then '-1 - 5 1 - 4 = 2, which is not odd.2 2 2

13. Counterexample: Let m = 2 and n = 1. Then 2m + n = 2 .2 + 1 = 5, which is odd. But m is
not odd, and so it is false that both m and n are odd.

15. Note that 3n2 - 4n + 1 = (3n - 1)(n - 1). Therefore, we can show that this property is true
for some integers and false for other integers. For example, when n = 2, then 3n 2 - 4n + 1 =
(3 2 -1)(2 -1) = 5, which is prime. However, when n = 3, then 3n2 -4n+1 = (3.3-1)(3-1) =
8 2 = 16, which is not prime.
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44 Solutions for Exercises: Elementary Number Theory and Methods of Proof

16. This property is true for some integers and false for other integers. For example, the average
of 1 and 5 is 1+5 = 6 = 3, which is odd. However, the average of l and 3 is 1+3 = 4 = 2,2 2 1+ 2
which is not odd.

18. 12 1 + 11 = 11, which is prime. 22- 2 + 11 = 13, which is prime.
32- 3 + 11 = 17, which is prime. 42 - 4 + 11 = 23, which is prime.
52 - 5 + 11 = 31, which is prime. 62 - 6 + 11 = 41, which is prime.
72- 7 + 11 = 53, which is prime. 82 _ 8 + 11 = 67, which is prime.
92 _ 9 + 11 =83, which is prime. 102 10 + 11 = 101, which is prime.

21. Start of Proof: Suppose x is any [Particular but arbitrarily chosen] real number such that
x > 1. [We must show that x2 > x.]

23. Start of Proof: Suppose x is any [Particular but arbitrarily chosen] real number such that
0 < x < 1. [We must show that x2 < x.]

26. Proof 1: Suppose m and n are any [Particular but arbitrarily chosen] integers such that m is
odd and n is even. [We must show that m - n is odd.] By definition of odd and even, there
exist integers r and s such that m = 2r + 1 and n = 2s. Then m -n = (2r + 1) - 2s =
2r -2s + 1 = 2(r - s) + 1. But r - s is an integer because r and s are integers and a difference
of integers is an integer. Hence m -n equals twice an integer plus 1, and so by definition of
odd, m -n is odd [as was to be shown].

Proof 2: Suppose m and n are any [particular but arbitrarily chosen integers such that m is
odd and n is even. [We must show that m -n is odd.] By definition of odd and even, there
exist integers r and s such that m = 2r + 1 and n = 2s. Then m -n = (2r + 1) - 2s =
2r -2s + 1 = 2(r -s) + 1. Let t = r -s. Then t is an integer because r and s are integers and
a difference of integers is an integer. Hence m -n = 2t + 1, where t is an integer, and so by
definition of odd, m - n is odd [as was to be shown].

27. Proof 1: Suppose m and n are any [particular but arbitrarily chosen] odd integers. [We must
show that m+n is even.] By definition of odd, there exist integers r and s such that m = 2r + 1
and n = 2s + 1. Then m + n = (2r + 1) + (2s + 1) = 2r + 2s + 2 = 2(r + s + 1). Let
u = r + s + 1. Then u is an integer because r, s, and 1 are integers and a sum of integers is an
integer. Hence m + n = 2u, where u is an integer, and so by definition of even, m + n is even
[as was to be shown.

Proof 2: Suppose m and n are any [Particular but arbitrarily chosen] odd integers. [We must
show that m + n is even.] By definition of odd, there exist integers r and s such that m = 2r + 1
andn=2s+1. Thenm+n=(2r+1)+(2s+1)=2r+2s+2=2(r+s+1). Butr+s+1
is an integer because r, s, and 1 are integers and a sum of integers is an integer. Hence m + n
equals twice an integer, and so by definition of even, m + n is even [as was to be shown].

28. Proof: Suppose n is any [particular but arbitrarily chosen] odd integer. [We must show that
n2 is odd.] By definition of odd, n = 2r + 1 for some integer r. Then n2 = (2r + 1)2 =
(2r + 1)(2r + 1) = 4r2 + 4r + 1 = 2(2r2 + 2r) + 1. Let k = 2r2 + 2r. Then k is an integer
because r is an integer and products and sums of integers are integers. Hence n2 = 2k + 1,
where k is an integer, and so by definition of odd, n2 is odd [as was to be shown].

30. Proof: Suppose n is any odd integer. [We must show that (-I)' =-1.] By definition of odd,
n = 2k+1 for some integer k. By substitution and the laws of exponents, (-l)n = (-1)2k+1 -

(-1)2
k . (-1) = ((-1)2 )k . (-1). But (_1)2 = 1, and since 1 raised to any power equals 1,

((-1)2)k = - k = 1. Hence, by substitution, (_l)n = ((_1)2)k . (-1) = . (_1) = -1

[as was to be shown].

32. To prove the given statement is false, we prove that its negation is true. The negation of the
statement is "For all integers n, 6n2 + 27 is not prime."
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Proof of the negation: Suppose n is any integer. [We must show that 6n2 + 27 is not prime.!
Note that 6n 2+27 is positive because n2 > 0 for all integers n and products and sums of positive
real numbers are positive. Then 6n2 + 27 = 3(2n 2 + 9), and both 3 and 2n 2 + 9 are positive
integers each greater than 1 and less than 6n2 + 27. So 6n2 + 27 is not prime.

33. To prove the given statement is false, we prove that its negation is true. The negation of the
statement is "For all integers k with k > 4, 2k 2 - 5k + 2 is not prime."

Proof of the negation: Suppose k is any integer with k > 4. [We must show that 2k 2 - 5k +

2 is not prime.j. We can factor 2k2 - 5k + 2 to obtain 2k2  5k + 2 = (2k -1)(k -2). But
since k > 4, k-2 > 2. Also 2k > 2. 4 = 8, and thus 2k-I > 8-1 = 7. This shows that each
factor of 2k2 - 5k + 2 is a positive integer not equal to 1, and so 2k2 - 5k + 2 is not prime.

37. This incorrect "proof' begs the question. The second sentence states a conclusion that follows
from the assumption that m n is even. The next-to-last sentence states this conclusion as if
it were known to be true. But it is not known to be true. In fact, it is the main task of a
genuine proof to derive this conclusion, not from the assumption that it is true but from the
hypothesis of the theorem.

38. The mistake in the "proof' is that the same symbol, k, is used to represent two different
quantities. By setting both m and n equal to 2k, the "proof' specifies that m = n, and,
therefore, it only deduces the conclusion in case m = n. If m # n, the conclusion is often false.
For instance, 6 + 4 = 10 but 10 + 4k for any integer k.

42. Proof: Suppose m is any even integer and n is any integer. [We must show that mn is even.]
By definition of even, there exists an integer k such that m = 2k. By substitution and algebra,
mn = (2k)n = 2(kn). But 2(kn) is even because kn is an integer (being a product of integers).
Hence mn is even/as was to be shown].

44. Proof: Let m and n be any even integers. By definition of even, m = 2r and n = 2s for some
integers r and s. By substitution, m -n = 2r -2s = 2(r -s). Since r -s is an integer (being a
difference of integers), then m -n equals twice some integer, and so m -n is even by definition
of even.

45. Proof: Let m and n be any odd integers. By definition of odd, m = 2r + 1 and n = 2s + 1 for
some integers r and s. By substitution, m - n = (2r + 1) -(2s + 1) = 2(r -s). Since r -s is
an integer (being a difference of integers), then m -n equals twice some integer, and so m- n
is even by definition of even.

46. Proof 1: Suppose m and n are any [particular but arbitrarily chosen] integers such that n- m
is even. [We must show that n3 

_ m3 is even.] Note that n3 - m3 = (n - m)(n2 + nm + m
2

),

and n -m is even by supposition. So, by definition of even, n -m = 2r for some integer r.
Thus n3 -_m 3 = (n- m)(n2 + nm + m

2
) = 2r(n2 + nm + m

2
) = 2[r(n2 + nm + m

2
)]. Let

s = r(n2 ± nm + m 2
). Then s is an integer because products and sums of integers are integers.

Hence, by substitution, n3 -m 3 = 2s, where s is an integer, and so, by definition of even,
n3 - m3 is even [as was to be shown].

Proof 2: Suppose m and n are any [particular but arbitrarily chosen] integers such that n- m
is even. [We must show that n3 - mi3 is even.] Note that n3 - M 3 = ( -nm)(n2 + nm + m

2
).

Now n - m is even by supposition and n2 + nm + M
2 is an integer (being a sum of products of

integers). Thus (n-m)(n2 + nmn + m 2 ) is the product of an even integer and an integer, and
so, by exercise 42, it is even. Hence, by substitution, n3 - m 3 is even [as was to be shown].

47. Counterexample: Let n = 2. Then n is prime but (-I )n (_1)2 = 1 7 -1.

48. Counterexample: Let m = 3. Then m2 - 4 = 9 -4 = 5, which is not composite.

49. Counterexample: Let n = 11. Then n 2 
-n + 11 112 -11 + 11 = 112, which is not a prime

number.
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51. Counterexample: The number 28 cannot be expressed as a sum of three or fewer perfect
squares. The only perfect squares that could be used to add up to 28 are those that are
smaller than 28: 1, 4, 9, 16, and 25. The method of exhaustion can be used to show that no
combination of these numbers add up to 28. (In fact, there are just three ways to express 28
asasumoffourorfewerofthesenumbers: 28 =25+1+1+1=16+4+4+4 9±9+9+1,
and in none of these ways are only three perfect squares used.)

52. Proof: Consider any product of four consecutive integers. Call the second smallest of the four
n. Then the product is (n - l)n(n + 1) (n + 2). Let m = n2 + n - 1. Note that m is an integer
because sums, products, and differences of integers are integers. Also

m 2  
= (n 2 + n - 1)2 1 I (n4+ 2n3 - n2 - 2n + 1) - 1

n4 + 2n3 - n2 -2n (n -1)n(n+1)(n+2).
Hence the given product of four consecutive integers is one less than a perfect square.

53. Counterexample: Let m = n = 3. Then mn = 3 - 3 = 9, which is a perfect square, but neither
m nor n is a perfect square.

54. Proof: Suppose two consecutive integers are given. Call the smaller one n. Then the larger
is n + 1. Let m be the difference of the squares of the numbers. Then m = (n + 1)2 -n2 =

(n2 + 2n + 1) - n 2 = 2n + 1. Because n is an integer, m = 2. (an integer) + 1, and so m is odd
by definition of odd.

55. Proof: Suppose a and b are any nonnegative real numbers. Then

= the unique nonnegative real number u such that U2 equals a

and
-= the unique nonnegative real number v such that v2 equals b.

By substitution and the laws of exponents, ab = u 2 v2 
- (uv) 2 . So uV is that unique nonnegative

real number such that (uv)2 = ab. Hence V = uv = /a4.

56. Counterexample: Let a = 1 and b = 1. Then a+b = 1+1 = x and /a + Fb =
/1 + V'I = 2, and v/2 7 2.

57. If m and n are perfect squares, then m = a2 and n = b2 for some integers a and b. We may
take a and b to be nonnegative because for any real number x, x 2 = (-X)2 and if 2 is negative
then -x is nonnegative. By substitution,

m+n+2V/T mn a2 +b 2 +2v 2 b2

a2 + b2 + 2ab since a and b are nonnegative
- (a+b)2 .

But a + b is an integer (since a and b are), and so m + n + 2Vm/n is a perfect square.

58. Counterexample: Let p = 11. Then 2P - = 211 - = 2047 = 89 . 23, and so 2P -1 is not
prime.

59. Counterexample: Let n = 5. Then 22' + 1 =232 + I 4,294,967,297 = (641). (6,700,417),
and so 22 + 1 is not prime.

60. a. Note that (X - r)(x - s) = 9 2- (r + s)x + rs. If both r and s are odd integers, then r + s is
even and rs is odd (by exercises 27 and 39). If both r and s are even integers, then both r + s
and rs are even (by Theorem 3.1.1 and exercise 42). If one of r and s is even and the other is
odd, then r + s is even and rs is odd (by exercise 19 and the solution to exercise 42).

b. It follows from part(a) that x2 -1253x + 255 cannot be written as a product of the form
(x - r)(x - s) because for none of the possible cases (both r and s odd, both r and s even,
and one of r and s odd and the other even) are both r + s and rs odd integers. /In Section
3.4, we establish formally that any integer is either even or odd.]
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61. a. Suppose a cubic polynomial can be written as a product of three factors of the following
form:

(x -r)(x- s)(x -t) = xc3-(r + s + t)x2 + (rs + rt + st)x + rst.

All three of r, s, and t could be even, two could be even and one odd, two could be odd and
one even, or all three could be odd.

If all three are even, then r + s + t, and rs + rt + st, and rst are all even because by Theorem
3.1.1 and exercise 42 sums and products of even integers are even.

If two are even and one is odd, then r + s + t is odd because the sum of the two even integers
is even (Theorem 3.1.1) and adding the odd integer makes the final sum odd (exercise 19).
Also rs + rt + st is even because each term of the sum has an even factor (exercise 42) and a
sum of even integers is even (Theorem 3.1.1). Finally, rst is even because two of the factors
are even (exercise 42).

If one is even and two are odd, then rst is even because it has an even factor (exercise 42),
and r + s + t is even because the sum of the two odd integers is even (exercise 27) and adding
the even integer makes the final sum even (Theorem 3.1.1). Also rs+rt+st is odd because (a)
each of the two terms with an even factor is even (exercise 42), and so the sum of these terms
is even (Theorem 3.1.1), (b) the term with two odd factors is odd (exercise 39), and thus (c)
the final sum is an even integer plus an odd integer, which is odd (exercise 19).

If all three are odd, then rst is odd (exercise 39). In the sum r + s + t, two of the odd integers
add up to an even integer (exercise 27), to which the third odd integer is added, producing
an odd integer (exercise 19). Finally, rs, rt, and st are all odd (exercise 39), and so the sum
of two of these is even (exercise 27) and when the third is added an odd integer is obtained
(exercise 19).

Therefore: Consider a cubic polynomial of the form x3 + aX2 + bx + c, where a, b, and c are
integers. If the polynomial can be factored as a product of three linear factors, then either (1)
all three of a, b, and c are even, or all three of a, b, and c are odd, or two of a, b, and c are
even and one is odd. In other words, it is impossible for two of a, b, and c to be odd and the
third even.

b. The polynomial 15x3 + 7X2 - 8x - 27 cannot be written as a product of two polynomials
with integer coefficients. The reason is that if it could be so factored, then there would exist
integers a, b, c, d, and e so that

15x3 + 7X2 -8x-27 = (ax2 + bx + c)(dx + e)
= adx3 + (ae + bd)X2 + (be + cd)x + ce.

Equating coefficients gives

ad = 15, ae + bd = 7, be+ cd = -8, and ce = -27.

Now since ad = 15 and ce = -27 and 15 and -27 are both odd integers, then a, d, c, and
e are all odd [because by exercise 42 if one of these integers were even, its product with any
other integer would also be even]. If b were also odd then because a, e, and d are odd, bd and
ae would also be odd (by exercise 39) and so ae + bd would be even (by exercise 27). But this
is impossible because ae + bd = 7, which is odd. Hence b must be even. It follows that be must
also be even and cd must be odd, and so be + cd must be odd (by exercise 19). But this is
impossible because be + cd =-8, which is even. Hence no such integers a, b, c, d, and e can
be found. In other words, the polynomial 15x3 + 7X2 - 8x - 27 cannot be factored over the
integers. [Note: The type of reasoning used in this solution is called argument by contradiction.
It is introduced formally in Section 3.6.]

Section 3.2

2. 4.6037 = 46037/10000
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5. Let x = 0.565656 ... Then 100x = 56.565656..., and so 100x - x = 99x = 56. Hence
x = 56/99.

7. Let x = 52.4672167216721.... Then

100000x = 5246721.67216721... and lOx = 524.672167216721...,

and so 100000x - lOx = 99990x = 5246721 - 524 = 5246197. Hence x = 5246197/99990.

8. a. V real numbers x and y, if xy = 0 then x = 0 or y = 0.

c. If neither of two real numbers is zero, then their product is nonzero.

10. Because m and n are integers, 5m + 12n and 4n are both integers (since products and sums
of integers are integers). Also by the zero product property, 4n $ 0 because 4 j 0 and n #4 0.
Hence (5m+ 12n)/4n is a quotient of integers with a nonzero denominator, and so it is rational.

14. This statement is false.

Counterexample: Both 1 and 0 are rational numbers (by exercise 11) but 1/0 is not a rational
number (because it is not even a number since division by 0 is not defined).

Modified Statement: The quotient of any rational number and any nonzero rational number is
rational.

Proof of Modified Statement: Suppose r and s are [particular but arbitrarily chosen] rational
numbers with s :A 0. By definition of rational, r = a/b and s = c/d for some integers a, b, c,
and d with b =A 0 and d 7 0. Furthermore, c 7$ 0 because c = sd and neither s nor d equals 0.
By substitution and the laws of algebra,

a
r b a d ad
s - b c be

d

Now ad and be are integers because a, b, c, and d are integers and products of integers are
integers. Also be 54 0 by the zero product property because b 7# 0 and c 7& 0. Thus r/s can be
written as a quotient of integers with a nonzero denominator, and so r/s is rational.

15. This statement is true. Proof Suppose r and s are [particular but arbitrarily chosen! rational
numbers. [We must show that r -s is rational.] By definition of rational, r = a/b and s = c/d
for some integers a, b, c, and d with b 54 0 and d 7# 0. Then by substitution and the laws of
algebra, r -s = a/b -c/d = (ad -bc)/bd. But ad -bc and bd are both integers because a, b,
c, and d are integers and products and differences of integers are integers and bd 7& 0 by the
zero product property. Hence r - s is a quotient of integers with a nonzero denominator, and
so, by definition of rational number, r -s is rational [as was to be shown].

16. This statement is true. Proof: Suppose r is a [particular but arbitrarily chosen] rational
number. By definition of rational, r = a/b for some integers a and b with b 78 0. Then
-r =-(a/b) = (-a)/b by substitution and the laws of algebra. But since a is an integer, so
is -a (being the product of -1 and a). Hence -r is a quotient of integers with a nonzero
denominator, and so -r is rational.

17. This statement is true. Proof: Suppose r and s are any two distinct rational numbers. By
definition of rational, r = a/b and s = c/d for some integers a, b, c, and d with b #4 0 and
d # 0. Then

a c ad + be
- -ad+b

r+s b d= bd ad bc
2 2 2 2bd

Now ad + be and 2bd are integers because a, b, c, and d are integers and products and sums of
integers are integers. And 2bd 54 0 by the zero product property. Hence r+s is a quotient of
integers with a nonzero denominator, and so r+s is rational.
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18. This statement is true. Proof Suppose a and b are any real numbers with a < b. By properties
T18 and T19 in Appendix A, we may add b to both sides to obtain (a + b) < 2b, and we may
divide both sides by 2 to obtain (a + b)/2 < b. Similarly, since a < b, we may add a to both
sides, which gives 2a < (a + b), and we may divide both sides by 2, which gives a < (a + b)/2.
By combining the inequalities, we have a < (a + b)/2 < b.

19. Proof Suppose r and s are any two distinct rational numbers with r < s. Let x = j+. By the
result of exercise 17, x is rational, and by the result of exercise 18, r < x < s. So there exists
another rational number between r and s.

21. True. Proof Suppose a is any odd integer. Then a2 = a * a is a product of odd integers
and hence is odd by property 3. Therefore, a2 + a is a sum of odd integers and thus even by
property 2.

22. True. Proof Suppose k is any even integer and m is any odd integer. By property 1, k + 2 is
even because it is a sum of even integers, and thus also by property 1, (k + 2)2 is even because
it is a product of even integers. By property 2, m - 1 is even because it is a difference of odd
integers, and thus also by property 1, (m - 1)2 is even because it is a product of even integers.
Finally, by property 1, (k + 2)2 -(m -1)2 is even because it is a difference of even integers.

24. Proof Suppose r is any rational number. Then r2 
= r r is a product of rational numbers

and hence is rational by exercise 12 (or by the solution to exercise 13). Also 2 and 3, which
are integers, are rational by exercise 11. Thus both 3r2 and 2r are rational by the solution to
exercise 13 (because they are products of rational numbers), and by the solution to exercise
15, 3r 2 - 2r is rational (because it is a difference of two rational numbers). Finally, 4, which
is an integer, is rational by exercise 11. So by Theorem 3.2.2, 3r2 - 2r + 4 = (3r 2 -2r) + 4 is
rational. (because it is a sum of two rational numbers).

25. Proof Suppose s is any rational number. Then s2 is the square of a rational number and
hence is rational by exercise 12. Thus s3 = S2 s is also rational because it is a product of
rational numbers (solution to exercise 13). Now 5 and 8, which are integers, are rational by
exercise 11. Thus both 5s3 and 8s2 are products of rational numbers and hence are rational
(by the solution to exercise 13). Therefore, 5s3 + 882 is a sum of two rational numbers and is
therefore rational (by Theorem 3.2.2). Finally, 7, which is an integer, is rational by exercise
11. So 5s3 + 8s2 -7 = (5s3 + 8S2) -7 is a difference of two rational numbers, and so it is
rational (by the solution to exercise 15).

27. Yes. Since + d = 1, then ax + b = cx + d, and so ax -cx = d -b, or, equivalently,
cx +d

(a -c)x = d -b. Thus x = (d -b)/(a - c). Now d - b and a - c are integers because a, b, c,
and d are integers and differences of integers are integers. Also a -c + 0 because it is given
that a 54 c. Thus x can be written as a quotient of integers with a nonzero denominator, and
so x is rational.

28. Yes.

Suppose a, b, and c are integers and x, y, and z are nonzero real numbers, where

xy zx yz
a= and b =- and c-=

x+y z+x ~

Note that because a, b, and c are real numbers, none of the denominators x + y, or z + x or
y + z can equal zero. fOur strategy will be to express x in terms of the integers a, b, and c
in hopes of showing that x can be written as a ratio of integers with a nonzero denominator.J
First observe that, by the zero product property,

a 5# 0 because (1) xy = a(x + y) and xy 7O 0
b 5 0 because (2) zx = b(z + x) and zx 54 0
c 7# 0 because (3) yz = c(y + z) and yz :A O.
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i. Solve equation (1) for y in terms of a and x:

xy = a(x + y) * xy = ax + ay # xy -ay ax X (x-a)y =ax.

Now because ax is a product of nonzero real numbers, ax 7 0, and so (x -a) $& 0. Thus we
may divide by x -a to obtain

ax
y=

x -a

ii. Similarly, solve equation (2) for z in terms of b and x:

zx = b(z + x) X zx =bz+bx < z- bz- = bx X (x -b)z bx.

And because bx is a product of nonzero real numbers, bx 5 0. Thus (x -b) $ 0, and we may
divide by x - b to obtain

bx
z =

x -

iii. Substitute the results of (i) and (ii) into equation (3)

(xaxa) ( t b) c ax bxb)
Vx- a Vx- b t- a + x- bJ

and solve for x in terms of a, b, and c by first multiplying both sides by (x - a)(y -b) to obtain

(ax)(bx) = cax(x - b) + cbx(x -a).

Because x z 0, both sides may be divided by x to yield

abx = cax -cab + cbx-cba,

or, equivalently (by putting all the terms involving x on the right-hand side and all the other
terms on the left-hand side),

2abc = acx + bcx - abx = x(ac + bc - ab).

Because 2abc $ 0, by the zero product property, ac + bc -ab cannot be zero either. Thus we
may divide both sides by ac + bc -ab to obtain

2abc
ac + bc -ab

Finally, because products and sums of integers are integers, we see that x has been expressed
as a ratio of integers with a nonzero denominator.

Note: An alternative and elegant way to solve this exercise is to start with the observation
1 x+y 1 1 1 1 1 1 1 1 1 1 1 1

that -= = - + b , and - -,andthen compute - - and -+
a xy x y'b x z c y z x z x z

and solve for x.

29. Let the quadratic equation be x2 + bx + e = 0 where b and c are rational numbers. Suppose
one solution, r, is rational. Call the other solution s. Then x2 + bx + ± = (x -r)(x - s) =
x2 - (r + s)x + rs. By equating the coefficients of x, b = -(r + s). Solving for s yields
s = -r - b = -(r + b). Because s is the negative of a sum of two rational numbers, s also is
rational (by Theorem 3.2.2 and the solution to exercise 16).

31. Proof Suppose c is a real number that is a root of a polynomial p(x) = r"xn + r,- 1 x n- +
. .. + r+x ± ro where n is a nonnegative integer, r, 7$ 0, and ro, rl,..., rn are all rational
numbers. By definition of rational, there exist integers ao, a,,... , an and bo, b1 ,. . . , bn such
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that ri = ai/bi and bi $ 0 for all integers i with 0 < i < n. Since c is a root of p(x),
rnc' + rn- 1Cn-1 + + r 1c + ro = 0. By substitution,

( ) Cn + an-l, Cn-l a, ao

bn bn_ ib C+ =0

For each i = 0, 1, 2, ... , n, let mi be the product of ai and all the bj except bi. Then each mi
is an integer (being a product of integers). Multiplying both sides of (*) by bob, ... b& gives
mncn + mn- cn-I +-- + mlc + mo = 0. Hence c satisfies the equation mnxn + mn- l 1 n-1 +

.. + mix + mo = 0 where mi, m 1 , ... , mn are all integers. Thus c satisfies a polynomial with
integer coefficients.

32. This incorrect proof just shows the theorem to be true in the one case where one of the rational
numbers is 1/4 and the other is 1/2. It is an example of the mistake of arguing from examples,
which is discussed on page 135. A correct proof must show the theorem is true for any two
rational numbers.

35. The fourth sentence claims that r + s is a fraction because it is a sum of two fractions. But the
statement that the sum of two fractions is a fraction is a restatement of what is to be proved.
Hence this proof begs the question by assuming what is to be proved.

36. This incorrect proof begs the question. The second sentence asserts that a certain conclusion
follows if r + s is rational, and the rest of the proof uses that conclusion to deduce that r + s
is rational. Thus this incorrect proof assumes what is to be proved.

Section 3.3

2. Yes: 54 = 18 - 3.

3. Yes: 0 = 0 5-

5. Yes: 6m(2m + 10) = 4[3m(m + 5)] and 3m(m + 5) is an integer because m is an integer and
sums and products of integers are integers.

9. Yes: 2a 34b = 4(17ab) and 17ab is an integer because a and b are integers and sums and
products of integers are integers.

11. No: 73/13 is not an integer. (73/13 - 5.6)

13. Yes: n2 _1 = (4k + 3) 2 - 1 = (16k2 + 24k + 9) -1 = 16k 2 + 24k + 8 = 8(2k2 + 3k + 1),
and 2k2 + 3k + 1 is an integer because k is an integer and sums and products of integers are
integers.

16. Proof Suppose a, b, and c are integers and a I b and a j c. /We must show that a (b- c).]
By definition of divisibility, there exist integers r and s such that b = ar and c = as. Then
b -c = ar - as = a(r - s) by substitution and the distributive law. But r -s is an integer
since it is a difference of two integers. Hence a (b- c) [as was to be shown].

18. Proof Let m and n be any two even integers. By definition of even, m = 2r and n = 2s for
some integers r and s. Then mn = (2r)(2s) = 4(rs). Since rs is an integer (being a product
of integers), Imn is a multiple of 4 (by definition of divisibility).

20. We must show that for all integers n, if n is divisible by 16 then n is divisible by 8.

Proof Let n be any integer that is divisible by 16. By definition of divisibility, n = 16k for
some integer k. Factoring out an 8 gives n = 16k = 8(2k). Let t = 2k. Then t is an integer
because it is a product of integers. So n = 8t for some integer t, and hence, by definition of
divisibility, n is divisible by 8.
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22. Proof Suppose a, b, and c are any integers such that ab I c. By definition of divisibility,
c = r(ab) for some integer r. Regrouping shows that c = (ra)b and c = (rb)a. Now both ra
and rb are integers because they are products of integers. Thus c = (an integer) * b and c = (an
integer) a. It follows by definition of divisibility that a I c and b I c.

24. Counterexample: Let a = 2, b = 3, and c = 1. Then a I (b + c) because 2 1 4 but alb because
2 /3 and a/(c because 2,'1.

25. Counterexample: Let a = 6, b = 2, and c 3. Then a I be because 6 1 6 but a/b and a/c
because 6/2 and 6/3.

26. Proof Let a and b be integers such that a b. By definition of divisibility, b = ak for some
integer k. Squaring both sides of this equation gives b2 = (ak) 2 = a2 k2 . But k2 is an integer
(being a product of the integer k times itself). Hence by definition of divisibility, a2 b2 .

27. Counterexample: Let a = 4 and n = 6. Then a n
2 and a < n because 4 1 36 and 4 < 6, but

a/n because 4/6.

28. Counterexample: Let a = 25 and b = 5. Then a 10b because 25 1 50 but a/(b because 25/5.

30. No. The values of nickels, dimes, and quarters are all multiples of 5. By exercise 15, a sum of
numbers divisible by 5 is also divisible by 5. So since $4.72 is not a multiple of 5, $4.72 cannot
be obtained using only nickels, dimes, and quarters.

31. No. If it were possible to obtain $3 with 50 coins that are pennies, dimes, and quarters, then
we could let p, d, and q be the number of pennies, dimes, and quarters, respectively, that could
be used to obtain $3. Note that p, d, and q are integers, and q + d + p = 50. Solving for p gives
p = 50- q -d. Since the coins add up to $3, 25q + 10d + p = 300. Substituting the value of
p gives 25q + 10d + (50- q - d) = 300. After simplifying, we have 24q + 9d = 250. Factoring
out a 3 from the left-hand side gives 3(8q + 3d) = 250. Now because q and d are integers, so
is 8q + 3d, and thus, by definition of divisibility, the left-hand side of the equation is divisible
by 3; hence the right-hand side should also be divisible by 3. But 250 is not divisible by 3,
which means that this situation described in the exercise cannot occur. In other words, it is
not possible to obtain $3 with 50 pennies, nickels, and dimes. [Note: The form of reasoning
used in this answer is called argument by contradiction. It is discussed formally in Section
3.6.]

32. Let n be the number of minutes past 4 p.m. when the athletes first return to the start together.
Then n is the smallest multiple of 8 that is also a multiple of 10. This number is 4(0. Hence
the first time the athletes will return to the start together will be 4:40 p.m.

33. b. Let N = 12,858,306,120,312. The sum of the digits of N is 42, which is divisible by 3 but
not by 9. Therefore, N is divisible by 3 but not by 9. The right-most digit of N is neither 5
nor 0, and so N is not divisible by 5. The two right-most digits of N are 12, which is divisible
by 4. Therefore, N is divisible by 4.

c. Let N = 517,924,440,926,512. The sum of the digits of N is 61, which is not divisible by 3
(and hence not by 9 either). Therefore, N is not divisible either by 3 or by 9. The right-most
digit of N is neither 5 nor 0, and so N is not divisible by 5. The two right-most digits of N
are 12, which is divisible by 4. Therefore, N is divisible by 4.

d. Let N = 14, 328,083, 360, 232. The sum of the digits of N is 45, which is divisible by 9 and
hence also by 3. Therefore, N is divisible by 9 and by 3. The right-most digit of N is neither 5
nor 0, and so N is not divisible by 5. The two right-most digits of N are 32, which is divisible
by 4. Therefore, N is divisible by 4.

34. b. 5733 = 32 72 .13 c. 3675=3.52-72
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35. c. m=3 7 11

product = 22 35 7 112 m 22 36 72. 112 (2 33 7 11)2 = 41582

36. a. piel . pe2 . .. p~ek

b. k = 22 3 72 _ 11

product = 24 35. 7.112 k 26 36-73.113 (22 32. 7. 11)3= 27723

37. b. Yes, 10 I y. The reason is that both 2 and 5 are prime factors of lOx, and so by the unique
factorization theorem, these numbers must occur in the prime factorization for 9y, and since
neither 2 nor 5 are factors of 9, they must occur in the prime factorization of y. Similarly,
9 1 x because the prime number 3 occurs at least twice in the prime factorization of 9y, and so
by the unique factorization theorem, both factors of 3 must occur in the prime factorization
for lOx, and since 3 is not a factors of 10, both 3's must occur in the prime factorization of x.

38. Note that 458. 885 = (32 5)83 (23 * 11)5 = (316 58) . (215 115) = 215 316. 58 . i15. When
this number is written in ordinary decimal form, each 0 at its end comes from a factor of 10,
or one factor of 2 and one factor of 5. Since there are at least eight factors of 2 but only eight
factors of 5, there are exactly eight factors of 10 in the number. This implies that the number
will end with 8 zeroes.

39. b.

20! = 20. 19 - 18 - 17- 16- 15. 14- 13- 12- 11 -10. 9 -8 - 7- 6 5 -4. 3 .2 - 1

= 22 . 5 19 - 2 - 32 - 17 2 5 .3.52 .7 13. 22 .3 11. 2 5 32 . 3 .72. 3. 5 22 .3 .2

= 218 . 38 - 54 472 11- 13 17 19

c. Squaring the result of part (b) gives

(20!)2 = (21 3 8.54 .72 1113 17. 19)2

= 236 .316 .58 .74. 12 .132 .172 192

When (20!)2 is written in ordinary decimal form, there are as many zeros at the end of it as
there are factors of the form 2 * 5 (= 10) in its prime factorization. Thus, since the prime
factorization of (20!)2 contains eight 5's and more than eight 2's, (20!)2 contains eight factors
of 10 and hence eight zeros.

40. Let m = the number of adult men in the town, and let w = the number of adult women in
the town. Then m > 100 and 2 m = 3w. Cross-multiplying gives 10m = 9w. Thus 9 1 10m,

_3 5
and so, by the unique factorization theorem, 9 | m. The least possible number of adult men in
the town is, therefore, the least multiple of 9 that is greater than 100, namely m = 108. Given
that 10m = 9w, we have w = 'Om = 1. 108 = 120. So there are 108 adult men and 120 adult
women in the town.

42. Proof Suppose n is a nonnegative integer whose decimal representation ends in 5. By the hint
for exercise 41, n = 10m+5 for some integer m. By factoring out a 5, n = 10m+5 = 5(2m+1),
and 2m + 1 is an integer since m is an integer. Hence n is divisible by 5.

43. Proof Suppose the decimal representation of a nonnegative integer n ends in d1 do. We first
show that n = 100s + 10d, + do, for some integer s. By definition of decimal representation,
n = dklok + dk- 1 0 k-1 + * * + d2102 + d1 10 + do where k is a nonnegative integer and all the
di are integers from 0 to 9 inclusive.

Case 1 (O < k < 2): In this case, n = d1 10 + do, and we may let s = 0. Then n = 100s +
10d, + do. [Note that in this case we allow the possibility that either or both of d1 and do may
be zero.]
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Case 2 (k > 2): In this case, k -2 > 0. Factoring out a 100 from all but the two right-most
terms of n and using the laws of exponents gives n = 100(dklok-2 + dk- lk-1 + * . + d2) +
10d1 + do. Let s = dklok-2 + dk- 1 0 k - + + d2. Then s is an integer (being a sum of
products of integers) and n = 100s + 10d1 + do.

The above argument shows that regardless of whether case 1 or case 2 holds for n, n
100s + 10d1 + do for some integer s.

Now suppose that 4 1 (d 1 + do). By definition of divisibility, 10d1 + do = 4r for some integer
r. Then by substitution, n = lOOs + 4r = 4(25s + r). But 25s + r is an integer (being a sum
of products of integers). Therefore, by definition of divisibility, 41 n.

44. Proof Suppose n is any nonnegative integer for which the sum of the digits of n is divisible
by 9. By definition of decimal representation, n can be written in the form

n = dklOk + dk-1 Ok-1 + + ± d2 102 + d1 10 + do where k is a nonnegative integer and all the
di are integers from 0 to 9 inclusive. Then

n dk(99 .. .9 +1) + dk-1(99. .. 9 +1)+ .+d 2(99+1)+d 1 (9+1)+do

k 9'S (k -1) 9'S

dk 99 ... 9+dk-l 99 ... 9± + d2 .99+dl.9+(dk+dk-l+ 1 ± +d 2 +dl+do)

k 9's (k -1) 9'S

dk - 11...1.9 +dk1 11 ... 9 +*d 2 119 9+dl 9+(dk+dk-l +1  -d 2 +d1 +do)

k l's (k-l) 1's

= 9(dk11...I+dk-l 11 ... 1...+ d 2 11+dl)+(dk+dk-l + +±d2 +di-+-do)

k 1'S (k-1) iS
= (an integer divisible by 9) + (the sum of the digits of n).

Since the sum of the digits of n is divisible by 9, n can be written as a sum of two integers
each of which is divisible by 9. It follows from exercise 15 that n is divisible by 9.

45. Proof. Suppose n is any nonnegative integer for which the sum of the digits of n is divisible
by 3. By the same reasoning as in the answer to exercise 44,

n = 9(dk 11 ... l+dk- 11 ... 1 + + d2 11 + dl) + (dk+ dk-l + + d2+ di+ do)
k ls (k -1) l's

= 3[3(dk 11 .. .1 +dk-l 11 .. 1. + + d2 11 + dl)] + (dk+ dk-l+ + d2 + dl+ do)

k i's (k-1) 1's

- (an integer divisible by 3) + (the sum of the digits of n).

Since the sum of the digits of n is divisible by 3, n can be written as a sum of two integers
each of which is divisible by 3. It follows from exercise 15 that n is divisible by 3.

46. What follows is a rather formal justification for the given statement that uses only the math-
ematics developed in this chapter. A student might appropriately give a much less formal
partial justification.

Lemma: For all nonnegative integers r, if r is even then 1W -1 is divisible by 11, and if r is
odd then ior + 1 is divisible by 11.

Proof Suppose r is a nonnegative even integer. If r = 0, then 10 r -1 = 100-1 = 1 -1 = 0,
which is divisible by 11 because 0 = 11 0. If r > 2, then
11. [9(10r 2 + 10r-4 + lor-6 + .+ 102 + 1)]

= (101)10 - 1)(lor2 + lor-4 + lor-6 + + 102 + 1)]
= (102 - 1)(1or-2 + lor-4 + lor-6 + . + 102 + 1)

(10, _ lor-2) + (lor-2 _ lor-4) + (lor-4 - lor-6) + . ± ((104 102) + (102 -1)

= ior - 1.

Hence if r is even, then 1W -1 is divisible by 11.
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Suppose r is an odd integer. If r = 1, then 10 +1 = 101 + 1 = 10 + 1 = 11 So 11 I (10r + 1)
because 11 = 11 1. If r > 3, then r-2 > 1 and
11.[9 (10r 2 +± r 4 + or-6 + _. + 103 + 10) + 1]

= (10 + 1)[(10 _ 1)(1Or-2 + jor-4 + jor-6 + + 103 + 10) + 1]
- (102 - 1)(lor-2 + ±or-4 + jor-6 + _ * + 103 + 10) + (10 + 1)

= (1ord10-2)+(10-2_1Or-4)+(1OT 4-10'-e) + +((j10503)+ +(j0310)+(10+1)
= lor + 1.

Hence if r is odd, then 10r + 1 is divisible by 11.

Proof of Exercise Statement: Suppose n is any integer for which the alternating sum of the
digits is divisible by 11. By definition of decimal representation, n can be written in the form

n = dklok + dk-1 1 0 k- + -+ d2 102 + d,1 0 + do

where k is a nonnegative integer and all the di are integers from 0 to 9 inclusive.

Case 1 (k is even): In this case,

n = [dk(lok 1) +dk] + [dk- (iOk-I +1) -dk-1 +  + [d2(10 2 -1)+d 2 ] +[d 1 (10+1) -d 1]+do

= [dk(lOk1-)+dk-1 (Ok- +1)± +d 2(10 2 -l)+dj(10+1)]+[do-d+d 2 - .- dk-l+dk]

Case 2 (k is odd): In this case,

n = [dk(lok+1) -dk] + [dk- l(10k-l1) +dk-± + + [d2 (10
2

-1)+d 2 ]+[dj(10+1) -d] +do
= [dk(1Ok +±1)+dk-I ( 1 0 k- 1 1) + .+d 2 (102 - 1)+dl(10+1)]+ [do-di +d 2 - +dk- - dk]

Observe that in each case each term of the first bracketed sum is divisible by 11 (by the
lemma), and the second bracketed sum is divisible by 11 (by hypothesis). Thus in each case n
is divisible by 11.

Section 3.4

2. q 8, r =6

4. q =0, r 3

6. q -4, r = 5

8. a. 7 b. 1

9. a. 5 b. 3

10. a. 15 b. 0

11. b. When today is Sunday, 7 days from today is Sunday also. Hence DayN should be 0.
Substituting DayT = 0 (Sunday) and n = 7 into the formula gives DayN= (DayT + N) mod 7
= (O + 7) mod 7 = 0, which agrees.

c. When today is Thursday, twelve days from today is one week (which is Thursday) plus five
days (which is Tuesday). Hence DayN should be 2. Substituting DayT = 4 (Thursday) and
N = 12 into the formula gives DayN = (DayT + N) mod 7 = (4 + 12) mod 7 = 16 mod 7 = 2,
which agrees.

12. Let the days of the week be numbered from 0 (Sunday) through 6 (Saturday) and let DayT
and DayN be variables representing the day of the week today and the day of the week N
days from today. By the quotient-remainder theorem, there exist unique integers q and r such
that DayT + N = 7q + r and 0 < r < 7. Now DayT + N counts the number of days to the
day N days from today starting last Sunday (where "last Sunday" is interpreted to mean
today if today is a Sunday). Thus DayN is the day of the week that is DayT + N days from
last Sunday. Because each week has seven days, DayN is the same as the day of the week
DayT + N - 7q days from last Sunday. But DayT +N -7q = r and 0 < r < 7. Therefore,
DayN = r = (DayT + N) mod 7.
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14. Solution 1: Note that 1000 = 7. 142 + 6. Thus if today is Tuesday, then 1,000 days from today
is 142 weeks plus 6 days from today. After 142 weeks, it will again be Tuesday, and 6 days
later it will be Monday.

Solution 2: Use the formula DayN = (DayT + N) mod 7, letting DayT = 2 (Tuesday) and
N = 1000. Then DayN = (2 + 1000) mod 7 = 1002 mod 7 = 1, which is a Monday.

15. There are 13 leap year days between January 1, 2000 and January 1, 2050 (once every four
years in 2000, 2004, 2008, 2012, . . . , 2048). So 13 of the years have 366 days and the
remaining 38 years have 365 days. This gives a total of 13 . 366 + 37 - 365 = 18,263 days
between the two dates. Using the formula DayN = (DayT + N) mod 7, and letting DayT = 6
(Saturday) and N = 18,263 gives DayN = (6 + 18263) mod 7 = 18269 mod 7 = 6, which is
also a Saturday.

16. Suppose n is any negative integer and d is a positive integer, and let q and r be the integers
whose existence is guaranteed by the quotient-remainder theorem. In other words, n = dq + r
where 0 < r < d. By definition, n/d = q + 1 and nd = r -d. Then, by substitution,
d n/d+n%d=d (q+1)+(r-d) =dq+d+r -d=dq+r=n, [as was to be shown]. In
addition, because 0 < r < d, we can subtract d from all parts of the inequality to obtain
0 - d < r - d < 0, or, equivalently, -d < n%d < 0. Thus n%d is negative and does not satisfy
the condition 0 < n%d < d, [as was also to be shown].

18. When b is divided by 12, the remainder is 5. Thus there exists an integer m so that b = 12m+5.
Multiplying this equation by 8 gives 8b = 96m + 40 = 96m + 36 + 4 = 12(8m + 3) + 4. Since
8m + 3 is an integer and since 0 < 4 < 12, the uniqueness part of the quotient-remainder
theorem guarantees that the remainder obtained when 8b is divided by 12 is 4.

19. When c is divided by 15, the remainder is 3. Thus there exists an integer k so that c = 15k + 3.
Multiplying this equation by 10 gives 10c = 10. 15k + 30 = 15(10k + 2) = 15(10k + 2) + 0.
Since 10k + 2 is an integer and since 0 < 0 < 15, the uniqueness part of the quotient-remainder
theorem guarantees that the remainder obtained when 10c is divided by 15 is 0.

21. Recall that (1) A is a sufficient condition for B means if A then B, and (2) A is a necessary
condition for B means if B then A. Thus proving the given statement requires proving both a
(universal) conditional statement and its converse.

Proof (=>) [We first prove that given any nonnegative integer n and positive integer d, if n is
divisible by d, then n mod d = 0. ] Suppose n is any nonnegative integer and d is any positive
integer such that n is divisible by d. By definition of divisibility, n = dk for some integer k.
Thus the equation n = dk + 0 is true and the inequality 0 < 0 < d is also true, and so, by the
uniqueness part of the quotient-remainder theorem, n mod d = 0.

( [) [Second, we prove the converse, namely that given any nonnegative integer n and positive
integer d, if n mod d = 0 then n is divisible by d.] Suppose n is any nonnegative integer and
d is any positive integer such that n mod d = 0. Then 0 is the remainder obtained when n is
divided by d, and thus by the quotient-remainder theorem there exists an integer q such that
n = dq + 0. But this is equivalent to n = dq, and so, by definition of divisibility, n is divisible
by d.

22. b. aij is stored in location 7609 + 4(i - 1) + (j - 1). Thus n = 4(i - 1) + (j -1).

c. To find a formula for r, note that when 0 < n < 4, r = 1, when 4 < n < 8, r = 2, and when
8 < n < 12, r = 3. Dividing these inequalities by 4 gives that when 0 < n < 1, r = 1, when-4
1 < n < 2, r = 2, and when 2 < n < 3, r = 3. Thus, in each case, r [=n + 1 = n div 4 + 1.

To find a formula for s, note that when n = 0, 4, or 8, s = 1 = 0 + 1, when n = 1, 5, or 9,
s =2 = 1+1, when n= 2, 6, or 10, s= 3=2+1, and when n= 3, 7, or 11, s =4=3+1.
Thus, in each case, s = n mod 4 + 1. So

http://pakimonda.blog.com 
paki.monda@gmail.com 
paki.monda@yahoo.com



Section 3.4 57

So r = n div 4+1 and s = n mod 4+ 1
Note that, once the floor notation has been introduced, this answer can be checked for con-
sistency with the result of part (b) by using the formulas a mod b = a- La/b]b and a div
b= [a/b]:

4(r - 1) + (s - 1) 4[(n div 4 + 1) - 1] + [(n mod 4 + 1) - 1]

=4 - n] +(n - [n] 4)

= n

23. Solution 1: We are given that M is a matrix with m rows and n columns, stored in row major
form at locations N + k, where 0 < k < mn. Given a value for k, we want to find indices r
and s so that the entry for M in row r and column s, a,,, is stored in location N + k. By the
quotient-remainder theorem, k = nQ + R, where 0 < R < n. The first Q rows of M (each of
length n) are stored in the first nQ locations: N + O. N +.1,.. , N + nQ -1 with aqn stored
in the last of these. Consider the next row. When r Q + 1,

a,, will be in location N + nQ
a,2 will be in location N + nQ + 1
ar3 will be in location N + nQ + 2

ar, will be in location N + nQ + (s -1)

and arn will be in location N + nQ + (nr- 1) N + n(Q+!) -1.

Thus location N + k contains ars where r = Q + 1 and R = s -1. But Q = k div n and R = k
mod n, and hence r = (k div n) + 1 and s =(k mod n) + 1.

Solution 2: fAfter the floor notation has been introduced, the following solution can be consid-
ered as an alternative.] To find a formula for r, note that for 1 < a < m, when (a - 1)n <
k < an, r = a. Dividing through by n gives that when (a -1) < k < a, or, equivalently, when

J a - 1, r = a. But this means that a = + 1 = r, and since [Lj = k div n, we have
that r = (k div n) + 1.

To find a formula for s, note that when k = n (an integer) + b and 0 < b < n, then s = b + 1.
Thus by the quotient-remainder theorem, s = (k mod n) + 1.

24. Proof Consider any two consecutive integers. Call the smaller one n. By the quotient-
remainder theorem with d = 2, either n is even or n is odd.

Case 1 (n is even): In this case n = 2k for some integer k. Then n(n + 1) = 2k(2k + 1)
2[k(2k + 1)]. But k(2k + 1) is an integer (because products and sums of integers are integers),
and so n(n + 1) is even.

Case 2 (n is odd): In this case n = 2k + 1 for some integer k. Then

n(n + 1) = (2k + 1)[(2k + 1) + 1] = (2k + 1)(2k + 2) = 2[(2k + 1)(k + 1)].

But (2k + 1)(k + 1) is an integer (because products and sums of integers are integers), and so
n(n + 1) is even.

Hence in either case the product n(n + 1) is even [as was to be shown].

26. Proof 1 (directly from the definitions): Suppose n is any integer. By the quotient-remainder
theorem with n = 2, n is either even or odd.

Case 1 (n is even): In this case n = 2k for some integer k, and so, by substitution, n2 n+3
(2k)2 - 2k+3 = 4k2 2k+21 = 2(2k2 -r- 1)+1. Let t = 2k2 - k + 1. Then t is an integer
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because products, differences, and sums of integers are integers. Hence n2 
- n + 3 = 2t + 1

where t is an integer, and so, by definition of odd, n2 - n + 3 is odd.

Case 2 (n is odd): In this case n = 2k + 1 for some integer k, and so, by substitution, n2 - n +
3 =(2k+1)2 -(2k+1)+3 =4k2+4k+1 -2k -+3=4k2+2k+2+1 =2(2k2 +2k+1)+1.
Let t = 2k2 + 2k + 1. Then t is an integer because products and sums of integers are integers.
Hence n2 

_ n + 3 = 2t + 1 where t is an integer, and so, by definition of odd, n2  n + 3 is odd.

Thus in both cases n2 
-n + 3 is odd.

Proof 2 (using previously proved results): Suppose n is any integer. Note that n2 
- n + 3

(n- 1)n + 3, and that n -1 and n are consecutive integers. By exercise 24, the product of
n-1 and n is even. Thus n2 

-n + 3 is the sum of the even integer (n- 1)n and the odd
integer 3, and by Example 3.2.3 #5, this sum is odd.

29. Proof Suppose n is any integer. By the quotient-remainder theorem with d = 3, we know that
n = 3q, or n = 3q + 1, or n = 3q + 2 for some integer q.

Case 1 (n = 3q for some integer q): In this case, n2 = (3q)2 = 3(3q2 ). Let k = 3q2 . Then k is
an integer because it is a product of integers. Hence n2 = 3k for some integer k.

Case 2 (an = 3q + 1 for some integer q): In this case, n2 
= (3q + 1)2 = 9q2 + 6q + 1 = 3(3q2 +

2q) + 1. Let k = 3q2 + 2q. Then k is an integer because sums and products of integers are
integers. Hence n2  3k + 1 for some integer k.

Case 3 (n = 3q + 2 for some integer q): In this case, n2 = (3q + 2)2 = 9q2 + 12q + 4 = 9q2 +
12q + 3 + 1 = 3(3q2 + 4q + 1) + 1. Let k = 3q2 + 4q + 1. Then k is an integer because sums
and products of integers are integers. Hence n2 = 3k + 1 for some integer k.

In all three cases, either n2 = 3k or n2 = 3k + 1 for some integer k [as was to be shown].

30. Proof Suppose n and n + 1 are any two consecutive integers. By the quotient-reinainder
theorem with d = 3, we know that n = 3q, or n = 3q + 1, or n = 3q + 2 for some integer q.

Case 1 (n = 3q for some integer q): In this case, n(n + 1) = 3q(3q + 1) = 3[q(3q + 1)]. Let
k = q(3q + 1). Then k is an integer because sums and products of integers are integers. Hence
n(n + 1) = 3k for some integer k.

Case 2 (n - 3q + 1 for some integer q): In this case, n(n+l) = (3q+1)(3q+2) = 9q2 +9q+2
3(3q2 + 3q) + 2. Let k = 3q2 + 3q. Then k is an integer because sums and products of integers
are integers. Hence n(n + 1) = 3k + 2 for some integer k.

Case 3 (n = 3q + 2 for some integer q): In this case, n(n + 1) = n(3q + 3) = 3[n(q + 1)]. Let
k = n(q + 1). Then k is an integer because sums and products of integers are integers. Hence
n(n + 1) = 3k for some integer k.

Thus in all three cases, the product of the two consecutive integers either equals 3k or it equals
3k + 2 for some integer k /as was to be shown].

31. a. Proof 1: Suppose m and n are integers.

Case 1 (both m and n are even): In this case both m + n and m -n are even (by Example
3.2.3 #1).

Case 2 (one of m and n is even and the other is odd): In this case both m + n and m -n are
odd (by Example 3.2.3 #5 and #7).

Case 3 (both m and n are odd): In this case both m+n and m -n are even (by Example 3.2.3
#2).

Thus in all three possible cases, either both m + n and m -n are even or both m + n and
m - n are odd [as was to be shown].

Proof 2: Suppose ni and n are integers.
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Case 1 (mr-n is even): In this case, m + n = (m-n) + 2n, and so m + n is a sum of two
even integers and is therefore even by by Example 3.2.3 #1.

Case 2 (m - n is odd): In this case also, m + n = (m - n) + 2n. Hence m + n is the sum of
an odd integer and an even integer, and is therefore odd by by Example 3.2.3 #5.

Now either m -n is even or m -n is odd / by the quotient-remainder theorem], and thus either
case 1 or case 2 must apply. In each case, m - n and m + n are either both even or both odd
[as was to be shown!.

c. If m 2
- n2 = 88, then 88 = (m + n)(m- n). Now 88 = 23 . 11, and by the unique

factorization theorem this factorization is unique up to the order in which the factors are
written down. It follows that the only representations of 40 as a product of two positive
integers are 88 = 88. 1 = 8. 11 = 4 22 = 2 44. By part (a), m and n must both be odd or
both be even. Thus the only solutions are either m + n = 22 and m -n = 4 or m + n = 44
and m -n = 2. This gives either m = 13 and n = 9 or m = 23 and n = 21.

33. Proof Suppose a, b, and c are any integers such that a- b is odd and b - c is even. Then
(a - b) + (b - c) is a sum of an odd integer and an even integer and hence is odd (by Example
3.2.3 #5). But (a - b) + (b -c) = a- c, and thus a -c is odd.

34. Proof Suppose n is any integer with n > 3. By the quotient-remainder theorem with d = 3,
we know that n = 3q, or n = 3q + 1, or n = 3q + 2 for some integer q. Note that because n is
greater than 3, q is greater than 1 or q = 1 and n = 4 or 5.

Case 1 (q = 1 and n = 4): In this case, n is not prime because 4 = 2 .2.

Case 2 (q = l and n = 5): In this case, n + 4 = 9 = 3 *3, and so n + 4 is not prime.

Case 3 (q > 1 and n = 3q): In this case, n is not prime because it is a product of 3 and q
and both 3 and q are greater than 1.

Case4(q>1andn=3q+1):Inthiscase,n+2=(3q+1)+2=3q+3=3(q+1).Son+2
is not prime because it is a product of 3 and q + 1 and both 3 and q + 1 are greater than 1.

Case 5 (q > 1 and n = 3q+2): In this case, n+4 = (3q+2) +4 = 3q+6 = 3(q+2). So n+4
is not prime because it is a product of 3 and q + 2 and both 3 and q + 2 are greater than 1.

Hence in all five cases, at least one of n or n + 2 or n + 4 is not prime.

35. Proof Suppose n is any integer. By the quotient-remainder theorem with d = 2, n is either
even or odd.

Case 1 (n is even): In this case n = 2q for some integer q, and so, by substitution, n4 
-

(2q)4 = 16q4 = 8(2q4). Let m = 2q4 . Then m is an integer because it is a product of integers.
Hence n4 = 8m where m is an integer.

Case 2 (n is odd): In this case n = 2q + 1 for some integer q, and so, by substitution, n4 
4

(2q + 1)4 = (2q + 1)
2 (2q + 1)2 = (4q2 + 4q + 1)(4q2 + 4q + 1) = 16q4 + 16q3 + 4q2 + 16q3 +

16q2 + 4q + 4q2 + 4q + 1 = 16q4 + 32q3 + 24q2 + 8q + 1 = 8(2q4 + 4q3 + 3q2 + q) + 1. Let
m = 2q4 + 4q3 + 3q2 + q. Then m is an integer because products and sums of integers are
integers. Hence n4 = 8m + 1 where m is an integer.

Thus in both cases n4 = 8m or n4 = 8m + 1 for some integer m.

Note: If Theorem 3.4.3 is used, it can be shown that for any integer n, n4 = 16m or n4 
-

16m + 1 for some integer m. See the solution to exercise 43 for a partial proof of this result.

36. Proof Suppose n is any integer. [We must show that 8 | n(n + 1)(n + 2)(n + 3).] By the
quotient-remainder theorem with d = 4, n = 4k or n = 4k + 1 or n = 4k + 2 or n = 4k + 3 for
some integer k.

Case 1 (n = 4k for some integer k): In this case,

n(n + 1)(n + 2)(n + 3) = 4k(4k + 1)(4k + 2)(4k + 3) = 8[k(4k + 1)(2k + 1)(4k + 3)],
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which is divisible by 8 (because k is an integer and sums and products of integers are integers).

Case 2 (n = 4k + 1 for some integer k): In this case,

n(n + 1)(n + 2)(n + 3) = (4k + 1)(4k + 2)(4k + 3)(4k + 4) = 8[(4k + 1)(2k + 1)(4k + 3)(k + 1)],

which is divisible by 8 (because k is an integer and sums and products of integers are integers)

Case 3 (n = 4k + 2 for some integer k): In this case,

n(n + 1)(n + 2)(n + 3) = (4k + 2)(4k + 3)(4k + 4)(4k + 5) = 8[(2k + 1)(4k + 3)(k + 1)(4k + 5)],

which is divisible by 8 (because k is an integer and sums and products of integers are integers).

Case 4 (n = 4k + 3 for some integer k): In this case,

n(n + 1)(n + 2)(n + 3) = (4k + 3)(4k + 4)(4k + 5)(4k + 6) = 8[(4k + 3)(k + 1)(4k + 5)(2k + 3)],

which is divisible by 8 (because k is an integer and sums and products of integers are integers).

Hence in all four possible cases, 8 1 n(n + 1)(n + 2)(n + 3) [as was to be shown].

37. Proof Let n be any integer. [We must show that n 2 = 4k or n2 = 4k + 1 for some integer k.]
By the quotient-remainder theorem, n = 4q or n = 4q + 1 or n = 4q + 2 or n 4q + 3 for some
integer q.

Case 1 (n = 4q for some integer q): In this case, n2 = (4q)2 = 4(4q2 ). Let k 4q2 . Then k is
an integer because it is a product of integers. Hence n2 

= 4k for some integer k.

Case 2 (n = 4q + 1 for some integer q): In this case, n 2 = (4q + 1)2 = 16q 2 + 8q + 1 = 4(4q2 +
2q) + 1. Let k = 4q2 + 2q. Then k is an integer because it is a sum of products of integers.
Hence n2 

= 4k + 1 for some integer k.

Case 3 (n = 4q + 2 for some integer q): In this case, n2 = (4q + 2)2 = 16q2 + 16q + 4 =
4(4q2 + 4q + 1). Let k = 4q2 + 4q + 1. Then k is an integer because it is a sum of products of
integers. Hence n2 = 4k for some integer k.

Case 4 (n = 4q + 3 for some integer q): In this case, n2 = (4q + 3)2 = 16q2 + 24q + 9 =
16q2 + 24q + 8 + 1 =4(4q2 + 6q + 2) + 1. Let k = 4q2 + 6q + 2. Then k is an integer because
it is a sum of products of integers. Hence n2 = 4k + 1 for some integer k.

It follows that in all four possible cases, n2 = 4k or n2 = 4k + 1 for some integer k [as was to
be shown].

38. Solution 1: This result can be proved directly by dividing into four cases as is done in the
proof for exercise 37. If exercise 37 was previously solved, however, the result of exercise 38
can be deduced as follows.

Proof Let n be any integer. By the result of exercise 37, n 2 
= 4k or n 2 = 4k + 1 for some

integer k. Hence n2 
+ 1 = 4k + 1 or n2 

+ 1 = 4k + 2 for some integer k.

Solution 2: An alternative proof uses Theorem 3.4.3.

Proof: Let n be any integer. By the parity property, n is either even or odd.

Case 1(n is even): In this case, n = 2q for some integer q, and so n2 + 1 = (2q)2 
+ 1 = 4q2 + 1.

Let k = q2 . Then k is an integer because it is a product of integers, and thus n2 + 1 has the
form 4k + 1 for some integer k.

Case 2(n is odd): In this case, by Theorem 3.4.3, there is an integer m such that n2 + 1I
(8m + 1) + 1 = 4(2m) + 2. Let k = 2m. Then k is an integer because it is a product of integers,
and thus n2 + 1 has the form 4k + 2 for some integer k.

39. Proof Consider any four consecutive integers. Call the smallest n. Then the sum of the four
integers is n + (n + 1) + (n + 2) + (n + 3) = 4n + 6 = 4(n + 1) + 2. Let k = n + 1. Then k is
an integer because it is a sum of integers. Hence n can be written in the required form.
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40. Proof Let n be any integer and observe that n(n2 -)(n+2) = (n-l)n(n+l)(n+2), which is
a product of four consecutive integers. By exercise 36, this product is divisible by 8, and hence
by transitivity of divisibility (Theorem 3.3.1) the product is divisible by 4 [as was to be shown].
Note: The statement can also be proved directly without using exercise 36 by dividing into
four cases as is done in the proof for exercise 36. It can also be proved by using Theorem 3.4.3
and dividing into two cases as was done in the proof given in Solution 2 for exercise 38.

41. Proof: Let m be any integer./We must show that m
2 = 5k or m 2 = 5k+1, or m2 = 5k+4 for

some integer k.] By the quotient-remainder theorem, m = Sq or m = 5q + 1 or m = 5q + 2,
or m = 5q + 3, or m = 5q + 4 for some integer q.

Case 1 (m = 5q for some integer q): In this case, m2 = (5q)2 = 5(5q2 ). Let k = 5q2 . Then k
is an integer because it is a product of integers, and hence m2  5k for some integer k.

Case 2 (m = 5q + 1 for some integer q): In this case, m
2 = (5q + 1)2 = 25q2 

+ 10q + 1 -

5(5q2 + 2q) + 1. Let k = 5q2 + 2q. Then k is an integer because it is a sum of products of
integers, and hence m2 = 5k + 1 for some integer k.

Case 3 (m = 5q + 2 for some integer q): In this case, m2 
= (5q + 2)2 = 25q2 + 20q + 4 =

5(5q2 + 4q) + 4. Let k = 5q2 + 4q. Then k is an integer because it is a sum of products of
integers, and hence m2 = 5k + 4 for some integer k.

Case 4 (m = 5q + 3 for some integer q): In this case, m2 = (5q + 3)2 = 25q2 + 30q + 9 =

25q2 +30q+5+4=5(5q 2 +6q+1)+4. Letk =5q2 + 6q + 1. Then k is an integer because it
is a sum of products of integers, and hence m2 = 5k + 4 for some integer k.

Case 5 (m = 5q + 4 for some integer q): In this case, m2 = (5q + 4)2 = 25q2 + 40q + 16
25q2 + 40q + 15 + 1 = 5(5q2 + 8q + 3) + 1. Let k 5q2 + 8q + 3. Then k is an integer because
it is a sum of products of integers, and hence m2  5k + 1 for some integer k.

42. Proof Let p be any prime number except 2 or 3. By the quotient-remainder theorem, p can
be written as 6k or 6k + I or 6k + 2 or 6k + 3 or 6k + 4 or 6k + 5 for some integer k. Since p is
prime and p #& 2, p is not divisible by 2. Consequently, p # 6k, p # 6k + 2, and p 7& 6k + 4 for
any integer k [because all of these numbers are divisible by 2j. Furthermore, since p is prime
and p :A 3, p is not divisible by 3. Thus p 7$ 6k + 3 [because this number is divisible by 3].
Therefore, p = 6k + 1 or p = 6k + 5 for some integer k.

43. Proof Let n be any odd integer. By Theorem 3.4.4, n2 = 8m + 1 for some integer m. Then
n4 = (8m + 1)2 = 64m

2 + 16m + 1 = 16(4m 2 + m) + 1. But 4m2 + m is an integer (because
it is a sum of products of integers), and so by the quotient-remainder theorem, the remainder
obtained when n4 is divided by 16 is 1. Hence by definition of mod, n4 mod 16 = 1.

45. They are equal.

Proof Suppose m, n, and d are integers and d I (m -n). By definition of divisibility, m -n = dk
for some integer k. Therefore, m = n + dk. Let r = n mod d. Then by definition of mod,
n = qd + r where q and r are integers and 0 < r < d. By substitution, m = n + dk -

(qd + r) + dk = d(q + k) + r. Since q + k is an integer and 0 < r < d, the integral quotient of
the division of n by d is q + k and the remainder is r. Hence m mod d = r also, and so n mod d
=m mod d.

46. Answer to the first question: not necessarily

Counterexample: Let m = n = 3, d = 2, a = 1, and b = 1. Then m mod d = n mod d = 3 mod
2 =1= a =b. Buta+b =11I= 2, whereas(m+ n) modd=6mod2=0.

Answer to the second question: yes.

Proof Suppose m, n, a, b, and d are integers and m mod d = a and n mod d = b. By
definition of mod, m = dql + a and n = dq2 + b for some integers qi and q2. By substitution,
m + n = (dqi + a) + (dq2 + b) = d(qi + q2) + (a + b). Apply the quotient-remainder theorem to
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a + b to obtain unique integers q3 and r such that a + b = dq3 + r and 0 < r < d. By definition
of mod, r = (a + b) mod d. By substitution, m+ n = d(qi + q2 ) + (a + b) = d(qi + q2 ) + (dq3 + r) -
d(q, + q2 + q3) + r where q, + q2 + q3 and r are integers and 0 < r < d. Hence by definition of
mod, r = (m + n) mod d, and so (m + n) mod d = (a + b) mod d.

47. Answer to the first question: not necessarily

Counterexample: Let m = n =2, d = 3, a = 2, and b = 2. Then m mod d = n mod d
= 2 mod 3= 2 = a = b. But ab 2 2 = 4, whereas (mn) mod d = 4 mod 3 = 1.

Answer to the second question: yes.

Proof Suppose m, n, a, b, and d are integers and m mod d = a and n mod d = b. By
definition of mod, m = dq1 + a and n = dq2 + b for some integers qi and q2. By substitution,
mn = (dql + a)(dq2 + b) = d2 q q2 + d(aq, + bq2) + ab. Apply the quotient-remainder theorem
to ab to obtain unique integers q3 and r such that ab = dq3 + r and 0 < r < d. By definition
of mod, r = (ab) mod d. By substitution, mn = d2q1 q2 + d(aq, + bq2 ) + ab = d2qlq2 + d(aqi +
bq2) + dq3 + r = d(dqiq2 + aq, + bq2 + q3) + r where dqlq2 + aqi + bq2 + q3 and r are integers
and 0 < r < d. Hence by definition of mod, r = (mn) mod d, and so mn mod d = (ab) mod d.

48. Proof Suppose m, d, and k are nonnegative integers and d > 0. Let a = m mod d. By
definition of mod, m = dq + a for some integer q and 0 < a < d. By substitution, m + dk =
dq + a + dk = d(q + k) + a. Now q + k is an integer because it is a sum of integers, and
O < a < d. So by definition of mod, (m + dk) mod d = a m mod d.

50. Proof Let x and y be any real numbers.

Case 1 (x and y are both nonnegative): In this case jx= x, IYI = y, and xy is also nonnega-
tive. So |xy| = xy = X| lyl
Case 2 (x is nonnegative and y is negative): In this case xl = x, IYI =-y and xy < 0. So
lXyl = -(Xy) = X(-Y) = IXI I.

Case 3 (x is negative and y is nonnegative): In this case x| =-x, IYI = y and xy < 0. So
lXyl = -(Xy) = (-X)Y= IXI M.

Case 4 (x and y are both negative): In this case lxj =-x, IyI =-y, and xy > 0. So Ixyl =

(-x)(-Y) = IXI IY.
Therefore in all four possible cases, Ixyl = IX| - g /as was to be shown.

52. Proof Let c be any positive real number and let x be any real number.

Part 1 (Proof that if -c < x < c then xl < c): Suppose that -c < x < c.(*) By the tri-
chotomy law (see Appendix A, T16), either x > 0 or x < 0.

Case 1 (x > 0): In this case jxl = x, and so by substitution into (*), -c < lxj < c. In
particular, |x| < c.

Case 2 (x < 0): In this case xj = -x, and so x = -Ixl. Hence by substitution into (*),
-c < -Ixl < c. In particular, -c < -Ixl. Multiplying both sides by -1 gives c > xj, or,
equivalently, |xI < c.

Therefore, regardless of whether x > 0 or x < 0, xj < c fas was to be shown!.

Part 2 (Proof that if xl < c then -c < x < c): Suppose that lxj < c.(**) By the trichotomy
law, either x > 0 or x < 0.

Case 1(x > 0): In this case lxj = x, and so by substitution into (**), x < c. Since x > 0
and c > x, then c > 0 by transitivity of order (Appendix A, T17). Then, by property T23 of
Appendix A, 0 > -c, and, again by transitivity of order, x > -c. Hence -c < x < c.

Case 2 (x < 0): In this case lxj = -x, and so by substitution into (**) -x < c. Multiplying
both sides of this inequality by -1 gives x > -c. Also since x < 0 and 0 < c, then x < c.
Thus-c < x < c.

http://pakimonda.blog.com 
paki.monda@gmail.com 
paki.monda@yahoo.com



Section 3.5 63

Therefore, regardless of whether x > 0 or x < 0, we conclude that -c < x < c [as was to be
shown].

53. Proof Let any real numbers x and y be given. By exercise 51,

-x1 < x <- lxI

and

-IYI < Y < MIY
Hence by the order properties of the real numbers (Appendix A, T25),

H-XI) + H-YI) < X + Y <- (IXI + IYI),

or, equivalently,

-(lXi + IYl) < X + Y < (IXI + IYID
It follows immediately from exercise 52 that lX + i'l < xi + MI.

Section 3.5

2. [17/4] = L4.25] = 4, [17/4] = 4.251 = 5

4. L-32/5 = [-6.4] = -7, [-32/5] = [-6.4] =-6

5. 259 div 11 = [259/11] = 23, 259 mod 11 = 259 -11 * [259/11] = 259 - 11 .23 = 6

6. If k is an integer, then [k] = k because k -1 < k < k and k -1 and k are integers.

7. If k is an integer, then [k + 1/2] = k + 1 because k < k + 1/2 < k + 1 and k and k + 1 are
both integers.

8. When the ceiling notation is used, the answer is either [n/7] -1 if n/7 is not an integer or
[n/7] if n/7 is an integer.

9. If the remainder obtained when n is divided by 36 is positive, an additional box beyond those
containing exactly 36 units will be needed to hold the extra units. So since the ceiling notation
rounds each number up to the nearest integer, the number of boxes required is [n/361. Also,
because the ceiling of an integer is itself, if the number of units is a multiple of 36, the number
of boxes required is [n/36] as well. Thus the ceiling notation is more appropriate for this
problem because the answer is simply [n/36] regardless of the value of n. If the floor notation
is used, the answer is more complicated: if n/36 is not an integer, it is [n/36j + 1, but if n is
an integer, it is [n/36j.

10. a. (ii) (2100 + [2100 -1] [ 2100 1] + [210 1]) mod 7 = (2100 + 524 - 20 + 5) mod 7 = 2609
mod 7 = 5, which corresponds to Friday.

(iii) Answers will vary.

b. When the year n-1 is a leap year, then, because leap years contain an extra day, January 1 of
the year n is one day of the week later than it would otherwise be. If leap years occurred exactly
every four years, then there would be [(n -1)/4] extra leap year days from year 1 to year
n. So the day of the week of January 1 of year n would be pushed forward [(n - 1)/4j mod 7
days from its value in year 1. But leap years do not occur exactly every four years. Every
century year (year that is a multiple of 100), except those that are multiples of 400, the leap
year day is not added. So instead of L(n - 1)/4J leap year days from year 1 to year n, there
are [(n - 1)/4] - [(n - 1)/100] + [(n- 1)/400] leap year days, where [(n- 1)/100l is the
number of century years from year 1 to year n and [(n - 1)/400J is the number of those that
are multiples of 400. Hence the day of the week of January 1 of year n is actually pushed
forward ([(n-1)/4- [(n - 1)/100j + L(n- 1)/400]) mod 7 days from its value in year 1.

http://pakimonda.blog.com 
paki.monda@gmail.com 
paki.monda@yahoo.com



64 Solutions for Exercises: Elementary Number Theory and Methods of Proof

11. A necessary and sufficient condition for the floor of a real number to equal the number is that
the number be an integer.

13. a. Proof Suppose n and d are integers with d 54 0 and d I n. Then n = d. k for some integer
k. By substitution and algebra, [n/dj = Ld. k/dj = Lk], and [k] = k because k < k < k + 1
and both k and k + 1 are integers. But since n = d- k, then k = n/d. Hence [n/dj = k = n/d.
Therefore, n = [n/dj d [as was to be shown].

b. Proof Suppose n and d are integers with d 54 0 and n = [n/dj d. By definition of floor,
[n/d] is an integer. Hence, n = d* (some integer), and so by definition of divisibility, d I n.

c. A necessary and sufficient condition for an integer n to be divisible by an integer d is that
n = Ln/dj* d.

16. Counterexample: Let x = 3/2. Then [x2] = [(3/2)2] = [9/4] = 2, whereas [XJ 2 
= [3/2]2

12 = 1.

17. Proof Let n be any integer. By the quotient-remainder theorem and the definition of mod,
either n mod3 =0or n mod3 =1 or n mod3 =2.

Case 1 (n mod 3 = 0): In this case, n = 3q for some integer q by definition of mod. By
substitution and algebra, Ln/3] = [3q/3] - [qJ and [q] = q because q is an integer and q <
q < q + 1. But solving n = 3q for q gives q - n/3. Thus Ln/3] = q = n/3 [as was to be shown].

Case 2 (n mod 3 = 1): In this case, n = 3q + 1 for some integer q by definition of mod. By
substitution and algebra, [n/3] = [(3q + 1)/3] = [q + 1/3] and [q + 1/3] = q because q is
an integer and q < q + 1/3 < q + 1. But solving n = 3q i 1 for q gives q = (n -1)/3. Thus
[n/3] = q = (n - 1)/3 [as was to be shown].

Case 3 (n mod 3 = 2): The proof for this case is included in the answers in Appendix B.

Cases 1, 2, and 3 show that no matter what integer n is given, [n/3] has one of the three
forms in the statement of the exercise.

18. Counterexample: Let x = y = 1.5. Then [x + yl = [1.5 + 1.51 = [3] = 3, whereas [xl + Fy] =
[1.5] + [1.5] = 2 + 2 = 4.

19. Proof Let x be any [Particular but arbitrarily chosen] real number. Then [x + 11 is some
integer: say [x + 1] = n. By definition of ceiling, n -1 < x + 1 < n. Subtracting 1 from all
parts of this inequality gives n - 2 < x < n - 1, and thus by definition of ceiling [x] = n - 1.
Solving this equation for n gives n = [x] + 1. But n = [x + 1] also. Hence [x + 1] = [x] + 1

[as was to be shown].

20. Counterexample: Let x = y = 1.1. Then [rx y] = [(1.1) * (1.1)] = [1.21] = 2. On the other
hand, [x] [y] = 1.1] * [1.1] = 2 2 = 4.

21. Proof Let n be any odd integer. [We must show that [n/21 = (n + 1)/2.] By definition of
odd, n = 2k + 1 for some integer k. Substituting into the left-hand side of the equation to be
proved gives [n] =[2k±1 + [k1 k1

iF2 2 2

where +k + 2 + 1 by definition of ceiling because k < k + 1/2 < k + 1 and k is an integer.

On the other hand, substituting into the right-hand side of the equation to be shown gives

n+1 (2k+1)+1 2k+2 2(k+1)

2 2 2 2

also. Thus both the left- and right-hand sides of the equation to be proved equal k + 1, and
so both are equal to each other. In other words, [n/2] = (n + 1)/2 [as was to be shown].
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22. Counterexample: Let x = y = 1.9. Then [xy] = [(1.9)(1.9)] = [3.61] = 4, whereas
F191- LI91 = 2 1 = 2.

24. Proof: Suppose m is any integer and x is any real number that is not an integer. By definition
of floor, Lx] = n where n is an integer and n < x < n + 1. Since x is not an integer, x 74 n,
and so n < x < n + 1. Multiply all parts of this inequality by -1 to obtain -n > -x >
-n - 1. Then add m to all parts to obtain m - n > m - x > m - n - 1, or, equivalently,
m -n-1 < m-x < m-n. But m-n-1 and m-n are both integers, and so by definition
of floor, [m -xj = m - n -1. By substitution, Lxi + [m - xj = n + (m-n - 1) = m - 1
fas was to be shown].

25. Proof Suppose x is any [particular but arbitrarily chosen] real number. [We must show that
Llx/2J/2J = [x/4j.] Let n = [x/2J. Then by definition of floor, n < x/2 < n + 1.

Case 1 (n is even): In this case, n/2 is an integer, and we divide all parts of the inequality
n < x/2 < n + I by 2 to obtain n/2 < x/4 < (n + 1)/2. But (n + 1)/2 = n/2 + 1/2 < n/2 + 1.
Hence n/2 < x/4 < n/2+1 because n/2 is an integer, and so by definition of floor, Lx/4] = n/2.
Since n = [x/2j, then, LLx/2j/2j = [n/2j = n/2 = Lx/4].

Case 2 ( n is odd): In this case (n- 1)/2 is an integer, and by Theorem 3.5.2 [n/2j = (n- 1)/2.
We divide all parts of the inequality n < x/2 < n + 1 by 2 to obtain n/2 < x/4 < (n + 1)/2.
But n/2 > (n -1)/2. Thus (n - 1)/2 < x/4 < (n + 1)/2. Now (n -1)/2 is an integer
and (n + 1)/2 = (n - 1)/2 + 1. Hence by definition of floor, [x/4j = (n - 1)/2. Since
(n -1)/2 = [n/2j and n = [x/2j, then L[x/2j/2J = [n/2j = [x/4j.
Thus, in both cases, [[x/2j/2j = [x/42 [as was to be shown].

27. Proof Suppose x is any real number such that x- [xj > 1/2. Multiply both sides by 2 to obtain
2x - 2 Lx] > 1, or equivalently, 2x > 2 [xj + 1. Now by definition of floor, x < [x] + 1. Hence
2x < 2 [xj + 2. Put the two inequalities involving x together to obtain 2 [xJ + 1 < 2x < 2 txj + 2.
By definition of floor, then, [2xj = 2 [xJ + 1.

28. Proof. Let n be any odd integer. [We must show that L2= (a 2 1) (n + ) 1 By defini-

tion of odd, n = 2k + 1 for some integer k. Substituting into the left-hand side of the equation
to be proved gives

n2] | [(2k + 1)2] = L4k2 + 4k + 1 [k2±k =2

2 4 2 2 2 k++4 k+

where [k2 + k + = k2 + k by definition of floor because k2 + k is an integer and k2 + k <

k2 + k +± < k2 + k + 1. On the other hand, substituting into the right-hand side of the
4

equation to be proved gives

(n- 1) (n+1) (2k +1 1) ((2k+1)+1) = (2k) (2k+2) =k(k+1)=k2 +k

also. Thus the left- and right-hand sides of the equation to be proved both equal k2 + k,

and so the two sides are equal to each other. In other words, [4j = (n- 1) (2 +)

[as was to be shown].

29. Proof Let n be any odd integer. [We must show that [2] - n = 3] By definition of odd,

n = 2k + 1 for some integer k. Substituting into the left-hand side of the equation to be proved
gives

n2] = [(2k + 1) 2 ] = [4k 2+ 4k+11 = [k2+k+ - k2 + k + 1
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where [k2 + k + =k 2 + k + 1 by definition of ceiling because k2 + k + 1 is an integer and

k2 + k < k2 + k + < k2 + k + 1. On the other hand, substituting into the right-hand side of
4

the equation to be proved gives

2+ 3 (2k+1)2 +3 4k2+4k+1+3 4k 2 +4k+4 k2+k+
4 4 4 4

also. Thus the left- and right-hand sides of the equation to be proved both equal k2 + k + 1, and

so the two sides are equal to each other. In other words, n ] + 3 [as was to be shown].

Section 3.6

2. By definition of irrational number, irrational numbers are real numbers that are not rational.
Thus 1 is not an irrational number because it is not a real number (since division by zero is
not defined).

4. Proof Suppose not. That is, suppose there is an integer n such that 7m + 4 is divisible by 7.
[We must derive a contradiction.] By definition of divisibility, 7m + 4 = 7k for some integer k.
Subtracting 7m from both sides gives that 4 = 7k -7m = 7(k -m). Since k - m is an integer
(being a difference of integers), 7 divides 4. But, by Example 3.3.3, this implies that 7 < 4,
which contradicts the fact that 7 > 4. [Thus for all integers m, 7m + 4 is not divisible by 7.]

6. Negation of statement: There is a greatest negative real number.

Proof of statement: Suppose not. That is, suppose there is a greatest negative real number
a. [We must deduce a contradiction.] Then a < 0 and a > x for every negative real number
x. Let b = a/2. Then b is a real number because b is a quotient of two real numbers (with a
nonzero denominator). Also a < a/2 < 0. [The reason is that 0 < 1/2 < 1 and multiplying all
parts by a, which is less than zero, gives a < a/2 < 0.] By substitution, then, a < b < 0. Thus
b is a negative real number that is greater than a. This contradicts the supposition that a is
the greatest negative real number. [Hence the supposition is false and the statement is true.]

7. Proof Suppose not. That is, suppose there is a least positive rational number. Call it r.
Then r is a real number such that r > 0, r is rational, and for all positive rational numbers
x, r < x. Let s = r/2. Note that if we divide both sides of the inequality 0 < r by 2, we
obtain 0 < r/2 = s, and if we add r to the inequality 0 < r and then divide by 2, we obtain
O +r r +r r

< 2 or, equivalently, s = - < r. Hence 0 < s < r. Note also that since r is rational,
2 2 2

r = a/b for some integers a and b with b : 0, and so s = 2- =/= --a Since a and 2b are
2 2 2b'

integers and 2b $ 0, s is rational. Thus we have found a positive rational number s such that
s < r. This contradicts the supposition that r is the least positive rational number. Therefore,
there is no least positive rational number.

9. Proof Suppose not. That is, suppose there are real numbers x and y such that x is irrational,
y is rational and x -y is rational. [We must derive a contradiction.] By definition of rational,
y = a/b and x -y c/d for some integers a, b, c, and d with b #8 0 and d # 0. Then, by
substitution, x - c b aSolve this equation for x to obtain x = d +_= bc+d = Butb ~ lv tiseqatonfoxt otanx bd
both bc +ad and bd are integers because products and sums of integers are integers, and bd # 0
by the zero product property. Hence x is a ratio of integers with a nonzero denominator, and
so x is rational by definition of rational. This contradicts the supposition that x is irrational.
[Hence the supposition is false, and the given statement is true.]
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11. Proof: Suppose not. That is, suppose there are rational numbers a and b such that b 7& 0, r is
an irrational number, and a + br is rational. /We must derive a contradiction.] By definition

i km
of rational, a = b - and al+br = where i, j, k, 1, m, and n are integers and j 5 0,1 5 0,

n
i k m

and n 0 O. Since b i 0, we also have that k #0 O. By substitution a + br + - r -,
I n

k m i mj -in I mjl - in o
or, equvalently, r Solving for r gives r - n kNowI n nj k nik
mjl -inl and njk are both integers /because products and differences of integers are integers]
and njk # 0 because n 7 Oj # 0, and k 5 0. Hence by definition of rational, r is a rational
number. But this contradicts the supposition that r is irrational./ Hence the supposition is
false and the statement is true.]

12. Proof 1: Suppose not. That is, suppose 3 an integer n such that 4 1 (n2 - 2). [We must
derive a contradictions By definition of divisibility, n

2 - 2 = 4m for some integer m. By the
quotient-remainder theorem with d - 2, n is either even or odd.

Case 1 (n is even): In this case, n 2k for some integer k, and so, by substitution, n
2 -2

(2k) 2 -2 = 4k2 - 2 = 4m, where m is an integer. Thus 4k2 - 4m = 2, and hence k2 - m 121
But the left-hand side of this equation is an integer (because k and m are integers) and the
right-hand side is not an integer. Since this is impossible, the case where n is even cannot
occur.

Case 2 (n is odd): In this case, n = 2k + 1 for some integer k, and so, by substitution,
n 2 -2 = (2k + 1)

2 -2 = 4k 2 + 4k + 1-2 = 4k2 + 4k -1 = 4m, where m is an integer. Thus
4k2 + 4k -4m = 1, and hence k2 + k -m 1 But the left-hand side of this equation is an
integer (because k and m are integers) and the right-hand side is not an integer. Since this is
impossible, the case where n is odd cannot occur.

It follows from cases 1 and 2 that n can be neither even nor odd, which contradicts the fact
that it must be one or the other. [Therefore the supposition is false, and the given statement
is true.]

Proof 2: Suppose not. That is, suppose 3 an integer n such that 4 1 (n2- 2). [We must
derive a contradiction.] By definition of divisibility, n2  2 -= 4m for some integer m. Then
n2 = 4m + 2 = 2(2m + 1), and so n2 is even. Hence n is even (by Proposition 3.6.4). By
definition of even, n = 2k for some integer k. Substituting into the equation n

2 - 2 = 4m gives
(2k) 2 -2 = 4k2  2- 4m, and so 4k2 = 4m + 2. Dividing by 2 gives 2k2 = 2m + 1. Since k2

is an integer, this implies that 2m + 1 is even, but, since m is an integer, 2m + 1 is odd. This
contradicts Theorem 3.6.2 that no integer is both even and odd . [Hence the supposition is
false and the statement is true.]

13. Proof Suppose not. That is, suppose there exist prime numbers a, b, and c such that a2 + b2 2

c2. Subtracting b2 from both sides of the equation gives that a2 = c 2 - b2 = (c -b)(c + b).
Either c - b = 1 or c-b > 1 [because since c + b > 0 and a2 > 0, c -b must be positive].

Case 1 (c-b = 1): In this case, because both c and b are prime numbers and the only
even prime number is 2, the only possible values for b and c are c = 3 and b = 2. Then
(c -b)(c + b) = 1 . 5 = 5 = a2, and so V = a. But this contradicts the assumption that a is a
prime number.

Case 2 (c -b > 1): In this case, a2 = (c -b) (c + b) where both (c -b) > 1 and (c + b) > 1.
Because a is prime, the only positive factors of a are 1 and a, and so, by the unique factorization
theorem, the only positive factors of a2 are 1, a, and a2. Because both (c - b) and (c + b)
are greater than 1, the only possibility is that both are equal to a. But this is implies that
c -b = cl+b, which implies that -b = b, and hence that b = 0. This contradicts the supposition
that b is a prime number.

Thus a contradiction is reached in both possible cases, and hence the supposition is false and
the given statement is true.
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14. Yes.

Proof Suppose not. That is, suppose 3 integers a, b, and c such that a and b are both odd
and a2 + b2 = c2. By definition of odd, a = 2k + 1 and b = 2m + 1 for some integers k and m.
Then, by substitution, c2 = a2 + b2 = (2k + 1)2 + (2m + 1)2 = 4k2 + 4k + 1 + 4m2 + 4m + 1 =
4(k2 + k + m 2 

+ m) + 2. Let t = k2 + k + m
2 + m. Then t is an integer because products and

sums of integers are integers. Hence c2 = 4t + 2, or, equivalently, C
2 -2 = 4t. So, by definition

of divisibility, c2 -2 is divisible by 4. But the argument used in the answer to exercise 12
shows that this is impossible. Thus the supposition is false, and the given statement is true.

15. Proof Suppose not. That is, suppose 3 odd integers a, b, and c and a rational number z such
that az2 + bz + c = 0. By definition of rational, there exist integers m and n such that z = m/n
and n $ 0. By cancelling common factors if necessary, we may assume that m and n have no
common factors. By substitution, a (m )2 + b(' ) + c = 0, and multiplying both sides by n2

gives am2 + bmn + cn2 
= 0.

Case 1 (both m and n are even): In this case both m and n have a factor of 2, which contra-
dicts the assumption that m and n have no common factors.

Case 2 (m is odd and n is even): In this case am2 is a product of odd integers, and hence is
odd (by Example 3.2.3 #3), and both bmn and cn2 are products that contain an even factor,
and hence are even (by Example 3.2.3 #1 and #4). Thus bmn + cn2 is a sum of even integers,
which is even (by Example 3.2.3 #1), and so am2 + bmn + cn2 is the sum of an odd integer
and an even integer, which is odd (by Example 3.2.3 #5). But am2 + bmn + cn2 = 0, which
is even. Therefore, am2 + bmn + cn2 is both even and odd, which contradicts Theorem 3.6.2.

Case 3 (m is even and n is odd): In this case en2 is a product of odd integers, and hence is
odd (by Example 3.2.3 #3), and both am2 and bmn are products that contain an even factor,
and hence are even (by Example 3.2.3 #1 and #4). Thus am2 + bmn is a sum of even integers,
which is even (by Example 3.2.3 #1), and so am

2 + bmn + cn2 is the sum of an even integer
and an odd integer, which is odd (by Example 3.2.3 #5). But am2 + bmn + cn2 = 0, which is
even. Therefore, am2 + bmn + cn 2 is both even and odd, which contradicts Theorem 3.6.2.

Case 4 (both m and n are odd): In this case all three products am2 , bmn, and cn2 consist only
of odd factors, and hence all are odd (by Example 3.2.3 #3). Thus am2 + bmn is the sum of
two odd integers, which is even (by Example 3.2.3 #2), and so am2 + bmn + cn2 is the sum of
an even and an odd integer, which is odd (by Example 3.2.3 #5). But am2 + bmn + cn2 

= 0,
which is even. Therefore, am2 + bmn + cn2 is both even and odd, which contradicts Theorem
3.6.2.

Hence in all four cases a contradiction is reached, and so the supposition is false and the given
statement is true.

18. Proof (by contraposition): Suppose a and b are [particular but arbitrarily chosen] real numbers
such that a > 25 and b > 25. Then a + b > 25 + 25 = 50. Hence if a + b < 50, then a < 25 or
b < 25.

20. a. Proof by contradiction: Suppose not. That is, suppose 3 a real number r such that r2 is
irrational and r is rational. Show that this supposition leads logically to a contradiction.

b. Proof by contraposition: Suppose that r is any real number such that r is rational. Show
that r2 is also rational.

22. a. Proof by contraposition: Suppose 2 is a nonzero real number and 1/x is rational. [We must
show that x is itself rational.] Because 1/x is rational, there are integers a and b with b 54 0
such that 1/x = a/b (*). Now since 1 . (1/x) = 1, 1/x cannot equal zero, and so a :7( 0. Thus
we may solve equation (*) for x to obtain x = b/a where b and a are integers and a 54 0.
Hence, by definition of rational, 1/x is rational [as was to be shown].

b. Proof by contradiction: Suppose not. That is, suppose 3 a nonzero irrational num-
ber x such that 1/x is rational. [We must show that this supposition leads logically to a
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contradiction.] By definition of rational, 1/x = a/b (*), where a and b are integers with
b $ 0. Since 1 * (1/x) = 1, 1/x cannot equal zero, and so a :A 0. Thus we may solve
equation (*) for x to obtain x = b/a where b and a are integers and a 4 0. Hence, by
definition of rational, l/x is rational, which contradicts the supposition that x is irrational.
[Hence the supposition is false and the statement is true.]

23. a. Proof by contraposition: Suppose n is a [particular but arbitrarily chosen] integer that is not
odd. [We must show that n2 is not odd.] [We must show that n2 is not even.] By the parity
property, because n is not odd, n is even. So n2 = n * n is also even (by exercise 17 of Section
3.1). Hence by Theorem 3.6.2, n2 is not odd [as was to be shown.]

b. Proof by contradiction: Suppose not. That is, suppose 3 an integer n such that n2 is odd
and n is not odd. [We must derive a contradiction. By the parity property, n is even, and
by definition of even, n = 2k for some integer k. Then n2 = (2k)2 = 2(2k2 ) by the laws of
algebra. Let m = 2k2 . Then m is an integer because it is a product of integers. Thus n2 = 2m
for some integer m, and so by definition of even, n2 is even. Hence, by Theorem 3.6.2, n2 is
not odd, which contradicts the supposition that n2 is odd. [Hence the supposition is false and
the statement is true.]

25. a. Proof (by contraposition): Suppose m and n are integers such that one of m and n is even
and the other is odd. By exercise 19 of Section 3.1, the sum of any even integer and any odd
integer is odd. Hence m + n is odd. [This is what was to be shown].

b. Proof by contradiction: Suppose not. That is, suppose 3 integers m and n such that m+ n is
even and either m is even and n is odd or m is odd and n is even. By exercise 19 in Section 3.1,
the sum of any even integer and any odd integer is odd. Thus both when m is even and n is
odd and when m is odd and n is even, the sum m + n is odd. This contradicts the supposition
that m + n is even. [Hence the supposition is false and the statement is true.]

26. a. Proof (by contraposition): By De Morgan's law, we must show that for all integers a, b, and
c, if a I (b + c) then a lb or a I c. But by the logical equivalence of p - q V r and p A - q -r,
it suffices to show that for all integers a, b, and c, if a I (b + c) and a I b, then a c. So
suppose a, b, and c are any integers with a (b + c) and a I b. [We must show that a c.] By
definition of divisibility, b + c = as and b = ar for some integers s and r. By substitution,
c = (b + c) -b = as -ar = a(s -r). But s - r is an integer (because it is a difference of
integers). Thus by definition of divisibility, a I c [as was to be shown].

b. Proof by contradiction: Suppose not. That is, suppose 3 integers a, b, and c such that
a I b and a/c and a I (b + c). [We must derive a contradiction.] By definition of divisibility, 3
integers r and s such that b = ar and b + c = as. By substitution, ar + c = as. Subtracting
ar from both sides gives c = as - ar = a(s -r). But s -r is an integer because r and s are
integers. Hence by definition of divisibility, a I c. This contradicts the supposition that arc.
[Hence the supposition is false and the statement is true.]

28. b. Proof by contraposition: Suppose n is an integer with n > 1 and n is not prime. [We must
show that n is divisible by some integer that is greater than 1 and less than or equal to x .]
Because n is not prime, n - rs where r and s are integers and 1 < r and 1 < s. By part (a), if
both r > v/ and s > VA , then rs > n, which would contradict the fact that rs = n. Hence
at least one of r or s is less than or equal to A./ii, and so n is divisible by an integer that is
greater than 1 and less than or equal to A/f [as was to be shown].

c. Proof by contraposition: Suppose n is an integer with n > 1 and n is not prime. [We must
show that n is divisible by some prime number that is less than or equal to v/ .] By part
(b), n is divisible by an integer, say r, such that 1 < r < V/T;. By Theorem 3.3.2, there is a
prime number p such that p divides r. Then the transitive property of divisibility (Theorem
3.3.1) and the facts that p I r and r I n imply that p I n. Moreover, because p I r and both p
and r are positive, we have that p < r by Example 3.3.3 Finally, because r < Vr, transitivity
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of order (Appendix A, T17) implies that p < v/T. Thus n is divisible by a prime number that
is less than or equal to V/n /as was to be shown].

29. c. 527 -- 22.96, and so the prime factors to be checked are 2, 3, 5, 7, 11, 13, 17, and 19.
Testing each in turn shows that 527 is not prime because 527=17.31.

d. 613 - 24.76, and so the prime factors to be checked are 2, 3, 5, 7, 11, 13, 17, 19, and 23.
Testing each in turn shows that none divides 613. Therefore, 613 is prime.

30. After crossing out all multiples of 2, 3, 5, and 7 (the prime numbers less than 100 ), the
remaining numbers are prime. They are circled in the following diagram.

14® 1 24 2-f 222 24~ 2A 242<0 2K

72 2' zX 0 g 3K K 0 0-2

SK 0 S- 96 97 9S 94 9< 9 e 90 W

31. c. 8623 - 92.9, and so prime factors to be checked are listed in the answer to exercise 30.
Testing each in turn shows that none divides 8623, and so 8623 is prime.

d. 7-17 88.98, and so prime factors to be checked are listed in the answer to exercise 30.
Testing each in turn shows that 7917 = 7 1131, and so 7917 is not prime.

32. Proof Let n be any integer greater than 11. Then each of the numbers n -4, n -6, and
n-8 is greater than 3. Observe that n = (n -4) + 4 = (n- 6) + 6 = (n -8) + 8 and that
all three of 4, 6, and 8 are composite. Thus, if at least one of n - 4, n -6, and n -8 is
composite, then n can be written as a sum of two composite numbers. In particular, in case
either n -6 or n -8 is composite, we are done. Suppose, therefore, that neither n -6 nor
n -8 is composite. [We will show that n -4 is composite.] Observe that n -8, n -7, and
n -6 constitute a sequence of three consecutive integers. By exercise 28 of Section 3.4, in any
such sequence one of the integers is divisible by 3. Now neither n - 6 nor n - 8 is divisible by
3 (because since n > 11, n -6 and n -8 are both greater than 3, and neither n -6 nor n- 8
is prime). Consequently, n -7 is divisible by 3, and so n -7 = 3k for some integer k. Thus
n -4 = (n- 7) + 3 = 3k + 3 = 3(k + 1). Therefore n -4 is composite because it is a product of
3 and k + 1. [We know that k + 1 > 1 because since n > 11, 3k = n-7 > 4, and so k > 4/3.]
Hence in case neither n - 6 nor n - 8 is composite, then n - 4 is composite, and so in this case
also n is a sum of two composite numbers, namely n -4 and 4.

Note: The solution to exercise 34, Section 3.4 provides a direct proof of the statement given
in this exercise.

Section 3.7

2. You cannot be sure that the result of the calculation is a rational number because the calculator
does not tell you anything about the decimal digits that are beyond its display range. If they
were all zero after some point or if a pattern repeats forever, then the number would be rational.
But the fact that there is a repeating pattern in the few digits that are shown is no guarantee
that the pattern persists.

http://pakimonda.blog.com 
paki.monda@gmail.com 
paki.monda@yahoo.com



Section 3.7 71

4. Proof Suppose not. Suppose 3V- 7 is rational. [We must derive a contradiction.] By def-
inition of rational, 3 integers a and b with 3V/ -7 = a/b and b zA 0. Solving for x/2 gives

-/2 = (a/b + 7)/3 = (a + 7b)/3b. But a + 7b and 3b are integers (because products and sums
of integers are integers) and 3b 7$ 0 (by the zero product property). Therefore by definition
of rational, vX2 is rational. This contradicts Theorem 3.7.1 which states that VX is irrational.
[Hence the supposition is false and the statement is true.]

Note: This result can also be deduced from exercise 11, Section 3.6.

6. False.

Proof 1: V2/6 = (1/6) av, which is a product of a nonzero rational number and an irrational
number. By exercise 10 of Section 3.6, such a product is irrational.

Proof 2: Suppose not. Suppose V2/6 is rational. [We must derive a contradiction.] By def-
inition of rational, 3 integers a and b with /;2/6 = a/b and b £# 0. Solving for vX2 gives
X = 6a/b. But 6a is an integer (because products of integers are integers) and b is a nonzero
integer. Therefore by definition of rational, VX- is rational. This contradicts Theorem 3.7.1
which states that V/2 is irrational.

8. Counterexample: X is irrational. Also / -- = 0 and 0 is rational because 0 = 0/1. Thus
3 irrational numbers whose difference is rational.

10. Counterexample: Let r = 0 and s = A. Then r is rational and s is irrational and r/s -
0/v = 0, which is rational because 0 = 0/1.

11. Counterexample: Both V/2 and 2- V2 are positive (because 2 > V/2) and both are irrational
(by Theorem 3.7.1 and exercise 8 of Section 3.6). Furthermore, vX + (2 - va') = 2, which is
rational because 2 = 2/1. Thus 3 positive irrational numbers whose sum is rational.

12. Counterexample: X/2 is irrational. Also VX. + = 2 and 2 is rational because 2 = 2/1. Thus
3 irrational numbers whose product is rational.

13. Counterexample: Let n = 64. Then n is a perfect square because 64 = 82, but m-64 = 4 which
is not irrational because 4 = 4/1.

14. The sentence is true when x = 2 because 2 is rational and V2 is irrational, but it is false when
x = 4 because both 4 and X- = 2 are rational. Thus the sentence is sometimes true and
sometimes false.

15. a. Proof (by contraposition): Let n be any integer such that n is not even. [We must show
that n3 is not even.] By Theorem 3.6.2 n is odd, and so n3 is also odd (by Example 3.2.3 (#3)
applied twice). Thus (again by Theorem 3.6.2), n3 is not even [as was to be shown].

b. Proof Suppose not. That is, suppose X is rational. By definition of rational, 'f/- = a/b
for some integers a and b with b 4 0. By cancelling any common factors if necessary, we may
assume that a and b have no common factors. Cubing both sides of the equation 2 = a/b
gives 2 = a3/b3 , and so 2b3 = a3 . Thus a3 is even. By part (a) of this questions, a is
even, and thus a = 2k for some integer k. By substitution a3 = (2k)3 = 8k3 = 2b3 , and so

-= 4k3 = 2(2k3). It follows that b3 is even, and hence (also by part (a)) b is even. Thus
both a and b are even which contradicts the assumption that a and b have no common factor.
Therefore, the supposition is false, and N is irrational.

17. Example: Let d = 4 and n = 2. Then d I n2 because 4 1 4 (since 4 is an integer), but d f n
because 4 t 2 (since 2 is not an integer).

18. Proof Suppose that a and d are integers with d > 0 and that qj, q2, r1 , and r2 are integers such
that a = dql +rl and a = dq2 +r2 , where 0 < r1 < d and 0 < r2 < d. [We must show that r1 =
r2 and q, = q2 . Then dql + ri = dq2 + r 2 , and so r2 - ri = dq1 - dq2 = d(q1 - q2 ). This implies
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that d I (r 2 - ri) because q, - q2 is an integer (being a difference of integers). But both r1 and
r2 lie between 0 and d. Thus the difference of r2 - r lies between -d and d. [For, by properties
T22 and T25 of Appendix A, if 0 < r1 < d and 0 < r2 < d, then multiplying the first inequality
by -1 gives 0 > -r 1 > -d or, equivalently, -d < -r1 < 0. And adding -d < -rl < 0 and
0 < r2 < d gives -d < r 2 - r < d.] Since r2 -r 1 is a multiple of d and yet lies between -d and
d, the only possibility is that r2- r = 0, or, equivalently, that r1 = r2. Substituting back into
the original expressions for a and equating the two gives dqj + r1  dq2 + r1 [because rI = r2 ]-
Subtracting r1 from both sides gives dqj = dq2 , and since d 7& 0, we have that q= q2. Hence,
r1 = r2 and q1 -- q2, as was to be shown.

19. Lemma: For all integers a, if 5 1 a2 then 5 1 a.

Proof by contradiction: Suppose there exists an integer a such that 5 | a2 and 5 { a. Because
5 1 a2, a2 = 5q for some integer q, and by the quotient-remainder theorem with d 5, we have
that a = 5k or a = 5k + 1 or a = 5k + 2 or a = 5k + 3 or a = 5k + 4. But a 4 5k for any
integer k because 5 t a, and thus there are only four cases to consider.

Case 1 (a = 5k + 1 for some integer k): In this case a2= (5k + 1)2 = 25k2 + 10k + 1
5(5k2 + 2k) + 1. Let s = 5k2 + 2k. Then s is an integer because it is a sum of products of
integers. It follows that a2 =5q = 5s + 1 for some integers q and s. But this is contradicts
the result of exercise 18.

Case 2 (a = 5k + 2 for some integer k): In this case a2 = (5k + 2)2 = 25k2 + 20k + 4 -

5(5k2 + 4k) + 4. Let s = 5k2 + 4k. Then s is an integer because it is a sum of products of
integers. It follows that a2 = 5q = 5s + 4 for some integers q and s. But this is contradicts
the result of exercise 18.

Case 3 (a = 5k + 3 for some integer k): In this case a2 = (5k + 3)2 = 25k2 + 30k + 9
25k 2 + 30k + 5 + 4 = 5(5k2 +6k+1)+4. Lets =5k2 ±+ 6k + 1. Then s is an integer because
it is a sum of products of integers. It follows that a2 = 5q = 5s + 4 for some integers q and s.
But this is contradicts the result of exercise 18.

Case 4 (a = 5k + 4 for some integer k): In this case a2  (5k + 4)2 = 25k2 + 40k + 16-
25k2 + 40k + 15 + 1 = 5(5k2 + 8k + 3) + 1. Let s = 5k2 + 8k + 3. Then s is an integer because
it is a sum of products of integers. It follows that a2 = 5q = 5s + 1 for some integers q and s.
But this is contradicts the result of exercise 18.

Hence in all four possible cases, a contradiction is reached, which shows that the supposition
is false and the given statement is true.

Proof that 5 is irrational: Suppose not. Suppose v"5- is rational. [We must derive a contra-
diction.] By definition of rational, 3 integers m and n with v/5 = m/n and n 74 0. Without
loss of generality, we may assume that m and n have no common divisors. [by dividing m
and n by any common divisors if necessary.] Squaring both sides of the equation above gives
5 = m 2 /n2 , or, equivalently, m2 = 5n2 Since n2 is an integer, 5 m2 by definition of divisi-
bility. It follows that 5 1 m (by the lemma), and so by definition of divisibility there exists an
integer k such that m = 5k. Substituting into mn

2 
= 5n2 gives (5k)2 = 5n2 , and so 25k2 = 5n2 ,

which implies that 5k2 = n2. Since k2 is an integer, 5 1 n2 by definition of divisibility. It follows
that 5 n (by the lemma). Thus 5 is a common divisor of m and n. But this contradicts the
assumption that m and n have no common divisors. [Hence the supposition is false and the
statement is true.]

20. Proof Suppose not. That is, suppose 3 an integer a such that 9 1 (a2 - 3). [We must
derive a contradiction. By definition of divisibility, a2 - 3 = 9b for some integer b. Then
a2 = 9b + 3 = 3(3b + 1), and so a2 is divisible by 3. Hence a is divisible by 3 (by exercise 16b).
By definition of divisibility, a = 3c for some integer c. Substituting into the equation a2 3 = 9b
gives (3C)2 - 3 = 9c2 - 3 = 9b, and so 9c2 = 9b + 3. Dividing by 3 gives 3C2 = 3b + 1. Since c2

is an integer, this implies that 3b + 1 is divisible by 3, which contradicts the result of exercise
16a (and also of exercisel8). [Hence the supposition is false and the statement is true.]
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21. b. Proof: Suppose not. That is, suppose VX_ is rational. [We will show that this supposition
leads to a contradiction.] By definition of rational, we may write v+/ = a/b for some integers
a and b with b 7# 0. Then 2 = a2/b 2 , and so a2 = 2b2. Consider the prime factorizations for a2

and for 2b 2. By the unique factorization theorem, these factorizations are unique except for
the order in which the factors are written down. Now because every prime factor of a occurs
twice in the prime factorization of a2 , the prime factorization of a2 contains an even number
of 2's. If 2 is a factor of a, then this even number is positive, and if 2 is not a factor of a,
then this even number is 0. On the other hand, because every prime factor of b occurs twice
in the prime factorization of b2 , the prime factorization of 2b2 contains an odd number of 2's.
Therefore, the equation a2 = 2b2 cannot be true. So the supposition is false, and hence x/2 is
irrational.

22. Proof Suppose not. Suppose 3 an integer n such that n is not a perfect square and +/n
is rational. [We must derive a contradiction. By definition of rational, there exist integers a
and b such that v/H = a/b (*) and b 54 0. Without loss of generality, we may assume that
a and b have no common divisors [by dividing a and b by any common divisors if necessary].
Squaring both sides of equation (*) gives n = a2 /b2 , and multiplying by b2 gives b2n = a2.
By the unique factorization theorem, a, b, and n have representations as products of primes
that are unique except for the order in which the prime factors are written down. By the
laws of exponents, a2 and b2 are products of the same prime numbers as a and b respectively,
each written twice. Consequently, each prime factor in a2 and in b2 occurs an even number
of times. Since n is not a perfect square, some prime factor in n occurs an odd number
of times (again by the laws of exponents). It follows that this same prime factor occurs
an odd number of times in the product nb2 (because all prime factors in b2 occur an even
number of times). Since nb2 = a2 , a2 contains a prime factor that occurs an odd number of
times. This contradicts the fact that every prime factor of a2 occurs an even number of times.
/Hence the supposition is false and the statement is true.]

23. Proof 1: Suppose not. Suppose v/2 + X¶ is rational. [We must derive a contradiction.] By

definition of rational, v'/ + V/ = for some integers a and b with b # 0. Squaring both sides
b

a2  a2  a2 -5b 2 2 2
gives 2 + 2 -v V A/ + 3 b2. Then 2v= b2- 5, and so = 2b2 . Nowa 2 -5b 2 and

2b2 are both integers (because products and differences of integers are integers) and 2b2 
2 0

(by the zero product property). Therefore, v6 is rational by definition of rational. But v6
is irrational by exercise 22 (since 6 is not a perfect square), and so a contradiction has been
reached. [Hence the supposition is false and the statement is true.]

Proof 2: Suppose not. Suppose X/2 + X3 is rational. [We must derive a contradiction.] By

definition of rational, VX + X3= b for some integers a and b with b 7& 0. Also a 54 0 because
b

a = b(V/2 + v/3) and both b and v/' + ± are nonzero. Subtracting v/' from both sides

gives vX3 = b - v, and squaring both sides of this equation yields 3 = - 2 v/ + 2.
b T2  b

Subtracting 2 from both sides and multiplying both sides by b2 gives b2 = a2 - 2abv2, and
V/2=a2 

- b
solving for v/2 shows that 2ab . But both the numerator and the denominator of

this fraction are integers because products and differences of integers are integers, and the
denominator is nonzero by the zero product property. Thus VX2 is rational by definition of
rational. But V/2 is irrational by Theorem 3.7.1, and so a contradiction has been reached.
[Hence the supposition is false and the statement is true.]

24. Proof Suppose not. That is, suppose that log5(2) is rational. [We will show that this sup-
position leads to a contradiction.] By definition of rational, log5 (2) = a/b for some integers
a and b with b 7# 0. Since logarithms are always positive, we may assume that a and b are
both positive. By definition of logarithm, 5 a/b = 2. Raising both sides to the bth power gives
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5a = 2b. Let N = 5a = 2b* Since b > 0 N > 20 = 1. Thus we may consider the prime
factorization of N. Because N = 5a, the prime factors of N are all 5. On the other hand,
because N = 2 b, the prime factors of N are all 2. This contradicts the unique factorization
theorem which states that the prime factors of any integer greater than 1 are unique except for
the order in which they are written. Hence the supposition is false, and so log5 (2) is irrational.

25. The given equation shows that when N is divided by any of the numbers 2, 3, 5, or 7, the
remainder is 1. N = 211, which is prime.

26. We can deduce that p = 3.
Proof Let a be any integer, and let p be any prime number such that p I a and p I (a + 3). By
definition of divisibility, a = pr and a + 3 = ps for some integers r and s. Then 3 = (a+ 3) -a =
PS -pr = p(s -r). But s -r is an integer (because it is a difference of integers), and so by
definition of divisibility p | 3. But since 3 is a prime number, its only positive divisors are 1
and itself. So p = 1 or p = 3. However, since p is a prime number, p # 1. Hence p = 3.

27. a. The following are all prime numbers: N1 = 2 + 1 = 3, N2 = 2 3 + 1 = 7, N3 = 2.3.5 +-I = 31,
N4 = 2 3-5*7 + 1 = 211, N5 = 2 3-5-7 11 + 1 = 2311. However, N6 = 2 3 5 7 11 13 +1
30031 = 59 509. Thus the smallest non-prime integer of the given form is 30,031.

b. Each of N,, N2 , N3 , N4 , and N5 is prime, and so each is its own smallest prime divisor.
Thus qi = N1 ,q2 = N2 , q3 = N3 , q4 = N4 , and q5 = N 5. However, N6 is not prime and
N6 = 30031 = 59.509. Since 59 and 509 are primes, the smallest prime divisor of N6 is q6 = 59.

28. Proof. Suppose there are only finitely many prime numbers. Then one is the largest. Call it
p. Let M = p! + 1. We will show that there is a prime number q such that q > p. To see
this, note that because all of the integers from 2 through p divide p! and because p! = M -1,
then none of the integers from 2 through p divides M (by the same reasoning as in the proof
of Proposition 3.7.3). But, by Theorem 3.3.2, some prime number q divides M. Now, since
p is the largest prime number, every prime number is a factor of p!. So, since q is a prime
number, q is a factor of p! Hence q does not divide M. Thus q divides M and q does not divide
M, which is a contradiction. Thus the supposition is false, and we conclude that there are
infinitely many prime numbers.

29. Proof Suppose PIP2,... ,pn are distinct prime numbers with PI = 2 and n > 1. tWe must
show that P1P2 P. + 1= 4k + 3 for some integer k.] Let N = PlP2 ... Pn + 1. By the
quotient-remainder theorem, N can be written in one of the forms 4k, 4k + 1, 4k + 2, or
4k + 3 for some integer k. Now N is odd (because Pi = 2); hence N equals either 4k + 1
or 4k + 3 for some integer k. Suppose N = 4k + 1 for some integer k. [We will show that
this supposition leads to a contradiction.] By substitution, 4k + 1 = PlP2 ... Pn + 1, and so
4k = PlP2 pn. Hence 4 | PIP2 ... pe. But pi = 2 and all of P2,P3. Pn are odd (being
prime numbers that are greater than 2). Consequently, there is only one factor of 2 in the
prime factorization of PlP2 ... p,, and so 4 %P1P2 .. p. This is a contradiction. Hence the
supposition that N = 4k + 1 for some integer k is false, and so [by disjunctive syllogism!]
N = 4k + 3 for some integer k [as was to be shown].

30. Proof Suppose n is any integer that is greater than 2. Then n! -1 is an integer that is
greater than 2, and so by Theorem 3.3.2 there is a prime number p that divides n! -1. Thus
p < n! -1 < (n!). Now either p > n or p < n. Suppose p < n. [We will show that this
supposition leads to a contradiction.] Because p < n, then p I (n!). So p I (n!) and also
p (n! -1), and thus (by exercise 16 of Section 3.3) p divides (n! -(n! -1)), which equals 1.
But the only divisors of 1 are 1 and -1, and so p = 1 or p = -1. However since p is prime,
p > 1. Thus we have reached a contradiction. Hence the supposition that p < n is false, and
so p > n. Therefore, p is a prime number such that n < p < (n!).

31. a. Proof (by contraposition): Suppose there is an integer n > 2 that is not a power of 2 for
which Xr, + fn = zn has a positive integer solution. Call the solution x = x0, y = yo, and
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z = zo. If n is prime, then for some prime number p (namely p = n), xP + yP = -P has a
positive integer solution and we are done. If n is not prime, then n is divisible by a prime (by
Theorem 3.3.2), and so, since n is not a power of 2, there exist a prime number p > 2 and an
integer k such that n = kp. Also since x = xO, y = yo, and z = zo is a positive integer solution
ton+ yn= zn then xO +yn=Zj. But n = kp, and so xO +ykP = ,or, equivalently (by
the laws of exponents), (O)P + (yO )P= (zO)P. Now 4, y, and Z4 are all positive integers
(because they are integer powers of positive integers). Consequently, the equation xP + yP = zP
has a positive integer solution (namely, x4k, yk, and k).

b. We are to assume Fermat's result that for all integers x, y, and z, X + y 4 7# z4 .

Proof: Suppose the given statement is false. That is, suppose that there exist integers n, x, y,
and z such that n is a power of 2, n > 4, and xz +±y = z,. [We will show that this supposition
leads to a contradiction.] Because n is a power of 2, n = 2k for some integer k, and because
n > 4, k > 2. Hence, also, k-2 > 0. By substitution, 2 + y 2 k = z2k. So

2k-2 22 2 k 2 22 2 k-2-22

£ +Y -z

and thus

(. 2k 2)22 + (Y2 k )2 = (Z2 )2 or, equivalently, (x ) ± (y ) ( )

Let xO = x2k Yo = y2k and zo = z2k 2 Because k-2 > 0, 2 k-2 is a positive integer, and

so each of xO, yo, and zo is a product of integers and thus is an integer. It follows that xO, yo,
and zo are integers such that (XO)4 + (yo)4 = (Zo)4 , which contradicts the Fermat result we are
to assume. Thus the supposition is false, and the given statement is true.

33. Existence Proof When n = 2, then n2 + 2n -3 = 22 + 2 2 -3 = 5, which is prime. Thus
there is a prime number of the form n2 + 2n -3, where n is a positive integer.

Uniqueness Proof (by contradiction): Suppose not. By the existence proof above, we know
that when n = 2, then n2 + 2n - 3 is prime. Suppose there is another positive integer m, not
equal to 2, such that m2 + 2m - 3 is prime. [We must derive a contradiction.] By factoring,
we see that m2 + 2m -3 = (m + 3)(m - 1). Now m + 1 because otherwise m2 + 2m -3 = 0,
which is not prime. Also m 7# 2 by supposition. Thus m > 2. Consequently, m + 3 > 5 and
m -1 > 1, and so m2 + 2m -3 can be written as a product of two positive integers neither of
which is 1 (namely m + 3 and m- 1). This contradicts the supposition that m2 + 2m -3 is
prime. Hence the supposition is false: there is no integer m other than 2 such that m2 + 2m -3
is prime.

Uniqueness Proof (direct): Suppose m is any positive integer such that m2 + 2m - 3 is prime.
[We must show that m = 2.] By factoring, m2 +2m-3 =(m+3)(m-1). Since m2 + 2m-3 is
prime, either m + 3 = 1 or m -1 = 1. Now m + 3 5# 1 because m is positive (and if m + 3 = 1
then m = -2). Thus m -1 = 1, which implies that m = 2 [as was to be shown].

35. Proof (by contradiction): Suppose not. Suppose there exist two distinct real number b1 and
b2 such that for all real numbers r, (1) b1r = r and (2) b2 r = r. Then b1b2 = b2 (by (1)
with r = b1) and b2b1 = b1 (by (2) with r = b2 ). Consequently, b2 = b1b2 = b2b1 = b1 by
substitution and the commutative law of multiplication. But this implies that b1 = b2, which
contradicts the supposition that b1 and b2 are distinct. [Thus the supposition is false and
there exists at most one real number b such that br = r for all real numbers r.]

Proof (direct): Suppose b1 and b2 are real numbers such that (1) bir = r and (2) b2 r = r for
all real numbers r. By (1) b1b2 = b2, and by the commutative law for multiplication and (2),
b1b2 = b2b1 = b1. Since both b1 and b2 are equal to b1 b2, we conclude that b1 = b2.
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Section 3.8

2. z = 2

3. b. z = 6

5. e = 41/48

7.
a
d

59
13

Lq 0 1i 2 3 1 4
r 59 46 33 20 7

I

8. b.

11. gcd(7,21) 7

12. Solution 1: gcd(48,54) = gcd(6 . 8,6 . 9) = 6

Solution 2: gcd(48,54) gcd(24 3,2. 33)

So 10933 = 832 13 + 117, and hence gcd(10933,832) gcd(832,117)

So 832 = 117. 7 + 13, and hence gcd(832,117) = gcd(117,13)

So 117 = 13 9 + 0, and hence ged(117,13) = ged(13, 0)

But gcd(13,0) = 13. So gcd(10933, 832) = 13.

15.

2 3 = 6

13
832 10933

10816
117

7
117 832

819
13

9
13 117-

117
0

1
I

I
I
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16.

14
17 238

238
0

1
243 ig4I13

2431
1700

1
1700 24-31

1700
731

2
7317

1462
238

3
238 731

714
17

So 238 = 17 14 + 0, and hence gcd(238,17)

But gcd(17,0) = 17. So gcd(4131, 2431) = 17.

A 5859
B 1232
r 1232 931 301 28 21 7
a . 5859 1232 931 301 28 21 7
b i 1232 931 301 28 21 70
gcd _= 7

gcd(17, 0)

19. Proof: Let a and b be any positive integers.

Part 1 (proof that if gcd(a, b) = a then a I b): Suppose that gcd(a, b) = a. By definition of
greatest common divisor, ged(a, b) I b, and so by substitution, a I b.

Part 2 (proof that if a I b then ged(a, b) = a): Suppose that a I b. Then since it is also the case
that a I a, a is a common divisor of a and b. Thus by definition of greatest common divisor,
a < gcd(a, b). On the other hand, since no integer greater than a divides a, the greatest
common divisor of a and b is less than or equal to a. In symbols, gcd(a, b) < a. Therefore,
since a < gcd(a, b) and gcd(a, b) < a, then gcd(a, b) = a.

20. Lemma: If a and b are integers, not both zero, and d ged(a, b), then a/d and b/d are integers
with no common divisor that is greater than 1.

Proof: Let a and b be integers, not both zero, and let d = gcd(a, b). By definition of gcd, d I a
and d I b. Hence a/d and bid are integers. Suppose a/d and bid have a common divisor c
that is greater than 1. [We will derive a contradiction.] Then a/d = cr and bid = cs for some
integers r and s. It follows that a = (cd)r and b = (cd)s, and so cd I a and cd I b. But d is
positive because d > 1, and, since c > 1, we have that cd > d [by T19, Appendix A]. Thus cd
is a common divisor of a and b that is greater than the greatest common divisor of a and b.
This is a contradiction. Hence the supposition that a/d and b/d have a common divisor that
is greater than 1 is false, and so a/d and bid have no common divisor that is greater than 1.

So 4131 = 2431 .1 + 1700, and hence gcd(4131,2431) = gcd(2431,1700)

So 2431 = 1700. 1 + 731, and hence gcd(2431,1700) = gcd(1700, 731)

So 1700 = 731 2 + 238, and hence gcd(1700, 731) = gcd(731,238)

So 731 = 238 3 + 17, and hence gcd(731, 238) = gcd(238, 17)

18.
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Algorithm: Reducing a Fraction
(Input: A,B; Output: CD)

/Given two integers A and B with B :A 0, this algorithm finds integers C and D so that
A/B = C/D and C and D have no common divisor that is greater than 1. The algorithm
first adjusts for the fact that A/B may be negative by setting variables a = JAI and b = BI.
Then it calls the Euclidean algorithm to compute gcd(a, b) and sets c = a div ged(a, b) and
d = b div gcd(a, b). By the lemma above, c and d are integers that are divisible by gcd(a, b).
Consequently,

a
c a div ged(a, b) gcd(a, b) a
d b div gcd(a,b) b b

ged(a, b)

It also follows from the lemma that c and d have no common factor that is greater than 1.
Thus c/d is the reduced form of a/b. Finally the sign of the reduced fraction is adjusted: C is
set equal to -c if A/B is less than 0 and to c if A/B is greater than or equal to 0, and D is
set equal to d.]

Input: A, B [integers with B 7# 01
Algorithm Body:

if A/B < 0 then sign := -1 else sign := 1

if A<Othena:= -Aelsea:= A

if B < 0 then b :=-B else b := B

gcd := gcd(a, b)

[The value of gcd can be computed by calling the Euclidean algorithm.]

c := a div gcd, d := b div gcd

[The values of c and d can be computed by calling the division algorithm.]

[When execution reaches this point, a/b = c/d and c and d have no common divisors that

are greater than 1.]

C := signrc, D := d

[When execution reaches this point, A/B = C/D and C and D have no common divisors

that are greater than 1.]

Output: C, D [integers with D 7# 01

21. Proof: Suppose a and b are any integers with b 7# 0, and suppose q and r are any integers such
that a = bq + r. [We must show that gcd(b, r) < gcd(a, b).]

Step 1 (proof that any common divisor of b and r is also a common divisor of a and b): Let c
be a common divisor of b and r. Then c I b and c I r, and so by definition of divisibility, b = nc
and r = me for some integers n and m. Now substitute into the equation a = bq + r to obtain
a = (nc)q + me = c(nq + m). But nq + m is an integer, and so by definition of divisibility c I a.
Now we already know that c I b; hence c is a common divisor of a and b.

Step 2 (proof that gcd(b, r) < gcd(a, b)): By step 1, every common divisor of b and r is a
common divisor of a and b. It follows that the greatest common divisor of b and r is a common
divisor of a and b. But then gcd(b, r) (being one of the common divisors of a and b) is less
than or equal to the greatest common divisor of a and b: ged(b, r) < gcd(a, b).

22. a. Suppose a and d are positive integers and q and r are integers such that a = dq + r and
0 < r < d. Then -a = -dq-r = -dq -d+d -r = d(-q-1)+(d-r) = d(-(q+1))+(d-r).
Also since 0 < r < d, then 0 > -r > -d (by multiplying all parts of the inequality by
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-1). Adding d to all parts of the inequality gives d + 0 > d + (-r) > d + (-d), and hence
d> d - r >0.

b. If the input a is negative, then use the current algorithm with input -a to obtain a quotient q
and a remainder r so that -a = dq+r and 0 < r < d. If r = 0, then a = -(-a) = -dq = d(-q),
and thus the quotient of the division of a by d is -q and the remainder is 0. If r > 0, then
by part (a), a =-(-a) = d(-(q + 1)) + (d -r) and 0 < d - r < d, and thus the quotient of
the division of a by d is -(q + 1) and the remainder is d - r. Hence Algorithm 3.8.1 can be
modified as follows.

Algorithm Body:

if a < 0 then sign := -1, a := -a else sign :=1

[Same steps as the body of Algorithm 3.8.1.]

if sign = -1 then if r = 0

then q := -q

else q := -(q + 1), r := d-r

23. a. Note that this exercise statement is a converse to Theorem 3.5.3 (p. 169), but it is more
general because a (n in Theorem 3.5.3) may be negative.

b. r := B, a :=A, b:= B

while (b # 0)

r := a - [a/bj . b

a :- b

b := r

end while

gcd := a

24. a. Proof: Suppose a and b are integers and a > b > 0. / We first show that every common
divisor of a and b is a common divisor of b and a -b, and conversely.]

Part 1 (proof that every common divisor of a and b is a common divisor of b and a -b):

Suppose d I a and d I b. Then d I (a - b) by exercise 16 of Section 3.3. Hence d is a common
divisor of a and a - b.

Part 2 (proof that every common divisor of b and a - b is a common divisor of a and b):

Suppose d | b and d I (a -b). Then by exercise 15 of Section 3.3, a I [b + (a -b)]. But
b + (a -b) =a, and so d I a. Hence d is a common divisor of a and b.

Part 3 (end of proof): Because every common divisor of a and b is a common divisor of b and
a - b, the greatest common divisor of a and b is a common divisor of b and a - b and so is less
than or equal to the greatest common divisor of a and a - b. Thus gcd(a, b) < gcd(b, a - b).
By similar reasoning, gcd(b, a - b) < gcd(a, b). Therefore, gcd(a, b) = ged(b, a - b).

A 768 |lll
B 348
a 768 420 72 - 12 0
b 348 276 204 132 60 48 36 24 12
gcd = _ = _ = == = = = 12

25. b. lcm(22 3 5, 23 . 32) = 23 32 5 = 360

c. lcm(2800,6125) = lcm(24 . 52 7, 53 72) = 2'. 53 72 = 98,000

http://pakimonda.blog.com 
paki.monda@gmail.com 
paki.monda@yahoo.com



80 Solutions for Exercises: Elementary Number Theory and Methods of Proof

26. The proof given in Appendix B shows that for all positive integers a and b, if gcd(a, b)
lcm(a, b), then a = b. Thus, to complete the proof of the exercise statement, it remains
only to show that for all positive integers a and b, if a = b, then ged(a, b) = lcm(a, b). But
given any positive integers a and b such that a = b, we have ged(a, b) = gcd(a, a) = a and
lcm(a, b) = lcrn(a, a) = a, and hence gcd(a, b) = lcm(a, b).

27. Proof: Let a and b be any positive integers.

Part 1 (proof that if lcm(a, b) = b then a I b): Suppose that lcm(a, b) b. By definition of
least common multiple, a I lcm(a, b), and so by substitution, a I b.

Part 2 (proof that if a i b then lcm(a, b) = b): Suppose that a I b. Then since it is also the
case that b I b, b is a common multiple of a and b. Moreover, because b divides any common
multiple of both a and b, lcm(a, b) = b.

28. Proof: Let a and b be any integers. By definition of greatest common divisor, gcd(a, b) I a,
and by definition of least common multiple, a I lem(a, b). Hence by transitivity of divisibility,
gcd(a, b) I lcm(a, b).

29. Proof: Let a and b be any positive integers.

Part 1 (proof that gcd(a, b) . lcm(a, b) < ab): By definition of greatest common divisor,
gcd(a, b) I a. Hence by definition of divisibility, a = gcd(a, b) -k for some integer k. Multiplying

both sides by b gives ab = gcd(a, b) . k . b, and so b bk. It follows by definition of
g cd(a, b)

F ab 1
divisibility that b Ld( 1)J An almost exactly identical sequence of steps shows that

[ ab 1ab
a [gcd(a, b) Thus by definition of least common multiple, lcm(a, b) I gcd(a b) It fol-

ab
lows from Example 3.3.3 that lcm(a, b) < , or, equivalently (because gcd(a, b) > 0),

gcd (a, b)'
gcd(a, b) . lcm(a, b) < ab.

Part 2 (proof that ab < gcd(a, b) lcm(a, b)): By definition of least common multiple, a
lcm(a, b). Hence by definition of divisibility, lcm(a, b) = ak for some integer k. Multiplying

both sides by b gives b . lcm(a, b) = ak -b, and so b = [I k. It follows by definition
[ lcm (a, b) I

of divisibility that [Im 6b)1 b. An almost exactly identical sequence of steps shows

that [c(a b)J a. Thus by definition of greatest common divisor (because lcm(a, b) > 0),

gcd(a, b) > l and so gcd(a, b) lcm(a, b) > ab, or, equivalently, ab < ged(a, b) .lcm(a, b).gcd a, ) >lcm(a, b) ads e~,b

By part 1, gcd(a,b) lcm(a,b) < ab, and by part 2, ab < gcd(a,b) . lcm(a,b). Therefore,
gcd(a, b) lcm(a, b) = ab.
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Chapter 4: Sequences and Mathematical Induction

The first section of this chapter introduces the notation for sequences, summations, products, and
factorial. Students have two main difficulties with this material. One is learning to recognize patterns
so as to be able, for instance, to transform expanded versions of sums into summation notation. The
other is learning how to handle subscripts, particularly to change variables for summations and to
distinguish index variables from variables that are constant with respect to a summation.

The second, third, and fourth sections of this chapter treat mathematical induction. The ordi-
nary form is discussed in Sections 4.2 and 4.3 and the strong form in Section 4.4. Because of the
importance of mathematical induction in discrete mathematics, a wide variety of examples is given
so that students will become comfortable with using the technique in many different situations. Sec-
tion 8.4 introduces general recursive definitions and structural induction and can be covered along
with chapter 4 if a few additional terms are defined.

Students may find it helpful for you to relate the logic of ordinary mathematical induction to
the logic discussed in Chapters 1 and 2. The main point is that the inductive step establishes the
truth of a sequence of if-then statements. Together with the basis step, this sequence gives rise to a
chain of inferences that lead to the desired conclusion. More formally:

Suppose
1. P(1) is true; and
2. for all integers k > 1, if P(k) is true then P(k + 1) is true.

The truth of statement (2) implies, according to the law of universal instantiation, that no matter
what particular integer k > 1 is substituted in place of k, the statement "If P(k) then P(k + 1)" is
true. The following argument, therefore, has true premises, and so by modus ponens it has a true
conclusion:

If P(1) then P(2). by 2 and universal instantiation
P(1) by 1
P(2) by modus ponens

Similar reasoning gives the following chain of arguments, each of which has a true conclusion by
modus ponens:

If P(2) then P(3).
P(2)
P(3)
If P(3) then P(4).
P(3)
P(4)
If P(4) then P(5).
P(4)
P(5)
And so forth.

Thus no matter how large a positive integer n is specified, the truth of P(n) can be deduced as the
final conclusion of a (possibly very long) chain of arguments continuing those shown above.

Note that in Section 4.2 the formula for the sum of the geometric series is written as

because in discrete mathematics r is commonly greater than one, making this version of the formula
the more convenient.

The concluding section of the chapter applies the technique of mathematical induction to proving
algorithm correctness. It is intended to be an introduction to the subject and contains references
directing students to sources that treat it at length.
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82 Chapter 4: Sequences and Mathematical Induction

Comments on Exercises

Exercise Set 4.1: #8 and #9: These exercises are designed for students already familiar with
logarithms. In classes where such familiarity cannot be assumed, the exercises can simply be skipped
or students can be referred to the definitions given in Section 7.1.
Exercise Set 4.1: #49: This exercise is particularly good preparation for the combinatorial
manipulations in Chapter 6.
Exercise Set 4.2:. #19-28: These exercises develop skills needed in Section 8.2. #29: The
mistake made in this proof fragment is surprisingly common.
Exercise Set 4.3 #24-27 and Exercise Set 4.4 #1-9: The skill developed in doing these
exercises is used again in Sections 8.2 and 8.3.

Section 4.1

5 -1 4 5- 2
2. b1 = 5 +1 =6 b2 5+2

4. d0 =1+() =I+1= 2,

( I ) 3 = I 9

2~kj 8 8

6. fi L= 4 = 0*4 = 0,

f4[4 4j= 1.4=4

3 5- 32
7 b3 5+38

(2

b4 = - = -
5 +49

+2 2'

f2= 2 4 = 0 4 = 0,

7. ao = 2 0 + 1 = 1, a = 2 1 + 1 = 3, a2 = 2 2 + 1
bo = (O _1)3 + 0 + 2 = 1, bi = (1-_1)3 + I + 2 = 3,
b3 = (3 -1)3 3+ 2=13
So ao = bo, a, = bi, and a2 = b2, but a3 54 b3.

=5, a3 = 2-3+1=7
b2 = (2 -1)3+2+2=

9.
1 l[log2 1 = 1 0
2 [1og2 2] = 2 1
3 log2 3j = 3 1
4 1log 2 4j = 4 2
5 1og2 5J = 5 2
6 [log2 6j = 6 2
7 [log2 7j = 7 2
8 [1og2 8j = 8 3
9 (log 2 9 = 9 3
10 l[log2 10 = 10 3
11 0log2 "lj = 1l 3
12 [log2 12j = 12 3
13 1log 2 13J = 13 3
14 [log2 14j = 14 3
15 [log2 15j = 15 3

an integral power of 2, hn is n times the exponent of that power. For instance,
h8 = 8 3. If m and n are integers and 2" < 2 n < 2m±+, then hn = n -n/.

Exercises 10-16 have more than one correct answer.

1 1
13. a,,= - for all integers n> 1

1 + 4
4

5
4

( 2 )2
d2  2

f3 - L3]- 0 . 4 = 4,

5,

hi

h2

h3
h4=
h5=
h6=

h 7 -

h8=

h9hio =
hi, =

h12 =

h13 =

h14 =

h15 =

When n is
8 = 23 and
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15. an = (-1) 1-) for all integers n > 1

16. a, = 3 2?n for all integers n > 0

17. an = [n/2j

18. e. Hk-.2 ak =a 2  -2

3 1 1 1 1 1 1 1 1 15

2m 20 + 21 + -22 + 2 4 8 - 8
m=0

22. rl4= (_I)j =(_1)0° (-I)l * (-1)2 (-1)3 .(_1)4 = I (_I) I (_I) 1=

0

24. E (j + 1) 2i = (0 + 1) 20 =

j=o

25. k=2 (1-k) 12 2

26. T'= 2(k +3)=((_1)2+3)±(02+3)±(12+3)=4±3+4=

2 i(i + 2) 2 4 3 5 4 6 5 7 5 7 35

i2 2 (i 1(i1) 1.3 2. 4 3 5 4 6 1 3 3

30. 1 2+2. 3+3 4+ -+n (n+1)

31. !+1! + - + +

Exercises 29-41 have more than one correct answer.

5

33. Z(_)k+l(k3  1)

k=l

4

34. J(i 2 _ 1)

i=2

4

37. rI(l - ti)
j=

1

nk
39. (k +)!

n-1

41. E n( k
k=O

43 6! 6! 1

8! 8 7 61 56

4! 4!
44. 0l - 24

0! I1

n! n(n - )(n -2)!
n47 ! (n- 2)! = n(n - 1) (assuming n > 2)(n -2)! (n- 2)!
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84 Chapter 4: Sequences and Mathematical Induction

n(n-1) ... (n-k + 2)(n - -k+1)(n-k) 3 2 1n!
50. (n- k +l)! (n-k + l)(n-k)(n

= n(n- 1)... (n- k+ 2)

-k- 1)... 3 .2 .1

(assuming n - k + 1 > 0)

51. b. Proof: Let n and k be integers with n > 2 and 2 < k < n. Now n! is the product of all the
integers from 1 to n, and so since n > 2 and 2 < k < n, k is a factor of n!. That is n! = kr for
some integer r. By substitution n! + k = kr + k = k(r + 1). But r + 1 is an integer because r
is. By definition of divisibility, therefore, n! + k is divisible by k.

c. Yes. If m is any integer that is greater than or equal to 2, then none of the terms of the
following sequence of integers is prime: m! + 2, m! + 3, m! + 4, ... , m! + m. The reason is
that each has the form m! + k for an integer k with 2 < k < m, and for each such k, by part
(b) m! + k is divisible by k.

53. When k = 1, i = 1 + 1 = 2. When k = n, i = n + 1.
k2 (i -1)2 (i 1)

2 T k2
= = .Therefore, II- ) (

k+4 (i-1)+4 - i+3 * re 'k+4'

Since i = k + 1, then k = i
n+1 (i - ) 2

zi 2

56. Wheni =1,j=1-1 =0. Wheni =n-1,j =n-2. Sincej=

i (- + I _ j - 1 n

(n i)j n )2 -( j -) Therefore,EZ -j) 2)

1. So

i- 1, then i = j + 1. So

= E()= (n - j - 1)2

57. When i = n, j = n -1. When i = 2n, j = 2n -1. Since j = i -1, then i = j + 1.
+12n 2n-1

n-i + 1 n-(j + 1) + 1 n-j Therefore, (n-i + 1 ) = J ( n-j
n + i n + j + I n + j + I n n + i j=n-n n + j + 1

59. By Theorem 4.1.1,
n n

2 (3k2 + 4) + 5. (2k
k=l k=l

n n

1) = Y 2(3k2 + 4) + E 5(2k2
k=l k=l

n n

Z(6k2 + 8) + Z(10k2 
- 5)

k=l k=l

n

Z(6k 2 + 8 + 10k2

k=l

5)

n

Z(16k2 + 3).
k=l

= k k + 1
60. By Theorem 4.1.1,

nk

fl ( k + 2 )

61. (1) For m = 1 and n = 4, the expanded form of the equation is

(ai + a 2 + a3 + a 4) + (b1 + b2 + b3 + b4) = (a, + b1) + (a2 + b2 ) + (a3 + b3) + (a4 + b4).

The two sides of this equation are equal by repeated application of the associative and com-
mutative laws of addition.

(2) For m = 1 and n = 4, the expanded form of the equation is

c(al + a2 + a3 + a4) = cal + ca2 + ca 3 + ca4 .

So

1)

( n k )) ( n (k + 1))

11 (_ 11
k=1 k + 1 k=1 k + 2
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The two sides of this equation are equal by repeated application of the associative law of
addition and the distributive law.

(3) For m = 1 and n = 4, the expanded form of the equation is

(aja2 a3 a 4 )(bib2 b3b4 ) = (ajbi)(a2 b 2 )(a 3 b 3 )(a 4 b 4 ).

The two sides of this equation are equal by repeated application of the associative and com-
mutative laws of multiplication.

62. b. m + 1, sum + a[j - 1]

64.

remainder = r[6] = 1
remainder = r[5] = 1
remainder = r[4] = 0
remainder = r[3] = 0
remainder = r[2] = 0
remainder = r[1] = 1
remainder = r[O] = 0

Hence 981o = 11000102-

remainder = r[7] = 1
remainder = r[6] = 1
remainder = r[5] = 0
remainder = r[4] = 0
remainder = r[3] = 1
remainder = r[2] = 1
remainder = r[1] = 0
remainder = r[0] = 1

Hence 2051o = 110011012-

a 28

a 44 1 2 3 4 5 6

q 28 14 7 3 1 0
r[0] 0
r[1] 0
r[2]I
r[3] I

r [4] _

a 44
i 0 1 2 34 56
q 44 2 2 1 1 5 2 1 0
r [0] 0
r[1] 0
r[2] 1
r[3] I

r[4] _ _ _ _ __ 0

r[5] __ _ _

65.

0
21
23
26
2 12

21 24
21 49

21 98

0
21
23
262=
212
2 25

21 51
21 102

21 205

67.

68.
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69. Let a nonnegative integer a be given. Divide a by 16 using the quotient-remainder theorem
to obtain a quotient q[0] and a remainder r[0]. If the quotient is nonzero, divide by 16 again
to obtain a quotient q[1] and a remainder r[1]. Continue this process until a quotient of 0 is
obtained. The remainders calculated in this way are the hexadecimal digits of a:

alo = (r[k]r[k - 1] . . . r[2]r[1]r[0])16.

71.

0
16 2

16 43
16 693

R. 2 = 216

R. 11 = B16
R. 5 = 516

Hence 69310 = 2B516 .

8 = 816
15 = F16
13 = D16

Hence 23011o = 8FD1 6.

Decimal to Hexadecimal Conversion
Using Repeated Division by 16

[In this algorithm the input is a nonnegative integer a. The aim of the algorithm is to produce
a sequence of binary digits r[0], r[1], r[2], ... r[i - 1] so that the hexadecimal representation of
a is (r[i -1]r[i -2] ... r[2]r[1]r[0]) 16.J

Input: a [a nonnegative integer]

Algorithm Body:

q := a, i: 0

while (i Oor q # 0)

r[i] := q mod 16

q :=q div 16

i: i + 1

end while

[After execution of this step, the values of r[0], r[1], r[2],. . ., r[i
15 inclusive, and a10 = (r[i - 1]r[i - 2] ... r[2]r[1]r[0]) 1 6 .]

Output: r[0], r[1], r[2], ... , r[i 1] [a sequence of integers]

end Algorithm

1] are all integers from 0 to

72.

0
16 8

16 143
16 2301

R.
R.
R.

73.
Algorithm
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Section 4.2

2. Let P(n) be the property "A postage of nl can be obtained using 3¢ and 7¢ stamps."

Show that the property is true for n = 12: A postage of 12¢ can be obtained using four
3¢ stamps.

Show that for all integers k > 12, if the property is true for n = k then it is true
for n = k + 1: Suppose that for some integer k > 12, a postage of k cents can be obtained
using 3¢ and 7¢ stamps . We must show that a postage of k + 1 cents can be obtained using
3¢ and 7¢ stamps. But if there are two 3¢ stamps among those used to make up the k cents of
postage, replace them by one 7¢ stamps; the result will be (k + 1)¢ of postage. And if there
are not two 3¢ stamps making up the k cents of postage, then at least two 7¢ stamps must be
used because k > 12. Remove two 7¢ stamps and replace them by five 3¢ stamps; the result
will be (k + 1)¢ of postage. Thus in either case (k + 1)¢ of postage can be obtained using 3¢
and 7¢ stamps /as was to be shown.

4a. 2-1 2(2 -1)(2 +1)
4. a. P(2): i(i + 1) =

P(2) is true because the left-hand side equals 1(1 + 1) = 2 and the right-hand side equals
2.1.3

2 = 2 also.
3

kl1 k(k -1)(k±+1)
b. P(k): E i(i + 1) -

c. P(k+ 1): i(i + 1)= (k + 1)((k + 1) 1)((k + 1) + 1)

Or, equivalently, P(k + 1) is Z (i + 1) 3 ( + )k( )
iil

d. Must show: If k is any integer with k > 2 and Ei(i + 1)= 3(k )

then Zi(i± 1 (k1 1)k(k±2)

7. Proof (by mathematical induction): Let the property P(n) be the equation

1 + 6 + 11 + ... + (5n -4) n(5n-3)
2

Show that the property is true for n = 1: The property is true for n 1 because for

n = 1 the left-hand side is 1 and the right-hand side is (2 )-= 1 also.

Show that for all integers k > 1, if the property is true for n = k then it is true for

n = k + 1: Suppose It- 6 + 11 +.+ (5k - 4) = k(5k ) for some integer k > 1. [This is the
2

inductive hypothesis.] We must show that 1+6+11+* ±(5(k+1) -4) = (k + 1)(5(k + 1) 3)

But the left-hand side of this equation is
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1+6+11+ - ±(5(k+1)-4) = 1+6+11 + +(5k -4)+(5(k+1) -4)
by making the next-to-last term explicit

= k(5k 3) + (5k + 1)

by inductive hypothesis
k(5k - 3) 2(5k + 1)

2 2
by creating a common denominator

5k2  3k 10k + 2

2 2
by multiplying out

5k2 - 3k + 10k + 2

2
by adding the fractions

5k 2+ 7k + 2

2
by combining like terms.

And the right-hand side of the equation is

(k + 1)(5(k + 1) - 3) (k + 1)(5k + 2) 5k 2 +2k+5k+2 5k 2 + 7k + 2

2 2 2 2
Thus the left-hand and right-hand sides of the equation are equal /as was to be shown].

9. Proof (by mathematical induction): Let the property P(n) be the equation

43 + 44 + 45+ .+ 4n 4(4f - 16)
3

Show that the property is true for n = 3: The property is true for n = 3 because for n = 3
4(4 3 _ 16 __4_4_-_16 4 4

the left-hand side is 43 = 64 and the right-hand side is 16) = 4( 1) = 4 = 64
3 3 3

also.

Show that for all integers k > 1, if the property is true for n k then it is true

for n = k + 1: Suppose 43 + 44 + 4 +* . + 4 k =4(4k- 16) for some integer k > 3. [This is
3

the inductive hypothesis.] We must show that 43 + 44 + 45 + ... + 4k+1 = ( k ). But

the left-hand side of this equation is
43 + 44 + 45 + +.... .4k+1 ... =43 + 44+ 45+ . + +4k+ 4k+1

by making the next-to-last term explicit

-4(4 16) + 4 k+1

3
by inductive hypothesis

4 k+1 - 64 3 . 4 k+1
3 +

by creating a common denominator
4, 4k+1 - 64

3
by adding the fractions

4 (4 k+1 - 16)

3
by factoring out the 4,

and this is the right-hand side of the equation [as was to be shown].

11. Proof (by mathematical induction): Let the property P(n) be the equation

1 3 +2 3 + -+n 3 - (n(n+1)) 2
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Show that the property is true for n = 1: The property is true for n = 1 because the

left-hand side is 13 = 1 and the right-hand side is (l( 2 1))= ()2 = 1 also.

Show that for all integers k > 1, if the property is true for n = k then it is true

for n = k + 1: Suppose 13+23- +k3 = ( 2( 1)) for some integer k > 1. [This is the

inductive hypothesis.] We must show that 13 + 23 + + (k + 1)3 = ( ( )(( 1) ) 2

But the left-hand side of this equation is
1 3 +2 3 ±+ +±(k+1) 3  = 1 3 +2 3 ++ k±k3 +(k+1)3

by making the next-to-last term explicit

= (k(k )+ (k + 1)3

by inductive hypothesis
k2 (k + 1)2 4(k + 1)3

4 + 44 4
by multiplying and creating a common denominator

k2(k + 1) 2 + 4(k +1)3
4

by adding the fractions
(k + 1) 2 (k2 + 4(k + 1))

4
by factoring out (k + 1)2

(k +1) 2 (k2 + 4k + 4)

4
by multiplying out.

The right-hand side of the equation is

( (k + 1)((k + 1) + 1)) = ((k + 1)(k + 2) ) 2

(k + 1)2 (k + 2)2

4
(k + 1) 2 (k2 + 4k + 4)

4
Thus the left-hand side of the equation equals the right-hand side [as was to be shown].

12. Proof (by mathematical induction): Let the property P(n) be the equation

1 1 1 n
1 2 2 3 n(n+1) n±1

Show that the property is true for n = 1: The property is true for n = 1 because the
1 1 1 1

left-hand side equals - - and the right-hand side equals 1 =- also.
1 .2 2 1±+1 2

Show that for all integers k > 1, if the property is true for n = k then it is true

for n = k + 1: Suppose 1 2+ = k for some integer k > 1. [This
I1*2 2*3 + k (k + 1) k+1

1 1
is the inductive hypothesis.] We must show that + + 2 + 1

1 2 2.-3 (k +1)((k + 1)±+ 1)
k±1 1 1 1 k +1I
(k±)+'or, equivalently, 1.2+ 23+~ + (k1(+) k2But the left-hand(k + 1) + s d e 2 2 3 (k + 1)(k + 2) k + 2

side of this equation is
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1. 2 2 3 (k + 1)(k + 2)
1 1 1 1

1 2 2. 3 k(k +1) (k + 1)(k + 2)
by making the next-to-last term explicit

k 1
=+
k + 1 (k + 1)(k + 2)

by inductive hypothesis
k(k + 2) 1

(k + 1)(k + 2) (k + 1)(k + 2)
by creating a common denominator

k2 + 2k + 1

(k + 1)(k + 2)
by adding the fractions

(k + 1)2

(k + 1)(k + 2)
because k2 + 2k + 1 = (k + 1)2

k + I
k + 2

by cancelling (k + 1) from numerator and denominator,
and this is the right-hand side of the equation [as was to be shown].

14. Proof (by mathematical induction): Let the property P(n) be the equation

rn+

Z i 2' = n 2n+2 + 2.

Show that the property is true for n = 0: The property holds for n = 0 because
i * 2i = 1- 21 = 2 and 0 . 20+2 + 2 = 2 also.

Show that for all integers k > 0, if the property is true for n = k then it is true
for n = k + 1: Suppose Zkill i 2' = k 2 k+2 + 2 for some integer k > 0. [This is the induc-

tive hypothesis.J We must show that E(+kl)+l i 2' = (k + 1) * 2 (k+l)+2 + 2, or, equivalently,

Zk=1 i * 2' = (k + 1) 2 k+3 + 2. But the left-hand side of the equation is

k i 2 = _i=l i 2' + (k + 2 )2 k+2 by writing the (k + l)st term separately
(k * 2 k+2 + 2) + (k + 2 )2 k+2 by inductive hypothesis
(k + (k + 2 ))2 kk+2 + 2

= (2k + 2 )2 k+2 + 2
- (k + 1)2k+ 3 + 2 by algebra,

and this is the right-hand side of the equation [as was to be shown].

15. Proof (by mathematical induction): Let the property P(n) be the equation

Zi(i!) = (n + 1)!-1.
i 1

Show that the property is true for n = 1: We must show that Z1l~ i(i!) - (1 + 1)!-1
But the left-baud side of this equation is Zil- i(i!) = 1 .(1!) - 1 and the right-hand side is
(1 + 1)! - 1 = 2! - 1 = 2 - 1 = 1 also. So the property is true for n = 1.

Show that for all inte Yers k > 1, if the property is true for n = k then it is true for
n = k + 1: Suppose EiZ, i(i!) = (k + 1)! -1 for some integer k > 1. [This is the inductive
hypothesis.] We must show that Zk+l i(i!) = ((k + 1) + 1)! -1, or, equivalently, we must show

that i i(i!) = (k + 2)! -1. But the left-hand side of the equation is
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Ek
i=1 i(i!) + (k + 1)((k + 1)!)

[(k + 1)! -1] + (k + 1)((k + 1)!)
((k + 1)!)(1 + (k + 1))-1

by writing the (k + I)st term separately
by inductive hypothesis
by combining the terms with
the common factor (k + 1)!

- (k+l)!(k+2)- 1
= (k + 2)!-1 by algebra,

and this is the right-hand side of the equation [as was to be shown].

16. Proof (by mathematical induction): Let the property P(n) be the equation

(1- 22) (1

Show that the property is true for n = 2: The property holds for n = 2 because 1- =

3 2+1 3
and =- also.

4 2 2 4
Show that for all integers k > 2, if the property is true for n = k then it is true
for n = k + 1: Suppose

I ) = k±1 for some integer k > 2. *- inductive hypothesis

We must show that

(1- 2)

or, equivalently, we must show that

But the left-hand side of this equation is

- (2 1)2)

91T2 ..)(1. (1 l 2(

k+) 1
2k 2k(k + 1)

(k + 1)2- 1

2k(k + 1)
k+ 2k + 1)-

2k(k + 1)
k + 2

2(k + 1)

1 )... (i _ 1 )) (k+l)+l
T2J **'T1 k -+1)2J 2(k + 1)

(k + 1)2)

(k + 1)2)

k + 2
2(k + 1)

by making the next-to-last
factor explicit

by inductive hypothesis

by algebra,

and this is the right-hand side of the equation [as was to be shown].

17. Proof (by mathematical induction): Let the property P(n) be the equation

=o~(2i+ 2i+2) (2n+2)!

T'1+1 i(i!) =i=1

1 )... (I_ I-) = n + 1
j2 W2 2n '

T2 Y2( 1 - 1 ) (I - I ) ... (1
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92 Chapter 4: Sequences and Mathematical Induction

Show that the property is true for n = 0: The property holds for n = 0 because

.=- and = also.
i=O ( 2i + 1 2i + 2) 1 2 -2 and(2 .0 + 2)! 2

Show that for all integers k > 0, if the property is true for n = k then it is true
k 1~

for n =k+1: Suppose ( ( 1  2i+) = 2k 2 for some integer k > 0. [This

is the inductive hypothesis.] We must show that I| ( 2 i =(2 1

k+1 i +_ 2i +2 (2 (k + 1) + 2)!'
iO=

or, quialetlyI| 2 2i ) =(2k 4)!But the left-hand side of this equation

is

i= ( - -)

i=+ ( 2i + 1 2i + 2 2(k + 1) + I 2(k + 1) + 2
by writing the (k + 1)st factor separately

( (2k + 2)!) ( 2(k + 1) + 1 2(k + 1) + 2)
by inductive hypothesis

1 1 1
(2k+2)! 2k+3 2k+4

1
(2k + 4)!

by algebra,
and this is the right-hand side of the equation [as was to be shown].

18. Proof (by mathematical induction): Let the property P(n) be the equation

1 -cos 2nx
sinx + sin 3x + + sin(2n -1)x = 2sinx

Show that the property is true for n = 1: The property holds for n = 1 because the
1- cos 2x 1-cos2 + sin2 x

left-hand side equals sinx, and the right-hand side equals 2 sin x 2 sin2x

2 sin 2 x
sin x.

2sinx

Show that for all integers k > 1, if the property is true for n = k then it is true for

n = k + 1: Suppose sinx+sin3x+ +sin(2k -1)x = cos 2kx for some integer k > 1.
2 sin x

[This is the inductive hypothesis.] We must show that sin x + sin 3x + + sin(2(k + 1) -1)x
1 cos 2(k +1)x 1 -cos 2(k +1)x

2 sin x , or, equivalently, sin x + sin 3x + * + sin(2k + 1)x = 2sinx

But when the next-to-last term of the the left-hand side of this equation is made explicit, the
left-hand side becomes
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sin x + sin 3x + * + sin(2k- 1)x + sin(2k + l)x

= s1 sx + sin(2k + 1)z

1-cos 2kx 2 sin x sin(2kx + x)
2sinx 2sinx

1 -cos 2kx + 2 sin r sin(2kz + x)
2sinx

1 -cos 2kx + 2 sin x[sin(2kx) cos x + cos(2kx) sinzx
2 sin x

1 - cos 2kx + 2 sin x sin(2kx) cos z + 2 sin 2 cos(2kx)
2 sin x

1 + cos 2kx(2 sin2 x -1) + 2 sin xr cos x sin(2kx)
2 sin x

1 + cos 2kx(- cos 2x) + sin 2x sin(2kx)
2sinx

1 -(cos 2kx cos 2x -sin 2x sin(2kx))
2sinx

1 -cos(2kx + 2x)
2sinx

1 -cos(2(k + 1)x)
2sinx

by inductive hypothesis

by creating a common denominator

by adding fractions

by the addition formula for sine

by multiplying out

by combining like terms

by the formulas for cos 2x and sin 2x

by factoring out 1

by the addition formula for cosine

by factoring out 2x,

and this is the right-hand side of the equation /as was to be shown.

20. 5+10+15+20+...+300=5(1+2+3+.. +60) =5( 60261) =9150.

22. 7+8+9+10+± ±+600 = (1+2+3+± .+600)-(1+2+3+4+5+6) =( 60061) -21 = 180, 279

25. 3 + 32 + 33 + + 3n =3(1 + 3 + 32 + + 3n-1)3( 3 3 1)- 1) 3(3 - 1)

5-3)+ - 1 55-2 -1

26. 5 3 + 5 4 + 5 5 + + 5k 5 3(1 + 5 + 5 2 + + 5 () = 5 5 (k3)+ 1 5 3(55- 1)

28. 2 + 22 2 + + (-) 2n = + (-2) + (-2)2 + ( 2)3 + . ( 2)

(-2)n'~l (-2)n±1 _ 1 1 1n~1

(-2) 3 13 ( (+(-

29. (a+md)+(a+(m+1)d)+(a+(m+2)d)+ ++(a+(m+n)d)
= (a+md) + (a+md+d) + (a+md+2d) + + (a+md+nd)
= ((a+md)+(a+md)+ + (a+md))+d(1+2+3+ +n)

n + 1 terms

= (n + 1)(a + md) + d (n(n +1)) by Theorem 4.2.2

= (a +md + nd)(n +1)
2

= [a + (m + 2 )d](n + 1)

Any one of the last three equations or their algebraic equivalents could be considered a correct
answer.

30. arm + arm+l + arrt 2 ± .... + arm~n = ar'(1 + r + r2 + + rn) arm (r ~1) by

Theorem 4.2.3
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40 239) 2 39+1 - 41
31. a. 2+4+8+...+24 =2(1+2+22+ .+239)=2 22 ) 241- 2

b. 40 generations = 40 * 25 = 1000 years (at 25 years per generation)

c. Since 241 -2 2.2 x 1012 > 1010, not all ancestors are distinct: some ancestors on different
branches of the family tree must be the same.

33. Proof: Suppose m and n are any positive integers such that m is odd. By definition of odd,
m = 2q + 1 for some integer k, and so, by Theorems 4.1.1 and 4.2.2,
m-1 (2q+1)-1 2q 2q 2q 2q

Z(n+k)= E (n+k)=Z(n+k) =n+k= (2q+1)n+± k
k=O k=O k=O k=O k=O k=l

= (2q + 1)n + =q(2q+1) = (2q + 1)n + q(2q + 1) = (2q + 1)(n + q) = m(n + q).
2

But n + q is an integer because it is a sum of integers. Hence, by definition of divisibility,
m-1

Z, (n + k) is divisible by m.
k=O

Note: If m is even, the property is no longer true. For example, if n = 1 and m = 2, then
m-1 2-1

,(n+k) (1 + k) = 1 + 2 = 3, and 3 is not divisible by 2.
k=O k=O

34. Proof: Suppose p is any prime number with p > 5. The sum of squares of any p consecutive
integers may be represented as n2 + (n + 1)2 + (n + 2)2 + + (n +p)2 , where n is some integer:
Then

n2 +(n+1) 2 +(n+2) 2 +(n+3) 2 + +(n+(p 1))2

= n 2 + (n2+ 2n + 1) + (n2+ 4n + 4) + (n2+ 6n + 9) + + (n2+ 2(p - 1)n + (p - 1)2)

= ()n 2 n2  n2 ) + (2n+4n+6n+- ±+2(p- 1)n) + (1+4+9+. ±+(p - 1)2)

p terms

= pn 2 + 2n(1 + 2 + 3 + ± .. +(p-1)) + (12 + 22 + 32 + + (p _ 1)2)

by algebra
= Pn +2n ((P 1- 1-)((p-1) + 1)(2(p- + 1) ±

22 1)6
by Theorem 4.2.2 and exercise 10

= 2 n (P - l)p (p l)p(2p - 1)

= p (n 2 ±+ n(p -1)) + 6(P 1)(2p-1)

Now the right-hand side of this equation is an integer because it equals a sum of squares of
integers, and, because p (n2 + n(p -1)) is also an integer, the other term on the right-hand
side is a difference of integers and hence an integer. Thus 6 must divide p(p -1) (2p -1). But
because p is prime and p > 5, none of 2 or 3 or 6 is a factor of p and therefore, 6 is a factor

of (p -1)(2p -1). Hence (p )2p ) is an integer, and so p is a factor of both terms
6

on the right-hand side of the equation. It follows that p is a factor of the entire right-hand
side [exercise 15, Section 3.3], which implies that p is a factor of the sum of the p consecutive
squares.

Note: An alternative solution to this exercise can be given using exercise 42 from Section 3.4.
According to that exercise, if p is a prime number and p > 5, then p has the form 6q+ 1 or 6q+5
for some integer q. In case p = 6q+ 1, then (p-1)(2p -1) = ((6q+ 1) -1)(2p -1) = 6q(2p -1),
which is divisible by 6. In case p = 6q + 5, then (p - 1) (2p -1) = ((6q + 5) -1) (2 (6q + 5) -1) -
(6q + 4)(12q -9) = 2(3q + 2) .3(4q + 3) = 6(3q + 2)(4q + 3), which is also divisible by 6. So in
either case (p - 1)(2p- 1) is divisible by 6.
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Section 4.3

1 11.
2. Formula: (1 + -)(1 + ) (1 -)= n + for all integers n > 1.

1 2 n
Proof (by mathematical induction): Let the property P(n) be the equation

(I + )(1 + ) ... (1 +± ) = n + 1
1 2 n

Show that the property is true for n = 1: When n = 1, the left-hand side of the equation
1

is 1 + i = 2 and the right hand side is 1 + 1 = 2 also. So the property is true for n = 1.

Show that for all integers k > 1, if the property is true for n = k then it is true
1 1

for n = k + 1: Suppose (1 + )(1 + -) ... (1 + ) k + 1, for some integer k > 1. IThis is
11 1

the inductive hypothesis.] We must show that (1 + I)(1 +1+ 1 ) (k + 1) + 1.
1 +2' k + 1

But the left-hand side of this equation is

(1+ 1)(1I-2).(1+ +1)
1 1

- ( 1 )( ) "(1 + k' ± k 11) by making the next-to-last factor explicit

= (k + 1)(1 + k + by inductive hypothesis

(k + 1) + 1 by algebra,
and this is the right-hand side of the equation /as was to be shown].

4. Formula: En 1(-1)i-i 2 = (-1)n-1(1+2+3+ +n) or (1)i-li2= (-n)n- (n + )
2

(by Theorem 4.2.2) for all integers n > 1.

Proof (by mathematical induction): Let the property P(n) be the equation

(-l~-] i = (-l)7-l I(n + 1)
2

Show that the property is true for n = 1: The property is true for n 1 because the
left-hand side of the equation is Zll(-1)i-li2 

= (-1)° 12 = 1 and the right-hand side is

- 1)-= 1(1 + 1)= also.
2

Show that for all integers k > 1, if the property is true for n = k then it is true for

k i-Y (-)k-1 k(k +1)
n = k + 1: Suppose 1(- ) = 2 for some integer k > 1.This is

i=i

the inductive hypothesis.] We must show that

L~i l j2 =(-l~)(kW-1 (k + l)((k ± 1 + 1)

or, equivalently, we must show that

k+1

2-) i= -~ (k + 1)(k + 2)
2

i~l

But the left-hand side of this equation is
k+1

Z( 1)i li2

i~l
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k

= Z(_l)i-li 2 + (_l)(k+l)-l(k + 1)2
i= 1

=(-I)k-1 ( k(k + 1) ) + (-l)kk+1)2

z/

by writing the (k + 1)st term separately

by inductive hypothesis

1))

bv laphera.

and this is the right-hand side of the equation /as was to be shown].

5.

1
2!

1 1
2 3!

5 1
- + !
6 4

23 1
24 5!

119 1

120 6!

1
2

5
6

- 23
24

119
120

719
720

Note that 1 2! - 1 5 3! - 1 23 4!-1 119
2 2! ' 6 3! ' 24 4! ' 120

conjecture that (n 1)1
kZ (k + 1)! (n ± 1)!

5! - 1 719
= 5! , 720

= 6!6! So we

Proof by mathematical induction: Let the property P(n) be the equation

Ek - (n+1)! 1
((n+ 1)! -

Show that the property is true for n 1: The calculation preceding the proof shows
that

1 k (1+1)!-1

Show that for all integers r > 1, if the property is true for n = r then it is true

for n = r + 1: Suppose that for some integer r > 1, E + 1)! =1 . This is the
kl (k ±1)! - (r ±1! [hsi h

inductive hypothesis.] We must show that E (k + 1)!z= = [(r + 1) + 1]! , or, equivalently,

I k

E (k + 1)!

2
•k

3 k

kE- (k + 1)!

k

k 1 (k + 1)!

E (k+ 1)!

k

Do- I-

http://pakimonda.blog.com 
paki.monda@gmail.com 
paki.monda@yahoo.com



Section 4.3 97

,r+ 1 k _(r +2)! 1
that E (~ = ( +))

But the left-hand side of this equation is
r±1 k

E1 (k + 1)!

k r + 1
E (k +1)! +[(r + 1) + 1]! by making the next-to-last term explicit

k=
(r±) 1 r +

(r + 1)! (r + 2)! by inductive hypothesis
(r+1)! 1 (r+2) r±1

(r + 1)! (r + 2) +(r 2)! to create a common denominator
(r+2)!-(r+2) r+1

(r+2)! (r+2)!
(r+2)' 1

(r + 2)! by algebra,

and this is the right-hand side of the equation [as was to be shown].

7. a. P(n): 2n < (n + 1)!

P(2) is true because 22 = 4 < 6 = (2 + 1)!.

b. P(k): 2 k < (k + 1)!

c. P(k + 1): 2 k+1 < ((k + 1) + 1)!

d. Must show: If k is any integer with k > 2 and 2 k < (k + 1)!, then 2 k+1 < ((k + 1) + 1)!.

9. Proof (by mathematical induction): Let the property P(n) be the sentence "7n - 1 is divisible
by 6."

Show that the property is true for n = 0: The property is true for n = 0 because
70 -1 = -1 = O and 0 is divisible by 6 (since 0 = 0 6).

Show that for all integers k > 0, if the property is true for n = k then it is true
for n = k + 1: Suppose 7k - 1 is divisible by 6 for some integer k > 0. [This is the inductive
hypothesis.] We must show that 7k+1 - 1 is divisible by 6. By definition of divisibility, the
inductive hypothesis is equivalent to the statement 7k - 1 = 6r for some integer r. Then by
the laws of algebra, 7 k+1 _ 1 = 7 . 7k _ 1 = (6 + 1)7 k _1 = 6 . 7 k + ( 7k _ 1) = 6. 7k + 6r, where
the last equality holds by inductive hypothesis. Thus, by factoring out the 6 from the extreme
right-hand side and by equating the extreme left-hand and extreme right-hand sides, , we have
7 k+1 - 1 = 6 (7 k + r), which is divisible by 6 because 7 k + r is an integer (since products and
sums of integers are integers). Therefore, 7k+1 - 1 is divisible by 6 [as was to be shown].

10. Proof (by mathematical induction): Let the property P(n) be the sentence "n3 - 7n + 3 is
divisible by 3."

Show that the property is true for n = 0: The property is true for n = 0 because
03-7 0 + 3 = 3 and 3 is divisible by 3 (since 3 = 3 1).

Show that for all integers k > 0, if the property is true for n = k then it is true
for n = k + 1: Suppose k3 - 7k + 3 is divisible by 3 for some integer k > 0. [This is the
inductive hypothesis.] We must show that (k + 1)3 - 7(k + 1) + 3 is divisible by 3. By definition
of divisibility, the inductive hypothesis is equivalent to the statement k3 - 7k + 3 = 3r for some
integer r. Then by the laws of algebra, (k + 1)3 -7(k + 1) + 3 = k3 +3k 2 +3k+1-7k-7+3 =
(k 3 -7k + 3) + (3k 2 + 3k -6) = 3r + 3(k2 + k -2), where the last equality holds by inductive
hypothesis. Thus, by factoring out the 3 from the extreme right-hand side and by equating the
extreme left-hand and extreme right-hand sides, , we have (k+1)3 -7(k+1)+3 = 3(r+k2 +k-2),
which is divisible by 3 because r + k2 + k - 2 is an integer (since products and sums of integers
are integers).. Therefore, (k + 1)3 - 7(k + 1) + 3 is divisible by 3 [as was to be shown].
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98 Chapter 4: Sequences and Mathematical Induction

12. Proof (by mathematical induction): Let the property P(n) be the sentence "T1 - 2/ is divisible

by 5."

Show that the property is true for n = 1: The property is true for n = 1 because
71- 21 = 7 -2 = 5 and 5 is divisible by 5 (since 5 = 5 -1).

Show that for all integers k > 1, if the property is true for n = k then it is true
for n = k + 1: Suppose 7k - 2k is divisible by 5 for some integer k > 0. [This is the inductive
hypothesis. We must show that 7 k+1 - 2k+l is divisible by 5. By definition of divisibility, the
inductive hypothesis is equivalent to the statement 7k- 2k = 5r for some integer r. Then by
the laws of algebra, 7k+1 - 2k+±1 7 . 7 k - 2 . 2 k = (5 + 2 ). 7k - 2 - 2 k = 5 7 k + 2 7k - 2 .2k =
5 - 7k + 2 (7k - 2 k) = 5 7k + 2 5r, where the last equality holds by inductive hypothesis.
Thus, by factoring out the 5 from the extreme right-hand side and by equating the extreme
left-hand and extreme right-hand sides, we have 7 k+1- 2 k+l = 5(7 k + 2r), which is divisible by
5 because 7k + 2r is an integer (since products and sums of integers are integers). Therefore,

7 k+1 - 2 k+l is divisible by 5 [as was to be shown.

13. Proof: Suppose x and y are any integers with x 7& y. We show by mathematical induction on
n that the property "xn - yf is divisible by x - y" is true for all integers n > 1.

Show that the property is true for n = 1: The property is true for n = 1 because
xi -2 l = x-y and x-y is divisible by x -y.

Show that for all integers k > 1, if the property is true for n = k then it is true
for n = k + 1: Suppose xk - yk is divisible by x -y for some integer k > 1. [This is the
inductive hypothesis.] We must show that xk+l yk+l is divisible by x- y. By rewriting
the inductive hypothesis using the definition of divisibility, we have xk _ yk = (x -y)r for
some integer r. Then by the laws of algebra, xk+l _ yk+I = xk+l _ xyk + xyk _ Xyk+l -

X(Xk y yk) + yk(x - y) = x(x - y)r + yk(X y Y), where the last equality holds by inductive
hypothesis. Thus, by factoring out (x -y) from the extreme right-hand side and by equating
the extreme left-hand and extreme right-hand sides, we have xk+l - yk+l = X(x - y)(r + yk),
which is divisible by x -y because x(r + yk) is an integer(since products and sums of integers
are integers). Therefore, xk+l -k+l is divisible by x - y [as was to be shown.

14. Proof (by mathematical induction): Let the property P(n) be the sentence "n3  n is divisible
by 6."

Show that the property is true for n = 2: The property is true for n = 2 because
23- 2 = 6 and 6 is divisible by 6.

Show that for all integers k > 2, if the property is true for n = k then it is true
for n = k + 1: Suppose k3 -k is divisible by 6 for some integer k > 2. [This is the inductive
hypothesis.] We must show that (k + 1)3- (k + 1) is divisible by 6. By definition of divisibility
k3 - k = 6r for some integer r. Then by the laws of algebra, (k + 1)3-(k + 1) = k3 + 3k2 + 3k +
1- k -1 = (k3 - k) + 3(k 2 + k) = 6r + 3(k(k + 1)), where the last equality holds by inductive
hypothesis. Now k(k + 1) is a product of two consecutive integers. By Theorem 3.4.2 one of
these is even, and so [by Section 3.1, exercise 42 or Example 3.2.3] the product k(k + 1) is
even. Hence k(k + 1) = 2s for some integer s. Thus 6r + 3(k(k + 1)) = 6r + 3(2s) = 6(r + s),
and so by substitution, (k + 1)3 - (k + 1) = 6(r + s), which is divisible by 6 because r + s is
an integer. Therefore, (k + 1)3- (k + 1) is divisible by 6 [as was to be shown].

15. Proof (by mathematical induction): Let the property P(n) be the sentence ''n(n2+5) is divisible
by 6."

Show that the property is true for n = 1: The property is true for n = 1 because
1(12 + 5) = 6 and 6 is divisible by 6.

Show that for all integers k > 1, if the property is true for n = k then it is true
for n = k + 1: Suppose k(k 2 + 5) is divisible by 6 for some integer k > 1. [This is the
inductive hypothesis.] We must show that (k+1)((k+1)2 +5) is divisible by 6. By definition of
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divisibility k(k2
+5) = 6r for some integer r. Then by the laws of algebra, (k+1)((k+1)2 +5) =

(k+1)(k2+2k+1+5) = k(k2+5)+(k(2k+1)+k 2 +2k+1+5) = k(k2+5)+(3k2+3k+6) =
6r + 3(k2 + k) + 6, where the last equality holds by inductive hypothesis. Now k(k + 1) is a
product of two consecutive integers. By Theorem 3.4.2 one of these is even, and so /by Section
3.1, exercise 42 or Example 3.2.3] the product k(k + 1) is even. Hence k(k + 1) = 2s for some
integer s. Thus 6r + 3(k2 + k) + 6 = 6r + 3(2s) + 6 = 6(r + s + 1). By substitution, then,
(k + 1)((k + 1)2 + 5) = 6(r + s + 1), which is divisible by 6 because r + s + 1 is an integer.
Therefore, (k + 1)((k + 1)2 + 5) is divisible by 6 [as was to be shown].

17. Proof (by mathematical induction): Let the property P(n) be the inequality 1 + 3n < 4 n

Show that the property is true for n = 0: The property is true for n = 0 because the
left-hand side is 1 + 3 . 0 = 1 and the right-hand side is 40 = 1, and 1 < 1.

Show that for all integers k > 0, if the property is true for n = k then it is true for
n = k + 1: Suppose 1 + 3k < 4 k for some integer k > 0. [This is the inductive hypothesis.]
We must show that 1 + 3(k + 1) < 4 k+1* Multiplying both sides of the inequality in the
inductive hypothesis by 4 gives 4. (1 + 3k) <4 4 k', or, equivalently, 4 + 12k < 4k+1* Now
1 + 3(k + 1) =1 + 3k + 3 = 4 + 3k < 4 + 12k because k > 0. Putting these together gives
1 + 3(k + 1) =1 + 3k + 3 = 4 + 3k < 4 + 12k < 4k+1 Thus, by the transitive property of order,
1 + 3(k + 1) < 4 k+i [as was to be shown].

18. Proof (by mathematical induction): Let the property P(n) be the inequality 5 n + 9 < 6n.

Show that the property is true for n = 2: The property is true for n = 2 because the
left-hand side is 52 + 9 = 25 + 9 = 34 and the right-hand side is 62 = 36, and 34 < 36.

Show that for all integers k > 2, if the property is true for n = k then it is true
for n = k + 1: Suppose 5k+9 < 6k for some integer k > 2. [This is the inductive hypothesis.]
We must show that 5k+1 + 9 < 6 k4. Multiplying both sides of the inequality in the inductive
hypothesis by 5 gives 5 ( 5 k + 9) < 5 6 k Note that 5 (5 k + 9) = 5 k+ + 45, 5 * 6 < 6 k+± and
5 k+1 + 9 < 5 k+1 + 45. Putting these together gives 5 k+1 + 9 < 5 k+1 + 45 < 5 6 k < 6k+1, and
so, by transitivity of order, 5 k+1 + 9 < 6 k+H [as was to be shown].

20. Proof (by mathematical induction): Let the property P(n) be the inequality 2n < (n + 2)!.

Show that the property is true for n = 0: The property is true for n = 0 because the
left-hand side is 20 = 1 and the right-hand side is (O + 2)! = 2! = 2 and 1 < 2.

Show that for all integers k > 0, if the property is true for n = k then it is true for
n = k + 1: Suppose 2 k < (k + 2)! for some integer k > 0. [This is the inductive hypothesis.]
We must show that 2 k+1 < ((k + 1) + 2)!. But by the laws of algebra and substitution from
the inductive hypothesis, 2 k+1 = 2k . 2 < (k + 2)! . 2 < (k + 2)! . (k + 3) [2 < k + 3 because
k > 0]. Thus 2 k+1 < (k + 2)! * (k + 3) = (k + 3)! and so 2 k+1 < ((k + 1) + 2)! [as was to be

shown].

21. Proof (by mathematical induction): Let the property P(n) be the inequality

1 1 1 1
+ , +< +

Show that the property is true for n = 2: To show that the property is true for n = 2
1 1

we must show that 2 < - + - But this inequality is true if, and only if, 2 < V2 + 1

(by multiplying/dividing both sides by ). And this is true if, and only if, 1 < v (by
subtracting/adding 1 on both sides). But 1 < v'2, and so the inequality holds for n = 2.

Show that for all integers k > 2, if the property is true for n = k then it is true
1 1 1 1

for n= k +1: Suppose vik- -+ ±-+. for some integer k >2. [This
v/1 v"2 v3
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100 Chapter 4: Sequences and Mathematical Induction

is the inductive hypothesis.] We must show that k g+ 1 < + + I * 1 +-

But for each integer k > 2, v/ik < /k ±1 (*), and so (by multiplying both sides by Vk)
k < vik. k+1. Adding 1 to both sides gives k + 1 < 1k- k+ + 1, and dividing both

sides by k+ gives k±1 < vk±+ I. By substitution from the inductive hypothesis,

then, < +1--+ / [as was to be shown].

(*) Note: Strictly speaking, the reason for this claim is that k < k + 1 and for all positive real
numbers a and b, if a < b, then a/a < v.

22. Proof: Suppose x is a /particular but arbitrarily chosen] real number that is greater than -1.
We show by mathematical induction that the property 1 + nx < (1 + x)n is true for all integers
n > 2.

Show that the property is true for n = 2: To show that the property is true for n = 2,
we must show that I+2x < (1+X)2 . But (1+X) 2 = 1+2x+x 2 , and 1+2x < 1+2x+x2

because x > 0 for all real numbers x. Hence the property is true for n = 2.

Show that for all integers k > 2, if the property is true for n = k then it is true
for n = k + 1: Suppose 1 + kx < (1 + x)k for some integer k > 2. [This is the inductive
hypothesis.] We must show that 1 + (k + I)x < (1 + X)k+l But the right-hand side of
this inequality is (1 + x)k+l = (1 + x)k(l + x), and, by inductive hypothesis, (1 + x)k(1 + x)
> (1 + kx) (1 + x) provided 1 + x > 0, which is true because x > -1. Moreover, (1 + kx) (1 + x) =
1 + kx + x + kx 2 = 1 + (k + l)x + kx 2 > 1 + (k + 1)x [because kx2 > 0 for all real numbers x],
and 1 + (k + 1)x is the left-hand side of the inequality to be shown. Thus, by the transitive
property of order, 1 + (k + 1)x < (1 + x)k+l [which is what was to be shown].

23. a. Proof (by mathematical induction): Let the property P(n) be the inequality n3 > 2n + 1.

Show that the property is true for n = 2: The property is true for n = 2 because the
left-hand side is 23 = 8 and the right-hand side is 2 . 2 + 1 = 5, and 8 > 5.

Show that for all integers k > 2, if the property is true for n = k then it is true for
n = k + 1: Suppose k3 > 2k + 1 for some integer k > 2. [This is the inductive hypothesis.]
We must show that (k + 1)3 > 2(k + 1) + 1. But the left-hand side of this inequality is
(k + 1)3 = k3 + (3k 2 + 3k + 1) (1), and, by inductive hypothesis, k3 + (3k 2 + 3k + 1) >
(2k + 1) + (3k2 + 3k + 1).(

2 ) Now, since k > 2, we have 3k2 + 3k + 1 > 3k > 3 (3). And
putting (2) and (3) together gives k3 + (3k 2 + 3k + 1) > (2k + 1) + 3 > 2(k + 1) + 1 (4) Finally,
combining the results from (1) and (4) yields (k + 1)3 > 2(k + 1) + 1 [as was to be shown].

b. Proof (by mathematical induction): Let the property P(n) be the inequality n! > n
2

.

Show that the property is true for n = 4: The inequality is true for n = 4 because the
left-hand side is 4! = 24 and the right-hand side is 42 = 16, and 24 > 16.

Show that for all integers k > 4, if the property is true for n = k then it is true for
n = k + 1: Suppose k! > k2 for some integer k > 4. [This is the inductive hypothesis.] We
must show that (k+1)! > (k+ 1)2. But the left-hand side of this inequality is (k+l)! = (k+l)k!,
and by inductive hypothesis, (k + 1)k! > (k + 1)k 2 = k3 + k2 . By part (a) k3 > 2k + 1. Hence
k3 + k2 > k2 + 2k + 1 = (k + 1)2, and thus (k + 1)! > (k + 1)2 [as was to be shown].

25. Proof by mathematical induction: According to the definition of bo, blb2 ,..., bo = 5 and
bk = 4 + bk-1 for all integers k > 1. Consider the inequality.(b )2 > 16n 2 . Note that because
all terms of the sequence are positive, if b, > 4n then (b )2 > 16n 2. Thus we will let the
property P(n) be bn > 4n and show that this inequality is true for all integers n > 0.

Show that the property is true for n = 0: We must show that bo > 4 0. But 4 0 = 0
and bo = 5 by definition of bo, bl, b2 ,... and 5 > 0. So the property holds for n = 0.
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Show that for all integers k > 0, if the property is true for n = k then it is true for
n = k + 1: Suppose that for some integer k > 0, bk > 4k. [This is the inductive hypothesis.]
We must show that bk+1 > 4(k + 1). But

bk+l = 4 + bk by definition of bo, bi, b2 ,...
X bk+1 > 4 + 4k because bk > 4k by inductive hypothesis
•> bk+l > 4(1 + k) by factoring out a 4

bk+1 = 4(k + 1) by the commutative law of addition.

[This is what was to be shown.

26. Proof by mathematical induction: According to the definition of cO, C1, c 2 ,..., co = 3 and
ck = (ck- )2 for all integers k > 1. Let the property P(n) be the equation Cn = 32>

Show that the property is true for n = 0: We must show that co = 320 But 320 = 31 = 3
and co = 3 by definition of co, cl, c2 .... So the property holds for n = 0.

Show that for all integers k > 0, if the property is true for n = k then it is true for
n = k + 1: Suppose that for some integer k > 0, Ck = 32 [This is the inductive hypothesis.]
We must show that Ck+1 = 3 2k-,- But

Ck+1 = (ck)2  by definition of co, c1, c2 ,....
= (32k )2 by inductive hypothesis

3 2 k 2

= 3 2 k+l by the laws of exponents.

[This is what was to be shown!.

27. Proof by mathematical induction: According to the definition of d1 ,d 2 ,d3 ,..., d1 = 2 and

dk = k 1 for all integers k > 2. Let the property P(n) be the equation.dn 2
k n_

2 2
Show that the property is true for n = 1: We must show that d 1  But - 2 and

d1 = 2 by definition of d1 , d2 , d3 ..... So the property holds for n = 1.

Show that for all integers k > 1, if the property is true for n = k then it is true for
2

n = k + 1: Suppose that for some integer k > 1, dk [This is the inductive hypothesis.
k!~ Ti steidciehptei.

We must show that dk+1 2 ( But
+'=(k + 1)!'

dk±l - dk by definition of di, d2, d3...
k + i

2
= k k! by inductive hypothesis

2

(k + 1)k!

(k +1)! by the algebra of fractions.

[This is what was to be shown].

28. Proof by mathematical induction: Let the property P(n) be the equation

1 1+3+5+.. +(2n -1)

3 (2n + 1) + (2n + 3) + .. + (4n-1)
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Show that the property is true for n = 1: For n = 1 the property simply asserts that

I = -, which is true.
3'3

Show that for all integers k > 1, if the property is true for n = k then it is true for

n = k + 1: Suppose that for some integer k > 1, (2k 1) +(2k + 3) + + (4k 1)

[This is the inductive hypothesis.] Cross-multiplying this equation gives (2k + 1) + (2k + 3) +
... + (4k -1) 3[1 + 3 + 5 + - + (2k -1)], and thus the inductive hypothesis is equivalent
to (2k + 3) + + (4k -1) = 3[1 + 3 + 5 + + (2k -1)] -(2k + 1). We must show that

1 1+3+5±+ +[2(k+1) -1]
3 [2(k+1) + 1] + [2(k+1)+3] + - + [4(k+1) -1]'

or, equivalently,
1 1+3+5+. +(2k+1)
3 (2k+3)+(2k+5)±+ +(4k+3)'

Now the right-hand side of the equation to be shown is

1+3+5+ +(2k+ 1)
(2k + 3) + (2k + 5) + ... + (4k + 3)

1+3+5±+ +±(2k -1)+(2k+1)

(2k+3) +(2k+5) + + (4k-1) +(4k+1) +(4k+3)
by making more terms explicit

1+3+5+... +(2k-1)+(2k+1)
[3(1 + 3 + 5 + + (2k -1)) -(2k + 1)] + (4k + 1) + (4k + 3)

by inductive hypothesis
1+3+5+ +±(2k -1)+(2k+1)

3[1+3+5+ + +(2k-1)]+(6k+3)

1 + 3 + 5 + + (2k -1) + (2k + 1)
3[1+3±5+ . +±(2k-1)]+3(2k+1)

1+3+5±+ +±(2k -1)+(2k+1)
3[1 + 3 + 5 + + (2k -1) + (2k + 1)]

1
- by basic algebra
3

[as was to be shown].

29. Let P(n) be the property "if n people come to the meeting and each shakes hands with all the

others present, then ( - ) handshakes occur." We show by mathematical induction that
2

this property holds for all integers n > 2.

Proof (by mathematical induction):

Show that the property is true for n = 2: The property is true for n = 2 because on the
one hand if two people come to the meeting and each shakes hands with each of the others

present, then just one handshake occurs, and on the other hand (2 ) equals 1 also.
2

Show that for all integers k > 2, if the property is true for n = k then it is true for
n = k + 1: Let k be an integer with k > 2, and suppose that if k people come to the meeting

and each shakes hands with all the others present, then k(k ) handshakes occur. [This is
2

the inductive hypothesis.] We must show that if k + 1 people come to the meeting and each

shakes hands with all the others present, then ( )2 ) ) - 2 ) handshakes
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occur. But if k+ 1 people come to the meeting, then after the kth person has arrived and shaken

hands all around, ( - ) handshakes have occurred (by inductive hypothesis). When the
2

(k + 1)st person arrives and shakes hands with all k others, k additional handshakes occur.
Thus, as was to be shown, the total number of handshakes is

k(k -) +k k 2 - k+2k = k 2 +k (k+1)k
2 2 2 2

/as was to be shown].

32. Proof (by mathematical induction): Let the property P(n) be the sentence "If one square is
removed from a 2' x 2' checkerboard, then the remaining squares can be completely covered
by trominos."

Show that the property is true for n = 1: A 21 x 21 checkerboard just consists of four
squares. If one square is removed, the remaining squares form an L, which can be covered with
a tromino, as illustrated below.

Show that for all integers k > 1, if the property is true for n = k then it is true for
n = k + 1: Let k be an integer with k > 1, and suppose that if one square is removed from a
2kx 2k checkerboard, then the remaining squares can be completely covered by trominos. [This
is the inductive hypothesis.] Consider a 2 k+I x 2k+'checkerboard with one square removed.
Divide it into four equal quadrants, each consisting of a 2k x 2k checkerboard. In one of
the quadrants, one square will have been removed, and so, by inductive hypothesis, all the
remaining squares in this quadrant can be completely covered by trominos. The other three
quadrants meet at the center of the checkerboard, and the center of the checkerboard serves
as a corner of a square from each of those quadrants. A tromino can, therefore, be placed on
those three central squares. This situation is illustrated in the following figure:

By inductive hypothesis, the remaining squares in each of the three quadrants can be com-
pletely covered by trominos. Thus every square in the 2k+1 x 2 k+1 checkerboard except the
one that was removed can be completely covered by trorninos [as was to be shown].

Note: Proposition 4.3.1 can be deduced as a corollary to the result of this exercise.

33. Let P(n) be the property that 'in any round-robin tournament involving n teams, it is possible
to label the teams T1 , T 2 , T3 ,. .. , T,, so that Ti, beats Ti+I for all i = 1, 2, 3, .. ., n -1." We will
show by mathematical induction that this property is true for all integers n > 2.

Show that the property is true for n = 2: Consider any round-robin tournament involving
two teams. By definition of round-robin tournament, these teams play each other exactly once.
Let T1 be the winner and T2 the loser of this game. Then T1 beats T2, and so the labeling is
as required.

Show that for all integers k > 2, if the property is true for n = k then it is true for
n = k + 1: Let k be an integer with k > 2 and suppose that in any round-robin tournament
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involving k teams it is possible to label the teams in the way described. /This is the inductive
hypothesis.] We must show that in any round-robin tournament involving k + 1 teams it is
possible to label the teams in the way described.

Consider any round-robin tournament with k + 1 teams. Pick one and call it T'. Tem-
porarily remove T' and consider the remaining k teams. Since each of these teams plays each
other team exactly once, the games played by these k teams form a round-robin tournament.
It follows by inductive hypothesis that these k teams may be labeled T1 , T2 , T3,... , 'Ik where
Ti beats T+ 1 for all i = 1,2,3,. .. , k -1.

Case 1 (T' beats Ti): In this case, relabel each Ti to be Ti+1, and let T1 = T'. Then T1 beats
the newly labeled T2 (because T' beats the old T1), and Ti beats Ti+j for all i = 2.3,..., k
(by inductive hypothesis).

Case 2 (T' loses to T1, , T2, T3 ,.. . ,Tm and beats Tmn+i where 1 < m < k - 1): In this case,
relabel teams Tmm+,Tm+2, .. ,Tk to be Tm+2,Tm+3,. . . ,Tk+ and let T.+ 1 = T'. Then for
each i with 1 < i < m -1, Ti beats T+ I (by inductive hypothesis), Tm beats Tm+i (because Tm
beats T'), Tmi+ beats Tm+2 (because T' beats the old Tm+1), and for each i with m+2 < i < k,
Ti beats T~i1 (by inductive hypothesis).

Case S (T' loses to T, for all i = 1,2,..., k): In this case, let Tk+± T'. Then for all
i = 1,2,... , k-1, Ti beats Ti+, (by inductive hypothesis) and Tk beats Tk+1 (because Tk beats
T').

Thus in all three cases the teams may be relabeled in the way specified /as was to be shown].

34. Proof by contradiction: Suppose not. Suppose it is impossible to find three successive integers
on the rim of the disk whose sum is at least 45. [We must derive a contradiction.] Then there
is some ordering of the integers from 1 to 30, say x1, X2, ... , X30 such that

X+ + £2+ X3 < 45

X2 +±X3 + X4 < 45

X3 +X4 +X5 < 45

x29 + X30 + XK < 45

X30 + X£ + X2 < 45.

Adding all these inequalities gives 3 Ei3- < 30 45 = 1350. But Ei3 = E 13l i because
the sequence xi, X2, ... , X30 is a rearrangement of the integers from 1 to 30. Hence 3 Ei301 i <

1350, and so by the formula for the sum of the first n integers, 3 ( 2 ) < 1350, or,

equivalently, 1395 < 1350. But 1395 > 1350, and so we have arrived at a contradiction.
[Hence the supposition is false and the given statement is true.]

Section 4.4

2. Proof: Let the property P(n) be the sentence "ba is divisible by 4." We prove by strong
mathematical induction that this property is true for all integers n > 1.

Show that the property is true for n = 1 and n 2: b1 = 4 and b2 = 12 and both 4
and 12 are divisible by 4. So the property is true for n 1 and 2.

Show that if k > 2 and the property is true for all integers i with 1 < i < k,
then it is true for n = k: Let k > 2 be an integer, and suppose bi is divisible by 4 for all
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integers i with 1 < i < k. [This is the inductive hypothesis.] We must show that bk is divisible
by 4. But by definition of bl, b2 , b3, .. ., bk = bk-2 + bk-i. Since k > 2, 0 < k -2 < k and
1 < k - 1 < k, and so, by inductive hypothesis, both bk-2 and bk-1 are divisible by 4. But the
sum of any two numbers that are divisible by 4 is also divisible by 4 [exercise 15 of Section
3.3], so the sum of bk-2 and bk-1, which equals bk, is also divisible by 4 [as was to be shown].

3. Proof: Let the property P(n) be the sentence "'c, is even." We prove by strong mathematical
induction that this property is true for all integers n > 0.

Show that the property is true for n = 0, n = 1, and n = 2: co = 2, cl = 2, and
C2 = 6 and 2, 2, and 6 are all even. So the property is true for n = 0, 1, and 2.

Show that if k > 2 and the property is true for all integers i with 0 < i < k, then
it is true for n = k: Let k > 2 be an integer, and suppose ci is even for all integers i with
1 < i < k. [This is the inductive hypothesis.] We must show that ck is even. But by definition
of cO, c1 , c 2 , . . ., Ck = 3 Ck-3. Since k > 2, 0 < k - 3 < k, and so, by inductive hypothesis, Ck-3

is even. But the product of an even integer with any integer is even [exercise 42, Section 3.1
or Example 3.2.3], and so 3Ck-3, which equals Ck, is also even [as was to be shown].

5. Proof: Let the property P(n) be the inequality en < 3'. We prove by strong mathematical
induction that this property is true for all integers n > 0.

Show that the property is true for n = 0 , n = 1 , and n = 2: eo = 1, el = 2, and
e2 = 3 and 1 < 30 2 < 31X and 3 < 32

, So the property is true for n = 0, 1, and 2.

Show that if k > 2 and the property is true for all integers i with 0 < i < k,
then it is true for n = k: Let k be an integer with k > 2, and suppose the property is true
for all integers i with 0 < i < k. We must show that the property is true for k. But

hk = hk-± + hk-2 + hk-3 by definition of ho, hi, h2 ,...
hk < 3k-1 + 3k-2 + 3 k-3 by inductive hypothesis

=' hk < 3 k-3(32+ 3 + 1) because 3k-3. 3 2 = 3k- land 3k-3- 3 = 3 k-2

But 32+ 3 + 1 = 13 < 27 = 33. Hence by order properties of the real numbers (Appendix A,
T17 and T19),

hk < 3 k-3 3 3 = 3 k

[as was to be shown].

6. Proof: Let the property P(n) be the inequality fn < n. We prove by strong mathematical
induction that this property is true for all integers n > 1.

Show that the property is true for n = 1: fi = 1 and 1 < 1. So the property is true for
n =1.

Show that if k > 1 and the property is true for all integers i with 1 < i < k,
then it is true for n = k: Let k > 1 be an integer, and suppose fi < i for all integers i with
1 < i < k. /This is the inductive hypothesis.] We must show that fk < k. But by definition
of fl, f2,f3, ... , fk = 2. fLk/2] Since k > 1, 1 Lk/2i < k, and so, by inductive hypothesis,

fLkl2j < Lk/2j. Thus

A-= 2 - < 2 k 2k-2 | 2 ((k-1)/2) if k is odd - k-I if k is odd < k
fk ' 2 ~fLw2j2-' Lk/2 2- 2* (k/2) if k is even { k if k is even K

and so fk K k [as was to be shown].

8. Note that the proof for part (a) for this exercise is identical to the proof given as the answer
to exercise 5.

a. Proof: Let the property P(n) be the inequality h, < 3'. We prove by strong mathematical
induction that this property is true for all integers n > 0.
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Show that the property is true for n = 0, n = 1 , and n = 2: Note that ho = 1 < 30,

hi = 2 < 31, and h2 = 3 < 32. So the property is true for n = O, 1, and 2.

Show that if k > 2 and the property is true for all integers i with 0 < i < k,
then it is true for n = k: Let k be an integer with k > 2, and suppose the property is true
for all integers i with 0 < i < k. We must show that the property is true for k. But

hk = hk-l + hk-2 + hk-3 by definition of ho, h, h 2 ....
= hk < 3 k-1 + 3 k-2 + 3 k-3 by inductive hypothesis
=> hk < 3 k- 3(32+ 3 + 1) because 3k -332 = 3 k - 1 and 3k- 3 3 = 3 k -2

But 32+ 3 + 1 = 13 < 27 = 33 . Hence by order properties of the real numbers (Appendix A,
T17 and T19),

hk < 3 k -333= 3 k

[as was to be shown.

b. Proof: Let s be any real number such that s3 > S2 + S + 1, and let P(n) be the inequality
h, < s'. We prove by strong mathematical induction that this property is true for all integers
n > 2.

Show that the property is true for n = 2 , n = 3 , and n = 4: Because s > 1.83,
h2 = 3 < 3.3489 = 1.832 < S2, h3 = ho + h1 + h2  1 + 2 + 3 = 6 < 6.128487 = 1.833, and
h4 = h1 + h2 + h3 = 2 + 3 + 6 = 11 < 11.21513121 - 1.834. So the property is true for n = 2,
3, and 4.

Show that if k > 4 and the property is true for all integers i with 2 < i < k,
then it is true for n = k: Let k be an integer with k > 4, and suppose the property is true
for all integers i with 2 < i < k. We must show that the property is true for k. But

hk = hk -1 + hk-2 + hk-3
< k- + sk-2+ Sk-3 by inductive hypothesis

r> hk < k -
3

(s2 + s + 1) because sk- 3 .s2 = sk-1 and sk -3 5 = 5 k-22

=- hk < sk-3 .3 = 5 k by hypothesis about s, s 2 
+s+1< s 3

[as was to be shown].

9. Proof: Let the property P(n) be the inequality a, < (7) . We prove by strong mathematical

induction that this property is true for all integers n > 1.

Show that the property is true for n = 1 and n = 2: By definition of a1 ,a 2 ,a 3 ,...,

and 7 ) 49 7 7 2an
a, = 1 and a 2 = 3. But1 < (-) = = 31 > 3. So a and a 2 <

4 4 16 1644
thus the property is true for n = 1 and n = 2.

Show that if k > 2 and the property is true for all integers i with 1 < i < k,

then it is true for n = k: Let k > 2 be an integer, and suppose ai < (4) for all integers

i with 1 < i < k. [This is the inductive hypothesis.] We must show that ak <- () k. But by

definition of a1 ,a 2 ,a 3 ,..., ak = ak-1 + ak-2. Since k > 2,1 < k -2 < k-I < k, and so by

inductive hypothesis, ak-l < ( 7) and ak-2 < (K -2 . Adding the inequalities and using

the laws of basic algebra gives

a172 k -( 1 (7)k 2 (7) k - 2 7 (7)k -2(1)
ak-1 + ak-)2 <( + 4

(7) ( (44 < 7 49 (7)k-2 (7)2 7 )k

\4 \16J \4 16/ \4 4 \4/
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So aki1 + ak-2 < (7) [as was to be shown].

11. Proof: Let the property P(n) be the sentence "n is either a prime number or a product of
prime numbers." We prove by strong mathematical induction that this property is true for all
integers n > 2.

Show that the property is true forn = 2: When n = 2, the sentence is "2 is either a
prime number or a product of prime numbers." This sentence is true because 2 is prime.

Show that if k > 2 and the property is true for all integers i with 1 < i < k,
then it is true for n = k: Let k > 2 be an integer, and suppose that i is either a prime
number or a product of prime numbers for all integers i with 1 < i < k. [This is the inductive
hypothesis.] We must show that k is either a prime number or a product of prime numbers. In
case k is prime, the sentence is true. So suppose k is not prime. Then, by definition of prime,
k = rs for some positive integers r and s with r ; 1 and s + 1. By Example 3.3.3, r < k and
s < k, and, because neither r nor s equals 1, r < k and s < k. Thus, by inductive hypothesis,
each of r and s is either a prime number or a product of prime numbers. So, because k is the
product of r and s, k is a product of prime numbers [as was to be shown].

13. Proof: Let the property P(n) be the sentence "A sum of n even integers is even." We prove
by strong mathematical induction that this property is true for all integers n > 2.

Show that the property is true for n = 2: The property is true for n = 2 because any
sum of two even integers is even [Theorem 3.1.1].

Show that if k > 2 and the property is true for all integers i with 1 < i < k,
then it is true for n = k: Let k > 2 be an integer, and suppose that for all integers i with
1 < i < k, any sum of i even integers is even. [This is the inductive hypothesis.] We must
show that any sum of i + 1 even integers is even. Suppose a, + a2 + a3 +... + ai + ai,1 is any
sum of i + 1 even integers. By regrouping [for a formal justification of this step, see Section
8. 4, we have al + a 2 + a 3 + + ak- 1 + ak = (al + a2 + a3 + + ak-1) + ak, and by inductive
hypothesis a, + a2 + a3 + + ak- is even. Thus a, + a2 + a3 + --+ ak- + ak equals a sum
of two even integers and is, therefore, even by Theorem 3.1.1. [This is what was to be shown.]

14. Proof: Let the property P(n) be the sentence "If n is even, a sum of n odd integers is even,
and if n is odd, a sum of n odd integers is odd." We prove by strong mathematical induction
that this property is true for all integers n > 2.

Show that the property is true for n = 2: The property is true for n = 2 because any
sum of two odd integers is even [exercise 27, Section 3.1 or Example 3.2.3].

Show that if k > 2 and the property is true for all integers i with 1 < i < k,
then it is true for n = k: Let k > 2 be an integer, and suppose that for all integers i
with 1 < i < k, if i is even, any sum of i odd integers is even, and if i is odd, any sum of i
odd integers is odd. [This is the inductive hypothesis.] We must show that if k is even, any
sum of k odd integers is even, and if k is odd, any sum of k odd integers is odd. Suppose
al + a2 + a3 + + ak-l + ak is any sum of k odd integers.

Case 1 (k is odd): In this case k-1 is even, and so a, +a2 +a3 +- +ak-1 is even by inductive
hypothesis. Then al + a2 + a3 + + ak-l + ak = (al + a2 + a3 + + ak-l) + ak is a sum of
an even integer and an odd integer. So it is odd [exercise 19, Section 3.1 or Example 3.2.3].

Case 2 (k is even): Inthis case k-1 is odd, andso al+a2 +a3+ +ak- 1 is odd byinductive
hypothesis. Then a, +a 2 +a 3 + +ak-1 +ak = (a, +a 2 +a 3 + - +ak-1) +ak is a sum of
two odd integers. So it is even [exercise 27, Section 3.1 or Example 3.2.3].

Thus if k is even, any sum of k odd integers is even, and if k is odd, any sum of k odd integers
is odd [as was to be shown].
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108 Chapter 4: Sequences and Mathematical Induction

16. Conjecture: For all integers n > 0 the units digit of 3f is 1 if n mod 4 = 0, 3 if n mod 4 = 1,
9 if n mod 4 = 2, and 7 if n mod 4 = 3.

Proof /by strong mathematical induction]: Let the property P(n) be the sentence "The units
digit of 3' is 1 if n mod 4 = 0, 3 if n mod 4 = 1, 9 if n mod 4 = 2, and 7 if n mod 4 = 3."

Show that the property is true for n = 0, n = 1, n = 2, and n = 3: Whenn = O,
n mod 4 = 0 and the units digit of 30 = 1. When n = 1, n mod 4 = 1 and the units digit of
31 = 3 When n = 2, n mod 4 = 2 and the units digit of 32 = 9 And when n = 3, n mod
4 = 2 and since 33 27, the units digit of 33 = 7.

Show that if k > 3 and the property is true for all integers i with 1 < i < k,
then it is true for n = k: Let k > 3 be an integer, and suppose that for all integers i with

< i <k, theunits digit of3i is 1 ifi mod 4 =0,3 ifi mod 4=1, 9ifi mod 4=2, and7 if
i mod 4 = 3. We must show that the units digit Of 3k is 1 if k mod 4 = 0, 3 if k mod 4 = 1, 9
if k mod 4 = 2, and 7 if k mod 4 = 3.

Case I (k mod 4 = 0): In this case k = 4r for some integer r, and so k-I = 4r-1 = 4(r-1)+3.
Thus (k -1) mod 4 = 3, and, by inductive hypothesis, the units digit of 3 k-1 is 7. So
3k-1 = 10s + 7 for some integer s, and hence 3k = 3 3k-1 = 3(10s + 7) = 30s + 21 =
30s + 20 + 1 = (3s + 2) - 10 + 1. Because 3s + 2 is an integer, it follows that the units digit of
3k is 1.

Case 2 (k mod 4 = 1): In this case k = 4r+1 for some integer r, and so k- I = (4r+1) -1 = 4r.
Thus (k- 1) mod 4 = 0, and, by inductive hypothesis, the units digit of 3 k-1 is 1. So
3k- 1 = lOs+1 for some integer s, and hence 3k = 3 -3 k-1 = 3(10s+1) = 30S-+-3 = (3s) .10+3.
Because 3s is an integer, it follows that the units digit of 3 k is 3.

Case 3 (k mod 4 = 2): In this case k = 4r + 2 for some integer r, and so k - 1 = (4r + 2) 1
4r + 1. Thus (k -1) mod 4 = 1, and, by inductive hypothesis, the units digit of 3 k-1 is 3. So
3 k-1 = IOs+3 for some integer s, and hence 3 k = 3- 3 k-1 = 3(10s+3) = 30s+9 = (3s) *10+9.

Because 3s is an integer, it follows that the units digit of 3 k is 9.

Case 4 (k mod 4 = 3): In this case k = 4r + 3 for some integer r, and so k-1 = (4r + 3)-1 =
4r + 2. Thus (k -1) mod 4 = 9, and, by inductive hypothesis, the units digit of 3 k-1 is 9.

So 3 k-1 = lOs + 9 for some integer s, and hence 3 k = 3 - 3 k-1 = 3(10s + 9) = 30s + 27 =

30s + 20 + 7 = (3s + 2) - 10 + 7. Because 3s + 2 is an integer, it follows that the units digit of
3k is 7.

Hence in all four cases the units digit of 3 k is as specified fas was to be shown].

17. The inductive step fails when k = 1. The reason is that to go from k = 1 to k = 2, one

evaluates rk- 2 for k 1. But the inductive hypothesis only says that r' = 1 for all i

with 0 < i < k and when k = 1 then k - 2 = -1 < 0. Therefore one cannot deduce from the
inductive hypothesis that rk-2 = 1.

19. Proof: Suppose n is any integer that is greater than 1. Let S be the set of all positive integers
that are divisors of n. Then S has at least one element because n is a divisor of n. Hence
by the well-ordering principle for the integers, S has a least element, say p. Suppose that p is
not prime. Then p = rs for some positive integers r and s with r + 1 and s 5 1. Thus r is a
divisor of p and p is a divisor of n, and so, by the transitivity of divisibility (Theorem 3.3.2), r
is a divisor of n. Also, because s > 1 and p = rs, r :& p. But by Example 3.3.3, r < p, and thus
r < p. Therefore, r is in S and r is smaller than the least element of S, which is impossible.
Hence the supposition that p is not prime is false, and we can conclude that p is prime and,
thus, that n is divisible by the prime number p.

23. Proof: Suppose a and b are any integers that are not both zero. Let S be the set of all l)ositive
integers of the form ua + vb for some integers u and v.

We first show that S has one or more elements. Since a and b are not both zero, one of them
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is nonzero. Without loss of generality, we may assume that a ; 0. In case a > 0, let u = 1
and v = 0, and in case a < 0, let u =-I and v = O. In the first case, ua + vb = a E S, and in
the second case ua + vb = -a e S. So in either case, S has one or more elements. Hence by
the well-ordering principle for the integers, S has a least element, say m. Then m = uoa + sob
for some particular integers uO and vo.

We next show that m I a and m I b. By the quotient-remainder theorem, a = mq + r where
o < r < n. Then r = a - mq = a - (uoa + vob)q = (I - uoq)a - (voq)b. Thus by definition of
S. r E S (if r is positive) or else r = 0. But if r E S, then m < r (since m is the least element
of S) which is impossible because r < m. Hence r V S, and so r - 0 and m I a. A similar
argument shows that m I b. Hence m is a common divisor of a and b.

Finally we show that mi is the greatest common divisor of a and b. Suppose c is any integer
such that c a and c I b. Then a rc and b = sc for some integers r and s, and so
u0 a = uOrc (uor)c and vob = v0 sc = (vos)c. Since u0, r, vo, and s are all integers, c I u(a
and c vob, and so c I (uoa + vob) [by exercise 15 of Section 3.3]. Hence, if c I a and c I b
then c m. But since c I m and m > 0, then c < m. [If c is positive, this is true by Example
3.3.3. If c is negative, it is true because each negative integer is less than each positive integer.]
Therefore, m = ged(a, b).

24. No.

Counterexample 1: Let P(n) be "n :& 4." Then P(O), P(1), and P(2) are all true (because
0 7# 4, 1 34 4, and 2 + 4, ), and for all integers k > 0, if P(k) is true then P(3k) is true (because
if k / 4 then 3k #8 4). But when n = 4, the statement n + 4 is false. So it is not the case that
P(n) is true for all integers n > 0

Counterexample 2: Let P(n) be "n+24 is composite." Then P(O), P(1), and P(2) are all true
(because 24, 25, and 26 are composite), and for all integers k > 0, if P(k) is true then P(3k)
is true (because if k + 24 is composite then 3k + 24 is also composite in fact, 3k + 24 is
composite for any integer k > 0). But it is false that n + 24 is composite for all integers n > 0
(because, for instance, 5 + 24 = 29 is prime).

Counterexample 3: Let P(n) be "n = 0, or n = 1, or n = 2, or n = 3r for some integer r."
Then P(O), P(1), and P(2) are all true (because an or statement is true if any component is
true), and for all integers k > 0, if P(k) is true then P(3k) is true (also by definition of the
truth value of an or statement and by definition of P(n)). But P(n) is not true for all integers
n > 0 (because, for instance, P(4) is not true).

(There are many other counterexamples besides these two.)

25. Suppose P(n) is a property that is defined for integers n and suppose the statement "P(n)
is true for all integers n > a" can be proved using strong mathematical induction. Then for
some integer b the following two statements are true:

1. P(a), P(a + 1), P(a + 2), ... , P(b) are all true.

2. For any integer k > b, if P(i) is true for all integers i with a < i < k, then P(k) is true.

We will show that we can reach the conclusion that P(n) is true for all integers n > a using
ordinary mathematical induction.

Proof: Let Q(n) be the property "P(j) is true for all integers j with a < j < n."

Show that the property is true for n = b: For n = b, the property is "P(j) is true for all
integers j with a < j < b." But this is true by (1) above.

Show that for all integers k > b, if the property is true for n = k, then it is true
for n = k + 1: Let k be any integer with k > b and suppose Q(k) is true. By definition of Q
this means that P(j) is true for all integers j with a < j < k. It follows from (2) above that
P(k + 1) is also true. Hence P(j) is true for all integers j with a < j < k + 1. By definition
of Q this means that Q(k + 1) is true.
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110 Chapter 4: Sequences and Mathematical Induction

It follows by the principle of ordinary mathematical induction that Q(n) is true for all integers
n > b. From this and from (1) above, we conclude that P(n) is true for all integers n > a.

26. Example 1 (k is even): Let k = 42. Then k/2 = 21 = 16 + 4 + 1 = I 24+ 0.23 + 1 22+ 0.2 + 1.
To obtain the binary representation for k, multiply the representation for k/2 by 2 and add
0 (=0.1): k =2(1.24+0. 23+1 .22+0.2+1)+0. = 1.25+0.24+1.23+0 22+1 2+0 .1.
Thus k2 = 1010102.

Example 2 (k is odd): Let k = 43. Then (k-1)/2 = 21 = 16+4+1 = 1.24+0.23+1 .22+02+1.
To obtain the binary representation for k, multiply the representation for (k -1)/2 by 2 and
add 1 (= 1 1): k = 2.(1.24+0.23+1 22+0.2+1)+1.1 = 1.25+0 24+1.23+0.22+1.2+1.1.
Thus k2 = 1010112-

27. Proof: Consider the property "n can be written in the form

n = Cr 3 + Cr-13 + + C2 3 2 + C 3 + co

where r is a nonnegative integer, c, = 1 or 2 and cj = 0, 1, or 2 for all j = 0, 1, 2, ... , r - 1."

We will show that the property is true for all integers n > 1.

Show that the property is true for n = 1: Observe that 1 = cr3r for r = 0 and Cr = 1.
Thus 1 can be written in the required form.

Show that if k > 1 and the property is true for all integers i with 1 < i < k,
then it is true for n = k: Let k be an integer with k > 1, and suppose that for all integers
i with 1 < i < k, i can be written in the required form:

i = Cr 3 + Cr 13 + * + C2 -3 + C * 3 + co

where r is a nonnegative integer, c, = 1 or 2 and cj = 0, 1, or 2 for all j = 0,1, 2,, ... , r -1.

We must show that k can be written in the required form. By the quotient-remainder theorem,
k can be written as 3m, 3m+1, or 3m+2 for some integer m. In each case m satisfies 0 < m < k,
and so m can be written in the required form:

m = Cr .3 r+ Cr-13 + + C23 
2 + cl 3 + co

where r is a nonnegative integer, Cr = 1 or 2 and Cj = 0, 1, or 2 for all j = 0,1,2,, .... , r -1.
Then

3m = Cr- 3+ + Cr,13 r+ .+ C2 3 3 + Cl 32 + Co 3 + 0

3m + 1 -c_ .3r+ + Cr-13 + + C2 33 
+ C 32+ co 3 + 1

3m + 2 = Cr- 3 + Cr-3 +  + C2 3 + Ci 32+ co 3 + 2

which all have the required form. Hence k can be written in the required form /as was to be
shown].

28. Theorem: Given any nonnegative integer n and any positive integer d, there exist integers q
and r such that n = dq + r and 0 < r < d.

Proof: Let a nonnegative integer d be given, and for each integer n let P(n) be the property
"3 integers q and r such that n = dq + r and 0 < r < d."

Show that the property is true for n = 0: We must show that there exist nonnegative
integers q and r such that 0 = dq + r and 0 < r < d. Let q = r = 0. Then 0 = d 0 + 0 and
0 < 0 < d. Hence the theorem is true for n = 0.

Show that for all integers k > 0, if the property is true for n = k then it is true
for n = k + 1: Let k > 0 be given, and suppose there exist integers q' and r' such that
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k = dq' + r' and 0 < r' < d. [We must show that there exist nonnegative integers q and r such
that k + 1 = dq + r and O < r < d.] Then k + 1 = (dq' + r') + 1. Note that since r' is an
integer and 0 < r' < d, then either r' < d -1 or r' = d -1.

Case 1 (r' < d -1): In this case, k + = (dq' + r') + 1 = dq' + (r' + 1). Let q = q' and
r = r' + 1. Then by substitution, k + 1 = dq + r. Since r' < d -1 then r = r' + 1 < d, and
since r = r' + 1 and r' > 0, then r > 0. Hence 0 <r <d.

Case 2 (r' = d -1): In this case, k + 1 = (dq' + r') + 1 = dq' + (r' + 1) = dq' + ((d -1) + 1) -
dq' + d = d(q' + 1). Let q = q' + 1 and r = 0. Then by substitution k + 1 = dq + r, and since
r = 0 and d> 0, 0 < r < d.

Thus in either case there exist nonnegative integers q and r such that k + 1 = dq + r and
0 < r < d [as was to be shown.

29. Proof: Let P(n) be a property that is defined for integers n, and let a be a fixed integer.
Suppose the statement "P(n) is true for all integers n > a" can be proved using ordinary
mathematical induction. Then the following two statements are true:

(1) P(a) is true;

(2) For all integers k > a, if P(k) is true then P(k + 1) is true.

We will show that we can use the well-ordering principle to deduce the truth of the statement
"P(n) is true for all integers n > a." Let S be the set of all integers greater than or equal to a
for which P(n) is false. Suppose S has one or more elements. [We will derive a contradiction.]
By the well-ordering principle, S has a least element, b, and by definition of S, P(b) is false.
Now b -1 > a because S consists entirely of integers greater than or equal to a and b f a
because P(a) is true and P(b) is false. Also P(b -1) is true because b 1 < b and b is the
least element greater than or equal to a for which P(n) is false. Thus b -1 > a and P(b - 1) is
true, and so by (2) above, P((b -1) + 1), which equals P(b), is true. Hence P(b) is both true
and false, which is a contradiction. This contradiction shows that the supposition is false, and
so S has no elements. But this means that P(n) is true for all integers n > a.

30. Proof: We first use the principle of ordinary mathematical induction to prove the well-ordering
principle for the integers. Let S be a set of integers with one or more elements all of which
are greater than or equal to some integer a, and suppose S does not have a least element. Let
P(n) be the property "i V S for any integer i with a < i < n."

Show that the property is true for n = a: If a were in S, then it would be the least
element of S because every element of S is greater than or equal to a. So, since S is assumed
not to have a least element, a V S.

Show that for all integers k > a, if the property is true for n = k then it is true
for n = k + 1: Let an integer k > a be given, and suppose that i V S for any integer i with
a < i < k. [This is the inductive hypothesis.] It follows that if k + 1 were an element of S, it
would be the least element of S. But this is impossible because S is assumed not to have a
least element. Thus i g S for any integer i with a < i < k + 1.

Hence, by ordinary mathematical induction, i V S for any integer i with a < i < n, and,
therefore, S does not contain any integer greater than or equal to a. But this contradicts
the fact that S consists entirely of integers greater than or equal to a and has one or more
elements. Thus the supposition that S does not have a least element is false, and so S has a
least element.

This shows that the well-ordering principle for the integers follows from the principle of ordi-
nary mathematical induction, and, therefore, that any statement that can be proved by the
well-ordering principle for the integers can be proved by first using the principle of ordinary
mathematical induction to deduce the well-ordering principle for the integers and then using
the well-ordering principle for the integers to deduce the given statement.
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Section 4.5

2. Proof: Suppose the condition m + n is odd is true before entry to the loop. Then mold + n1ld
is odd. After execution of the loop, mnew = meId + 4 and nnew = nold -2. So mnew + Anew =
(m.Id + 4) + (nld -2) = mold + nold + 2. But mold + nold is odd and 2 is even, and the sum
of an odd and an even integer is odd /see exercise 19 of Section 3.1 or Example 3.2.3]. Hence
mnew + nnew is odd.

4. Proof: Suppose the condition 2' < (n + 2)! is true before entry to the loop. Then 20'-d <
(nold + 2)!. After execution of the loop, nnew = nod + 1. So 2nnew = 2n0d+l = 2 . 2 no. 1 <

2 (nold + 2)! < (nold + 3) - (neld + 2)! [because ne0 d > 0] = (n.od + 3)! = (nfnew + 2)!. Hence
2nnw < (n,,0w + 2)!.

5. Proof: Suppose the condition 2n + 1 < 2n is true before entry to the loop. Then 2ne0 d + 1 <
2n-ld. After execution of the loop, nnew = noid + 1. So 2nne, + 1 = 2(nold + 1) + 1
(2nold + 1) + 2 < 2n1ld + 2. But since nold > 3, 2 < 2n

0
ld, and so 2'o1d + 2 < 2n0ld + 2n.1d -

2 2nold = 2nld+l = 2n- _. Putting the inequalities together gives 2nnew + 1 < 2n.'d + 2 < 2n.,-
[as was to be shown].

7. Proof:

I. Basis Property: I(O) is the statement "largest = the maximum value of A[1] and i = 1."
According to the pre-condition this statement is true.

II. Inductive Property: Suppose k is a nonnegative integer such that GAI(k) is true before
an iteration of the loop. Then when execution comes to the top of the loop, i 74 m, largest
= the maximum value of A[1],A[2],...,A[k + 1], and i = k + 1. Since i 54 m, the guard
is passed and statement 1 is executed. Now before execution of statement 1, iold = k + 1.
So after execution of statement 1, inew = iold + 1 = (k + 1) + 1 = k + 2. Also before
statement 2 is executed, largest,, = the maximum value of A[1], A[2],.. ., A[k + 1]. Statement
2 checks whether A[i110,] = A[k + 2] > largestold. If the condition is true, then largestliew
is set equal to A[k + 2] which is the maximum value of A[1], A[2],. . ., A[k + 1], A[k + 2]. If
the condition is false then A[k + 2] < largestold, and so largestold is the maximum value of
A[1],A[2],..., A[k + 1], A[k + 2]. Now in this case since the condition is false, the variable
largest retains its previous value, and so largestnew = largestold. Thus in either case largestnew
is the maximum value of A[1], A[2],.. ., A[k + 1], A[k + 2] and iner - k + 2. Hence I(k + 1) is
true.

III. Eventual Falsity of Guard: The guard G is the condition i 54 m. By I and II, it is
known that for all integers n > 1, after n iterations of the loop I(n) is true. Hence after m -1
iterations of the loop I(m) is true, which implies that i = m and G is false.

IV. Correctness of the Post-Condition: Suppose that N is the least number of iterations
after which G is false and I(N) is true. Then (since G is false) i = m and (since I(N) is true)
largest = the maximum value of A[1], A[2], .. ., A[N + 1] and i = N + 1. Putting these together
gives m = N + 1 and so largest = the maximum value of A[1], A[2],..., A[m], which is the
post-condition.

9. Proof:

I. Basis Property: 1(0) is the statement "both a and A are even integers or both are odd
integers and a > -1." According to the pre-condition this statement is true.

II. Inductive Property: Suppose k is a nonnegative integer such that GA I(k) is true before
an iteration of the loop. Then when execution comes to the top of the loop, aeld > 0 and a(,(l
and A are both even integers or both are odd integers, and aeid >-1. Execution of statement
1 sets anew equal to ald -2. Hence anew has the same parity as aeld which is the same as
A. Also since aOId > 0, then anew - aold -- 2 > 0 -2 = -2. But anew is an integer. So since
anew > -2, anew > -1. Hence after the loop iteration, I(k + 1) is true.
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III. Eventual Falsity of Guard: The guard G is the condition a > 0. After each iteration
of the loop, anew = ald -2 < aId, and so successive iterations of the loop give a strictly
decreasing sequence of integer values of a which eventually becomes less than or equal to zero,
at which point G becomes false.

IV. Correctness of the Post-Condition: Suppose that N is the least number of iterations
after which G is false and I(N) is true. Then (since G is false) a < 0 and (since I(N) is true)
both a and A are even integers or both are odd integers, and a > -1. Putting the inequalities
together gives -1 < a < 0, and so since a is an integer, a -1 or a = 0. Since a and A have
the same parity, then, a = 0 if A is even and a =1 if A is odd. This is the post-condition.

10. I. Basis Property: I(0) is the statement "(1) a and b are nonnegative integers with gcd(a, b) =
gcd(A, B), and (2) at most one of a and b equals 0, and (3) 0 < a + b < A + B - 0." According
to the pre-condition, A and B are positive integers and a = A and b = B, and so I(0) is true.

II. Inductive Property: Suppose k is a nonnegative integer such that GA I(k) is true before
an iteration of the loop. Then when execution comes to the top of the loop, aold 7 0, bold 7# 0
and

(1) aold and bold are nonnegative integers with gcd(aold, bold) = gcd(A, B),
(2) at most one of aold and bold equals 0, and
(3) 0 < aeld + bold < A + B - k.

After execution of the statement "if a > b then a := a - b else b : b- a", we have the
following:

(1) Case 1 (aold > bold): In this case anew = ae0 (- bold > 0 and bew= bold > 0, and so both
anew and bnew are nonnegative. Also gcd(anew, bnew) = gcd(aold -bol(, bold) = gcd(a.ld, bold)
by Lemma 3.8.3. But gcd(aold, bold) = gcd(A, B) by (1) above. Hence gcd(anew, bne,,)
gcd(A, B).

Case 2 (aold < bold): In this case bnew = bold- aold > 0 and anew = aold > 0, and so both
anew and bnew are nonnegative. Also gcd(anew, bnew) = gcd(aold, bold- aId) = ged(aOld, bold)
by Lemma 3.8.3. But gcd(aold, bold) = gcd(A, B) by (1) above. Hence gcd(anew, bnew)
gcd(A, B).

(2) Because G is true aold 5 0 and bold #& 0, and by (1) above both aeld and bold are nonnegative.
Hence aold > 0 and bold > 0. Since either anew = aeld or bnew = bold, at most one of anew or
bnew equals zero.

(3) Observe that

a aold - bold + bold if aold > bold _ aOl(1 if aold > bold
new new - aold + bold -aeld if bold > aold l bold if bold > aold

But since aold 5 0 and bold #7 0 and aold and bold are nonnegative integers, then aold > 1
and bold > 1. Hence aold -1 > 0 and bold - 1 > 0, and so aold < a0 ld + bold -1 and
bold < bold + aold -1. But by (3) above aold + bold < A + B -k. It follows that anew + boew <
aold + bold-1 < A + B k- A + B- (k + 1). Hence after the loop iteration, I(k + 1) is
true.

III. Eventual Falsity of Guard: The guard G is the condition a # 0 and b 54 0. By
II above, for all integers n, after n iterations of the loop, a > 0, b > 0 at most one of a
and b equals 0, and 0 < a + b < A + B - n. Thus if A + B iterations of the loop occur,
0 < a + b < A + B -(A + B) = 0, and, since a > 0 and b > 0. it would follow that both a
and b are 0, which would mean that G is false. Therefore, G becomes false either after A + B
iterations of the loop or, possibly, after some fewer number of iterations.

IV. Correctness of the Post-Condition: Suppose that N is the least number of iterations
after which G is false and I(N) is true. Then (since G is false) a = 0 or b = 0, and (since I(N) is
true) both a and b are nonnegative, at most one of a and b equals 0, and gcd(a, b) = gcd(A, B).
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fgcd(O, b) if a -0
Thus gcd(a, b) = gcd(a, 0) if b 0 . By Lemma 3.8.1, gcd(0, b) = b and gcd(a, 0) = a.

Hence one of a or b is zero and the other is nonzero, and gcd(A, B) equals whichever of a or b
is nonzero.

Alternative Solution to Part III: Omit part (3) of the loop invariant, and change the proof in
III to the following: The guard G is the condition a + 0 and b 7 0. Observe that after each
iteration of the loop

alew~b-ew ao1( -bold + bold if aold > bold f aold if aol( > bold < aold+bold.
aold + bold -aold if bold > ao()( X bold if b0 ld( > aold

Therefore, the values of a + b form a strictly decreasing sequence of nonnegative integers (since
a and b are nonnegative). By the well-ordering principle, this sequence has a least value. Let
N be the least integer for which this value is attained, and let aN + bN be this least value.
Suppose G is true after the Nth iteration of the loop. [We will derive a contradiction.] Then
the loop iterates another time, which results in new values aN+l and bN+l for a and b. But
by the argument above, aNq-1 + bN+1 < aN + bN. This contradicts the fact that av + bN is
the least value of the sum a + b. Hence the supposition is false, and so G is false after the Nth
iteration of the loop.

11. I. Basis Property: I(0) is the statement "xy + product = A. B. According to the pre-
condition, A and B are positive integers, x = A and y'= B, and product = 0. So 1(0) is
true.

II. Inductive Property: Suppose k is a nonnegative integer such that GA I(k) is true before
an iteration of the loop. Then when execution comes to the top of the loop, xBold Yold +
productold = A. B.

After execution of the statement "r := y mod 2," there are two possibilities: r = 0 or r - 1.

(1) Case 1 (r = 0): In this case, Yoldl = 2q, for some integer q, and x1 ew = 2 .Xold and Ynew = Yold

div 2 = Yold/ 2 = q. Also, because the value of product is unchanged, product,,,, = producto(d.
Hence, Knew 'Yew+productriew = (2 Xold) (Yold/2)+productld = Xold Yold+productold = A. L.

Case 2 ((r = 1): In this case, yold = 2q + 1, for some integer q, productl(,w = productvld + Xold,
and Yniew = yold -1. Also, because the value of x is unchanged, Xnew = Xold. Hence, Xnew
yje ±+productiiew = Xold (Yold 1) ± (productold +Xold) = Xold 'Yold -Xold + productpld +±Xold -
Xold Iyold + productold = A B.

Thus, in either case, xtjew Yojew + product,,, = A * B. Hence after the loop iteration. I(k + 1)
is true.

III. Eventual Falsity of Guard: The guard G is the condition y #4 0. Let S be the set of
all values of y that result from an iteration of the loop. Now the initial value of y is a positive
integer and each iteration of the loop either cuts the value of y in half or reduces it by 1.
Thus all elements of S are integers, and the only way a value of y can become negative is for
a previous value to be 0. But y = 0 would prevent the iteration of the loop that could make y
negative. Hence all elements of S are nonnegative integers. By the well-ordering principle, S
has a least element, m. If m > 0, then after the iteration in which y would obtain the value m,
the loop would iterate again and a new value of y would be obtained that would be less than
m. This would contradict m's being the least element of S. It follows that the least element
of S equals 0, and so the guard condition is eventually false.

IV. Correctness of the Post-Condition: Suppose that N is the least number of iterations
after which G is false and l(N) is true. Then (since G is false) y = 0, and (since l(N) is true)
x- y + product = A. B. But because y = 0, this equation becomes product = A . B. which is
the post-condition of the loop.
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12. a. Suppose the following condition is satisfied before entry to the loop: "there exist integers u,
v, s, and t such that a = uA + vB and b = sA + tB." Then

aold = UoldA + VoldB and bold = SoldA + toldB,

for some integers uold, void, sold, and told. Observe that bne, = rnew = aold mod bold. So by the
quotient-remainder theorem, there exists a unique integer qnew with aold = bold qinew + rnlew =
bold qnew + bnew. Solving for bnew gives

bnew aold -bold q qnew = (UoldA + VoldB) - (SoldA + toldB)qnew

(Uold- Soldqnew)A + (Void -toldqnew)B.

Therefore, let snew = Uold -Soldqnew and tnew = Vold- toldqnew. Also since anew = bold =

soldA + toldB, let unew = Sold and Vnew = told. Hence anew = Unew - A + Vnew B and

bnew = Snew A + tnew . B, and so the condition is true after each iteration of the loop and
hence after exit from the loop.

b. Initially a = A and b = B. Let u = 1, v = 0, s = 0, and t = 1. Then before the first
iteration of the loop, a = uA + vB and b = sA + tB as was to be shown.

c. By part (b) there exist integers u, v, s, and t such that before the first iteration of the
loop, a = uA + vB and b = sA + tB. So by part (a), after each subsequent iteration of the
loop, there exist integers u, v, s, and t such that a = uA + vB and b = sA + tB. Now after
the final iteration of the while loop in the Euclidean algorithm, the variable gcd is given the
current value of a. (See page 196.) But by the correctness proof for the Euclidean algorithm,
gcd = gcd(A, B). Hence there exist integers u and v such that gcd(A, B) = uA + vB.

d. The method discussed in part (a) gives the following formulas for u, v, s, and t:

Vnew = told, Snew = Uold -Soldqnew, and tnew Vold - toldqnew,

where in each iteration qnew is the quotient obtained by dividing aold by bold. The trace table
below shows the values of a, b, r, q, gcd, and u, v, s, and t for the iterations of the while loop
from the Euclidean algorithm. By part (b) the initial values of u, v, s, and t are u = 1, v = 0,
s = 0, and t = 1.

r 18 12 6 0
q 2 8 1 2
a 330 156 18 12 6
b 156 18 12 6 0

gcd 6
u I 0 1 -8 9
v 0 1 -2 17 -19
s 0 1 -8 9 -26
t 1 -2 17 -19 55

Since the final values of gcd, u, and v are 6, 9 and -19 and since A = 330 and B
have ged(330, 156) = 6 = 330u + 156v = 330 9 + 156- (-19), which is true.

156, we

Unew = Sold,
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Chapter 5: Set Theory

The first section of this chapter introduces the structures of set and ordered set and illustrates them
with a variety of examples. The aim of this section is to provide a solid basis of experience for
deriving the set properties discussed in the remainder of the chapter.

Students of computer science may be motivated to take seriously the formal structures and
notation of set theory if they are shown a relation between them and the formal structures and
notation of computer science. In programming, for instance, it is important to distinguish among
different kinds of data structures and to respect the notations that are used to refer to them.
Similarly, in set theory it is important to distinguish between, say, {1, 2, 3} and (1, 2, 3) or between
((a, v), w) and (u, (v, w)).

The reason for delaying discussion of set theory to this chapter is that considerable sophistication
is needed to understand the derivations of set properties. Even after having studied the first four
chapters of the book, many students have difficulty constructing simple element proofs. One reason
for the difficulty is a tendency for students to interpret "if x e A then x e B" as "x e A and
x E B". I have found this tendency to be quite strong. For example, even when I tell students
that part of a test will be on definitions, specifically warn them against this error, and repeatedly
emphasize the dynamic if-then nature of the definition of subset, there are always students who
write the definition as an and statement anyway. Part of the reason for the misunderstanding may
be that if it is true for a particular x that "if x E A then x E B" and if x C A, then the statement
"x E A and x e B" is also true. In any case, you may be taken aback by the confusion some of your
students manifest in tackling the proofs of Section 5.2. However, many students who have difficulty
at the outset catch on to the idea of element proof eventually, particularly if given feedback on their
work through discussion of student presentations of proofs at the board or if allowed to resubmit
some homework problems for a better grade. And at this stage of the course, most students actually
enjoy the "algebraic" derivation of set theory properties, often negotiating to use this method rather
than the element method on tests.

It is possible to cover the material of this chapter lightly and still give students a bare introduction
to the idea of element proof. One way to do so is to start with Section 5.1, making sure to assign
some of exercises 14-17. Then you would simply state the various set properties from Section 5.2,
perhaps giving a proof or two using element arguments but not asking students to write such proofs
themselves. Instead you could assign the "algebraic" proofs from Section 5.3.

Some of the set theory properties developed in Section 5.2 are used to derive counting principles
in Chapter 6. However, you can cover Chapter 6 before Chapter 5 by referring to those properties in
informal terms. For instance, if you are on the quarter system, you might consider covering Chapters
1-4 and 6 during the first quarter and leaving Chapter 5 to start the second quarter. This allows
time for the more abstract ideas of Chapters 3 and 4 to settle in before the final examination, while
ending the course with material that is concrete and of obviously practical use. Then the second
quarter could start with sets and move on to other discrete structures such as functions, relations,
and graphs.

Comments on Exercises

Exercise Set 5.1: #14-17 are useful for introducing students to the idea of element argument as
preparation for Section 5.2. #16 and #17 are also preparation for understanding the equivalence of
various representations of congruence classes, which are discussed in Section 10.3. The discussion of
partitions in Section 5.1 is also part of the groundwork for the discussion of equivalence relations.
#23 and #25 are especially helpful as background for understanding congruence classes of integers
module n.
Exercise Set 5.3: #21 is a warm-up exercise for the proof of the theorem that a set with n elements
has 2' subsets. You might assign this exercise the day before you present the theorem in class.
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Section 5.1

2. No. {4} is the set whose only element is 4. This does not equal the number 4.

3. A = D

4. b. T = {O,2}

e. W = 0 (There are no integers that are both greater than -1 and less than -3.)

f. X = Z (Every integer u satisfies at least one of the conditions u < 4 or u> 1.)

5. c. Yes, because {0} is the set that contains the one element 0.

d. No, because 0 has no elements and thus it cannot contain the element 0.

6. b. In words: The set of all x in the universal set U such that x is in A or x is in B.

Shorthand notation: A U B.

c. In words: The set of all x in the universal set U such that x is in A and x is not in B.

Shorthand notation: A -B.

d. In words: The set of all x in the universal set U such that x is not in A.

Shorthand notation: AC.

7. b. Yes. Every element in C is in A.

c. Yes. Every element in C is in C.

8. c. No. d. Yes e. Yes. g. Yes h. No j. Yes

9. f. B -A= {6} g. B U C= {2,3,4,6,8,9} h. B n C = {6}

11.
a. AUB = {xERj- 3<x<2} b. AnB = {xER -1<x<O}
c. Ac = {xER|x<-3orx>O} d. AUC = {xeR - 3<x<Oor6<x<8}
e. AnC = 0 f. BC = {xGRx<-1 orx>2}
g. ACnBC {xeRx< -3orx>2} h. ACUBC ={xERx <-orx>O}
i. (An B)c = {xERjx<-lorx>O} j. (AUB)C ={xeRx<-3orx>2}

Note that (An B)C = AC U BC and that (AU B)c = AC n BC.

12. a. True: Every positive integer is a rational number.

c. False: There are many rational numbers that are not integers. For instance, 1/2 e Q but
1/2 V Z.

e. True: No integers are both positive and negative.

f. True: Every rational number is real. So the set of all numbers that are both rational and
real is the same as the set of all numbers that are rational.

g. True: Every integer is a rational number, and so the set of all numbers that are integers or
rational numbers is the same as the set of all rational numbers.

h. True: Every positive integer is a real number, and so the set of all numbers that are both
positive integers and real numbers is the same as the set of all positive integers.

i. False: Every integer is a rational number, and so the set of all numbers that are integers
or rational numbers is the same as the set of all rational numbers. However there are many
rational numbers that are not integers, and so Z U Q = Q 5 Z.

13. b. Negation: ' a set S such that S C Q+ and S Z Q -. The negation is true. For example let
S = {1/2}. Then S C Q+ and S Z Q-.
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14. c. Yes. Every integer that is divisible by 6 is also divisible by 3.

d. R n S - {u E Z u is divisible by 2 and u is divisible by 3}
={u c Z I u is divisible by 6} = T

15. a. No. For example, 5 E A because 5 = 5. 1, but 5 ? 20k for any integer k, and so 5 ¢ B.

b. Yes: If n is any element of B, then n = 20k for some integer k. Thus n = 5(4k) and so,
since 4k is an integer, n E A.

17. c. No. For example, 8 E D because 8 =3 3 - 1. But 8 ¢ A because 8 5i -1 for any integer
i. (For if 8 = 5i -1 for some integer i, solving for i would give 5i = 9, or i = 9/5, which is not
an integer.)

d. Yes.
Suppose n e B. By definition of B, n = 3j + 2 for some integer j. But then n = 3j + 2 -

3j + 3 - 1 = 3(j + 1)- 1. Let s = j + 1. Then s is an integer and n = 3s- 1. So by definition
of D, n e D. Hence any element of B is in D, or, symbolically, B C D.

Conversely, suppose q e D. By definition of D, q = 3s -1 for some integer s. But then
q = 3s - 1 = 3s - 3 + 2 = 3(s - 1) + 2 for some integer s. Let j = s - 1. Then j is an integer
and q = 3j + 2. So by definition of B, q E B. Hence any element of D is in B, or, symbolically,
D C B.

Since B C D and D C B, by definition of set equality B = D.

18. b

19.

c. U

20. b. An (B U C) ={a,b,c}fn{b,c,d,e} = {b,c}, (An B)UC = {b,c}U {b,c,e} = {b,c,e}, and
(An B)U(An C)= b,c} U{b,c} = {b,c}. Hence An (B U C)= (An B)U(An C).

d. (A - B) - C = {a} - {b, c, e} = {a} and A - (B - C) = {a, b,c} - {d} = {a, b, c. These
sets are not equal.
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21.

b c d

U U

e f

Region shaded I I I is A
Region shaded is B"

Cross-hatched region is A 'nB C

22. b. Yes. Every element in {p, q, u, v, w, x, y, z} is in one of the sets of the partition and no
element is in more than one set of the partition.

c. No. The number 4 is in both sets {5,4} and {1,3,4}.

e. Yes. Every element in {1,2,3,4,5,6,7,8} is in one of the sets of the partition and no
element is in more than one set of the partition.

24. Yes. Every real number x satisfies exactly one of the conditions: x > 0 or x = 0 or x < 0.
(See property T16 of Appendix A.)

25. Yes. By the quotient-remainder theorem, every integer can be represented in exactly one of
the following forms: 4k or 4k + 1 or 4k + 2 or 4k + 3 for some integer k.

27. b. X x Y = {(a, x), (a,y), (b, x), (b,y)}

9 <(X x Y) = {0,{(a,x)},{(ay)},{(b,x)},{(b,y)},{(a,x), (a,y)}{(a,x) (bx)}
{(a,x), (b, y)}, {(a, y), (b, x)}, {(a,y), (b, y)}, {(b, 2), (b, y)},

{(a, ), (a, y), (b, x)}, {(a, x), (a, y), (b, y)}, {(a, x), (b, x), (b, y)},
{(a, y), (b, x), (b, y)} {(a, x), (a, y), (b, x), (b, y)}}

28. a. 9P(O) = {0}

c. 1~~()) 0,{0}, {0},{0 {}}

29. b. B x A {(a, x), (a, y), (a, z), (a, w), (b, x), (b, y), (b, z), (b, w)}

c. A x A = {(x,x), (x,,y),(X,z), (X,w), (y,'X), (yy), ('yz),(y,w),(z,'X), (z,'y),(zz), (z, w),
(w, x), (w, y), (w, z), (w, w)}

d. B x B - {(a,a),(a,b),(b,a),(b,b)}

30. b. (A x B) x C ={((1,u), m), ((1, u), n),((I,v), m),((I,v),n), ((2, u), m), ((2, u), n), ((2, v), m),
((2, v),n), ((3, u),rm), ((3, u), n), ((3, v),rm), ((3, v), n)}

c. A x B x C {(1, u, in), (1, u, n), (1, v, m), (1, v, n), (2, u, m), (2,u, n), (2,v, in), (2, v, n),
(3, u, mi), (3, u, n), (3, v, m), (3, v, n)}

I
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32.

2 I 1 121 3 I
i 1 2 3 1 2 3 4 5
found no yes - no - -
answer A C B A q B

33. Algorithm: Testing Whether x C A

[This algorithm checks whether an element x is in a set A, which is represented as a one-
dimensional array a/1],a/2],. . . ,a/n]. Initially answer is set equal to "x $ A." Then for succes-
sive integers i from 1 to n, x is compared to a/i]. If at any stage x=afi], the value of answer
is changed to "x E A" and iteration of the loop ceases.]

Input: a[1],a[2],...,a[n] [a one-dimensional array], x [an element of the same data type as
the elements of the array!

Algorithm Body:

i :=1, answer := "x V A"

while (i < n and answer= "x V A")

if x = a[i] then answer := "x G A"

i:=i+1

end while

Output: answer [a string]

Section 5.2

1. c. (1) A (2) BnC

4. a.AUB C B b.AUB c.xEB d.A e.or f.B g.A h.B i.B

7. Proof:

Suppose A and B are sets.

(A n B)c C AC U BC: Suppose x G (An B)C. By definition of complement, x 0 An B, which
means that it is false that (x is in A and x is in B). By De Morgan's laws of logic, this implies
that x is not in A or x is not in B, which can be written x V A or x f B. Hence x e Ac or
x E BC by definition of complement. It follows by definition of union that x X AC U BC. [Thus
(A n B)c c Ac U Bc by definition of subset.]

AC U Bc C (A n B)C: Suppose x C AC U BC. Then by definition of union x E Ac or x E BC.
By definition of complement x V A or x i B. In other words, x is not in A or x is not in B.
By De Morgan's laws of logic this implies that it is false that (x is in A and x is in B), which
can be written x V A n B by definition of intersection. Hence by definition of complement,
x E (A n B)C. [Thus Ac U Bc C (A n B)c by definition of subset.]

[Since both set containments have been proved, (A n B)c = AC U Bc by definition of set
equality.]

9. Proof: Let A, B, and C be any sets.

(A-B) n (C-B) C (A n C)-B: Suppose x E (A - B) n (C - B). By definition of
intersection, x E A -B and x E C - B, and so, by definition of set difference, x E A and x ¢ B
and x E C and x ¢ B. To summarize: x C A and x C C and x V B. Hence, by definition of
intersection, x E A n C and x ¢ B, and by definition of set difference, x c (A n C) -B. [Thus
(A - B) n (C - B) C (A n C) - B by definition of subset.]
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(A n C) -B C (A - B) n (C - B): Suppose x E (A n C) - B. By definition of set differ-
ence, 2 E (A n C) and x V B, and by definition of intersection, x e A and x C C and x g B.
Thus it is true that x E A and x V B and x C C and x ¢ B, and so by definition of set differ-
ence, x E A -B and x c C -B. Therefore by definition of intersection, x E (A -B) n (C - B).
[Thus (A n C) -B C (A -B) n (C -B) by definition of subset.j

[Since both subset containments have been proved, (A - B) n (C -B) = (A n C) -B by
definition of set equality.]

10. Proof: Let A and B be any sets.

A u (A n B) C A: Suppose x C AU (An B). By definition of union, x E A or x C An B. In
case x c A, then clearly x c A. In case x c A n B, then, by definition of intersection, x E A
and x E B, and so, in particular, x c A. Hence in either case x C A. /Thus A U (A n B) C A
by definition of subset.]

A C A U (A n B): Suppose x C A. Then by definition of union, x C A U (A n B). [Thus
A C A U (A n B) by definition of subset.]

[Since both subset containments have been proved, A U (A n B) = A by definition of set
equality.

13. Proof: Suppose A, B, and C are sets and A C B. Let x e A U C. Then by definition of union,
x E A or x c C. In case x E A, then since A C B, we have that x C B, and so it is true that
x c B or x C C, and hence, by definition of union, x e B U C. In case x C C, then it is true
that x C B or x c C, and so, by definition of union, x E B U C. Therefore, in either case,
x C B u C. [Thus A U C C B U C by definition of subset.]

14. Proof: Suppose A and B are sets and A C B. Let x C BC. By definition of complement,
x f B. It follows that x ¢ A [because if x C A then x C B (since A C B), and this would
contradict the fact that x V B]. Hence by definition of complement x E Ac. [ Thus Bc c A'
by definition of subset.]

15. Proof: Suppose A, B, and C are sets and A C B and A C C. Let x c A. Since x £ A and
A C B, then x E B (by definition of subset). Similarly, since x c A and A C C, then x E C.
Hence x C B and x C C, and so by definition of intersection, x E B n C. [ By definition of
subset, therefore, A C B n C. ]

17. Proof: Suppose A, B, and C are sets.

A x (B n C) c (A x B) n (A x C): Suppose (x,y) c A x (B n C). By definition of
Cartesian product, x E A and y E B n C. By definition of intersection, y C B and y C C. It
follows that both statements "x C A and y e B" and "x E A and y C C" are true. Hence
by definition of Cartesian product, (x, y) E A x B and (x, y) E A x C, and so by definition of
intersection, (x, y) E (A x B) n (A x C). [Thus A x (B n C) C (A x B) n (A x C) by definition
of subset.]

(A x B) n (A x C) C A x (B n C): Suppose (x, y) C (A x B) n (A x C). By definition of
intersection, (x, y) E A x B and (X, y) C A x C, and so by definition of Cartesian product x c A
and y c B and also x C A and y C C. Consequently, the statement "x E A and both y C B
and y c C" is true. It follows by definition of intersection that x C A and y E B n C, and so by
definition of Cartesian product, (x, y) C A x (B n C). [Thus (A x B) n (A x C) C A x (B n C)
by definition of subset.]

[Since both subset containments have been proved, A x (B n C) = (A x B) n (A x C) by
definition of set equality.]

19. The "proof' claims that because x ¢ A or x ¢ B, it follows that x V A U B. But it is possible
for "x V A or x f B" to be true and "x V A U B" to be false. For example, let A = {1, 2},
B = {2,3}, and x = 3. Then since 3 V {1,2}, the statement "x V A or 2 V B" is true. But
since A U B = {1, 2, 3} and 3 E {1, 2, 3}, the statement "x V A U B" is false.
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20. A correct proof of the given statement must show that if x E (A - B) U (A n B) then x E A.
This incorrect proof uses the assumption that x e A as a basis for concluding that x C A. In
other words, this incorrect proof begs the question.

Another mistake is that the assertion "If x C A then x c A -B" is not necessarily true. In
fact, it is often false. For example, if A = {1, 2} and B = {2}, then A -B = { 1 }, and so the
statement "2 C A" is true but the statement "2 E A- B" is false.

21. b

U U

darkly shaded region is A n ( B U C)
C

shaded region is (A UB)C
d1

entire shaded region is ( A n B ) U ( A n C)

cross-hatched region is A nB

shaded region is (A nfB) entire shaded region is A U BC

24. Proof: Let A, B, and C be any sets, and suppose that (A -B) n (B - C) n (A - C) :# 0. Then
there is an element x such that x C (A - B) n (B - C) n (A - C). By definition of intersection,
x A -B and x C B -C and x E A-C, and so by definition of set difference, x L A and
x f B and x C B and x ¢ C and x c A and x ¢ C. In particular, x V B and x C B, which is
a contradiction. Hence the supposition is false. That is, (A -B) n (B -C) n (A -C) = 0.

26. Proof: Let U be a universal set. Suppose U' 5 0; that is, suppose there were an element x
in UC. Then by definition of complement x ¢ U. But, by definition, a universal set contains
all elements under discussion, and thus it is impossible that x V U. [Hence the supposition is
false, and so U' = 0. ]

29. Proof: Let A and B be sets with B C AC. Suppose A n B 54 0; that is, suppose there were an
element x in A n B. Then by definition of intersection, x C A and x G B. But B C AC, and
so by definition of subset, x E Ac. By definition of complement this means that x V A. Hence
x E A and x V A, which is a contradiction. [Thus the supposition is false, and we conclude
that An B= 0. ]

c
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30. Proof: Let A, B, and C be any sets such that A C B and B n C = 0. Suppose A n C 54 0;
that is, suppose there were an element x in A n C. Then by definition of intersection, x C A
and x E C. But by hypothesis A C B. and so since x c A, x E B also. Hence x C B n C,
which implies that B n C : 0. But this contradicts the hypothesis that B n C = 0. Hence the
supposition is false, and so A n C = 0.

31. Proof: Let A, B, and C be any sets such that B C C and A n C 0. Suppose A n B 54 0.
Then there is an element x such that x G A n B. By definition of intersection, x C A and
x C B. Since B C C, then, x G C. So x C A and x E C, and thus x c A n C by definition of
intersection. But this contradicts the assumption that A n C 0. Hence the supposition is
false, and so A n B = 0.

33. Proof: Let A, B, and C be any sets such that B n C C A. Suppose (C - A) n (B - A) y 0.
Then there is an element x such that x e (C -A) n (B -A). By definition of intersection,
x C C-A and x C B -A, and so by definition of set difference, x E C and x 0 A and x c B
and x G A. Since x E C and x E B, x C B n C by definition of intersection. But B n C C A,
and so x C A. Thus x ¢ A and x C A, which is a contradiction. Hence the supposition is false,
andso (C - A)n(B - A) = 0.

34. Proof: Let A, B, C, and D be any sets such that A n C = 0. Suppose (A x B) n (C x D) # 0.
Then there is an ordered pair (x, y) such that (x, y) C (A x B) n (C x D). By definition
of intersection, (x, y) C A x B and (XI y) C C x D, and by definition of Cartesian product,
x e A and x e C. By definition of intersection, then, x C A n C. But this implies that
A n C # 0, which contradicts the fact that A n C 0. Hence the supposition is false, and so
(AxB)n(CxD) = 0.

36. Proof (by mathematical induction): Let the property P(n) be the equation

(Al - B)u(A2 - B) U ... U (An B) = (A, u A2 u u A.) - B.

Show that the property is true for n = 1: For n = 1 the property is the equation
Al - B = Al - B, which is clearly true.

Show that for all integers k > 1, if the property is true for n = k then it is true
for n = k + 1: Let k be an integer with k > 1, and suppose A1 ,A 2 , .. ,Ak,Ak+l, and B
are any sets such that

(Al- B)u(A 2 - B)u .. u(Ak- B) = (A 1 UA 2 U . U Ak) B. -- inductive hypothesis

We must show that

(Al - B)U(A2 - B)U .. U(Ak+l - B) = (Al U A2 U ... U Ak+l) - B.

But the left-hand side of this equation is

(Al - B)u(A2 - B)U U(Ak+l - B)

= [(A1  B)U(A 2 -B)U . U (Ak - B)] U (Ak+l - B) by definition
= [(A 1 U A 2 U ... U Ak)- B] U (Ak+l - B) by inductive hypothesis
= [(Al U A 2 U U Ak) U Ak+l] -B by exercise 8
= (Al U A2 U ... U Ak+1) -B by definition

and this is the right-hand side of the equation [as was to be shown.

37. Proof (by mathematical induction): Let the property P(n) be the equation

(Al - B)n(A 2 - B) n ... n (An B) = (Al n A2 n ... n An) - B.

Show that the property is true for n = 1: For n = 1 the property is the equation
Al - B = Al - B, which is clearly true.
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Show that for all integers k > 1, if the property is true for n =k then it is true
for n = k + 1: Let k be an integer with k > 1, and suppose A 1 ,A 2 ,.. .,Ak,Ak+l, and B
are any sets such that

(A1 -B) n (A2 -B) n .. n(Ak-B) = (A1 FnA 2 n .n Ak) - B. inductive hypothesis

We must show that

(A 1 -B) n (A2 -B) n .n (Ak+l -B) = (Al n A2 n ... n Ak+l) -B.

But the left-hand side of this equation is

(A 1 -B) n (A2 -B) n n (Ak+l -B)

= [(A1 -B) n (A2 -B) n n... (Ak -B)] n (Ak+1 -B) by definition
= [(A1 n A2 n ... n Ak) - B] n (Ak+l - B) by inductive hypothesis
= [(Al n A2 n ... n Ak) n Ak+1] -B by exercise 9
= (A1 n A2 n ... n Ak+1) -B by definition

and this is the right-hand side of the equation [as was to be shown!.

Section 5.3

2. Counterexample: Let U = {1,2,3,4}, A = {1,2}, B = {1,2,3}, and C = {2}. Then A C B,
BnC {2}, and (BnC)C = {1,3,4}. So An(BnC)C I {1,2}n{1,3,4} ={1} # 0.

4. Counterexample: Let A = {1,2,3}, B = {2}, and C 1{3}. Then B n C = 0 C A, and
A -B ={1,3}andA -C ={1,2},andso(A -B)n(A -C)={1,3}n{1,2}={1}0.

7. False. Counterexample: Let A = {1, 2, 3}, B = {2}, and C = {1}. Then A -B {1, 2, 3}-
{2} = {1,3} and C -B = {1} -{2} = {1}, and so (A -B) n (C - B) ={1} {1} = {1}.
On the other hand, B U C = {1,2}, and so A -(B U C) = {1,2, 3} -{1,2} = {3}. Hence
(A-B)n(C-B) # A-(BUC).

8. True. Proof: Let A and B be sets with AC C B. By definition of union, A U B is the set of
all elements x in U such that x is in A or x is in B. So every element x in A U B is in U, and
hence A U B C U. [Therefore, A U B C U.] To prove that U C A U B, suppose xr E U. It is
certainly true that x e A or x V A (a tautology), and so by definition of complement x £ A
or x E AC. In case x C A, then x c A U B by definition of union. In case x c AC, then x E B
because Ac C B by hypothesis, and so x £ A U B by definition of union. Thus in either case
x E A U B. [Therefore, U C A U B.] [Since both set containments A U B C U and U C A U B
have been proved, A U B = U by definition of set equality.]

10. True. Proof: Let A and B be sets with A C B. [We must show that A n BC = 0.] Suppose
A n BC #7 0, that is, suppose there were an element x in A n BC. By definition of intersection,
x c A and x c BC, and so by definition of complement x E A and x V B. But A C B by
hypothesis. Hence since x E A, by definition of subset, x c B. Thus x C B and x V B, which
is a contradiction. Therefore the supposition that A n BC # 0 is false, and so A n Bc = 0 [as
was to be shown].

11. True. Proof: Let A, B, and C be any sets such that A C B and B n C = 0. [We must show
that A n C = 0.] Suppose A n C =# 0; that is, suppose there were an element x in A n C. By
definition of intersection, x E A and x C C. By hypothesis A C B, and so since x C A, x E B
also. Hence x C B n C, which implies that B n C #4 0. But B n C = 0 by hypothesis. This is
a contradiction. Therefore the supposition that A n C 7# 0 is false, and so A n C = 0 [as was
to be shown].

12. False. Counterexample: Let A = {1} and B = {2}. Then AnB = 0 but A x B = {(1,2)} # 0.
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15. True. Proof: Let A and B be sets and suppose X C 9(A) U 9Y'(B). Then X E 9@(A) or
X E 9(B) [by definition of union]. In case X G £7(A), then X C A [by definition of power
set], and so X C AUB [by definition of union!. In case X c 93'(B), then X C B [by definition
of power set], and so X C A U B [by definition of union]. Thus in either case, X C A U B,
and so X E Y (A U B) [by definition of power set]. Hence .(A) U -(B) C Y (A U B) [by
definition of subset].

16. True. Proof: Let A and B be sets.

Y (A n B) C 9Y (A) n Y(B): Let X C Y(AnB). Then X is a subset of AnB [by definition
of power set], and so every element in X is in both A and B. Thus X C A and X C B [by
definition of subset], and so X e 07(A) and X e 9(B) [by definition of power set]. Hence
X E 9?(A) n Y (B) [by definition of intersection]. Consequently, Y (A n B) C .•Y(A) n Y(B)
[by definition of subset].

98(A) n 9(B) C Y(A n B): Let X E 9(A) n 9(B). Then X E 9(A) and X E Y(B)
[by definition of intersection]. Hence X C A and X C B [by definition of power set]. So every
element of X is in both A and B, and thus X C A n B [by definition of subset]. It follows that
X E Y(A n B) [by definition of power set], and so _(A) n Y(B) C tY(A n B) [by definition
of subset].

[Since both subset containments have been proved, Y(A n B) = Y(A) n Y(B) by definition
of set equality.]

17. False. The elements of (A x B) are subsets of A x B, whereas the elements of Y (A)x x (B)

are ordered pairs whose first element is a subset of A and whose second element is a subset
of B. Counterexample: Let A = B = {1}. Then Y(A) = {0,{1}}, Y(B) = {0, {1}}, and
Y(A) x Y(B) = { (0, 0), (0, { 1}), ({ 1}, 0), ({ 1} , {1}) }. On the other hand, A x B = {(1, 1)},
and so Y (A x B) = {0, {(1, 1)}}. By inspection 9'(A) x Y(B) 7& Y(A x B).

18. b. Negation: V sets S, 3 a set T such that S UT 7' 0. The negation is true. For example, given
any set S, let T = {1}. Then S U T = S U {1}. Since 1 E S U {1}, S U {1} 5 0.

19. So = {0}, SI = {{a}, {b}, {c}}, S 2 = {{a, b}, {a, c}, {b, c}}, S 3 = {{a, b, c}}. Yes, {S0, S1 , S2 , S3}
is a partition of 9(S) because the sets So, S1, S2, and S 3 are mutually disjoint and their union
is Y (S).

20. No. The sets Sa, Sb, S,, and So do not form a partition of .Y(S) because they are not mutually
disjoint. For example, {a, b} e Sa and {a, b} c Sb.

21. d. S, and S2 each have eight elements.

e. SI U S2 has sixteen elements.

f. Si U S2 = - (A).

22. True. Proof: For any positive integer n > 2, let S be the set of all nonempty subsets of
{2, 3,...,n}, and for each Si E S, let Pi be the product of all the elements in Si. Let the
property P(n) be the equation

2~ -1- n
E = (n +1)!-1

2

Note: S has 2 n-1 -1 elements, and Z2-1 1 P, equals the sum of all products of elements of
nonempty subsets of {2, 3, ... , n}. We will prove by mathematical induction that the property
is true for all integers n > 2.

Show that the property is true for n = 2: For n = 2, S {{2}} and there is only one
element of S, namely SI = {2}. Then P1 = 2, and so the left-hand side of the equation equals
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Pi P P 2. The right-hand side of the equation is (2+) - 1=1- 1 -1-2

3-l = 2 also. Hence the property is true for n = 2.

Show that for all integers k > 2, if the property is true for n = k then it is true
for n = k + 1: Let k be an integer such that k > 2, let S be the set of all nonempty subsets
of {2, 3,. . ., k}, and for each Si E S, let Pi be the product of all the elements in Si. Suppose

ok-1 - +

the equation holds for n = k. In other words, suppose E Pi = ( 1) -1. [This is the
2

iil

inductive hypothesis.] Let S' be the set of all nonempty subsets of {2, 3,... , k + 1}, and for
each Si e S', let Pi' be the product of all the elements in Si. Now any subset of {2, 3,. .. , k + 1 }
either contains k + 1 or does not contain k + 1. Any subset of {2, 3,. . , k + 1} that does not
contain k + 1 is a subset of {2, 3,.. , k}, and any subset of {2, 3, .. . , k + 1} that contains k + 1
is the union of a subset of {2, 3,.. ., k} and {k + 1}. Also by Theorem 5.3.1, there are 2 k 1 - 1
nonempty subsets of {2, 3, . . , k} I[because there are k -1 elements in the set {2, 3, ... , k}], and
by the same reasoning there are 2 k 1 nonempty subsets of {2, 3, ... , k + 1}. Thus

2 -1 2k- 1

vP: 2z1 - the sum of all products of elements of nonempty1
- Pi Lsubsets of {2, 3,. . .,+ that contain k + 1

But given any nonempty subset A of {2, 3, . . , k + 1} that contains k + 1, the product of all

the elements of A equals k + 1 times the product of the elements of A -k + 1}. Thus the
sum of all products of elements of nonempty subsets of {2, 3,. . ., k + 1} that contain k + 1
equals the product of k + 1 times the sum of all products of elements of nonempty subsets
of {2, 3, .. ., k} plus 1 [for the case A = {k + 1} for which A -{k + 1} equals the empty set].
Hence the left-hand side of the equation is

2 -1 2 k-11 2k-1_

EPi= E P 1+(k+1) (5 Pi+1
iil iili~

2k-1-l

= (1 + (k + 1)) Pi + (k + 1)

= (k + 2) ((k 2 ) -) + (k + 1) by inductive hypothesis

(k+2)! (k+2)+(k+1)

(k+2)! 1
2

which is the right-hand side of the equation. Thus the property is true for n = k + 1 [as was
to be shown].

24. e. double complement law f. distributive law 9. set difference law

27. Proof: Let sets A, B, and C be given. Then

(A-B)-C = (A n BC) n C' by the set difference law (used twice)
= A n (BO n cc) by the associative law for n
= A n (B U C)C by De Morgan's law
= A - (B U C) by the set difference law.
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28. Proof: Let A and B be sets. Then

= An(AnBC)C

= A n (Ac U (BC)c)
= An(AcuB)
= (A n AC) U (A n B)
= 0u(AnB)
= (A n B)u0
= AnB

by the set difference law (used twice)
by De Morgan's law
by the double complement law
by the distributive law
by the complement law for n
by the commutative law for U
by the identity law for U.

30. Proof: Let sets A and B be given. Then

= (BCu(Bcn Ac))c
= (BC)c n (Bc n Ac)c
= B n (Bc n Ac)C
= B n ((BC)c U(Ac)c)
= B n(B u A)
= B

by the set difference law
by De Morgan's law
by the double complement law
by De Morgan's law
by the double complement law (used twice)
by the absorption law.

31. Proof: Let A and B be sets. Then

= An(AnB)C
= A n(ACu BC)
= (A n AC)u(A
= 0u(AnBC)
= (An BC) U0
= AnBC
= A-B

by the set difference law
by De Morgan's law

n BC) by the distributive law
by the complement law for n
by the commutative law for U
by the identity law for U
by the set difference law.

32. Proof: Let A and B be any sets. Then (A - B) U (B - A)

- (A n Bc)u(B n A)
= [(A n BC) U B] n [(A n BC) U AC)]

= [B U (An BC)] n [AC u (An BC)]

= [(B u A)n(B u BC)]n[(ACu A)n(AC u BC)]
= [(Au B) n (B u BC)] n [(Au AC) n (A' u Bc)]

[(A u B) n U][n [U n (AC U B0)]
[(Au B) n U] n [(A0 U BC) n U]
(A u B) n (AC U BC)
(A U B) n (A n B)C
(A u B) -(A n B)

33. Proof: Let A, B, and C be any sets. Then

(A - B) - (B - C)

= (AnBC)n(BncC)C

= (A n BC) n (BC u (CC)C)
= (AnBC)n(BCUC)
= ((A n BC) n BC) U ((A n BC) n C)
= (A n(BCn BC)) U ((A n BC) n C)
= (An BC) U ((AnBC)nC)
= AnBC

= A -B

by the set difference law (used twice)
by the distributive law
by the commutative law for U (used twice)
by the distributive law (used twice)
by the commutative law for U (used twice)
by the complement law for U (used twice)
by the commutative law for n
by the identity law for n (used twice)
by De Morgan's law
by the set difference law.

by the set difference law (used three times)
by De Morgan's law
by the double complement law
by the distributive law
by the associative law for n
by the idempotent law for n
by the absorption law
by the set difference law.

A - (A - B)

(BC U (BC - A))c

A -(An B)
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34. Let A and B be any sets. Then

An ((B U AC) n BC)

= A n (BC n (B U AC))
= A n ((BC n B) U (BC n AC))
= A n ((B n BC) U (BC n AC))
= A n (0 U (BC n AC))

A n ((BC n AC) U 0)
= A n (BC n AC)

A n (AC n BC)
= (A n AC) n BC

O n BC
BC n 0

=0
Alternate derivation:

A n ((B U AC) n BC)

= An(BCn(BuAC))
= (AnBC)n(BuAC)
= (A n BC) n (AC U B)
= (A n BC) n (AC U(BC))
= (An BC) n (A n Bc)c
= 0

35. Let A and B be any sets. Then

(A-(A n B)) n (B-(A n B))
= (An(AnB)C)n(Bn(AnB,
= An((AnB)Cn(Bn(AnB)
= A n (((A n B)c n B) n (A n B
= An((Bn(AnB)C)n(AnB,
= A n (B n ((A n B)c n (A n B)
= An (Bn (AnB)c)
= (AnB)n(AnB)C
= 0

by the commutative law for n
by the distributive law
by the commutative law for n
by the complement law for n
by the commutative law for U
by the identity law for U
by the commutative law for n
by the associative law for n
by the complement law for n
by the commutative law for n
by the universal bound law for n.

by the commutative law for n
by the associative law for n
by the commutative law for U
by the double complement law
by De Morgan's law
by the complement law for n.

)C) by the set difference law (used twice)
c)) by the associative law for n
)C) by the associative law for n
)C) by the commutative law for n
C)) by the associative law for n

by the idempotent law for n
by the associative law for n
by the complement law for n.

36. Let A, B, and C be any sets. Then ((A n (B u C)) n (A -B)) n (B U CC)

= ((An (B u C)) n (An BC)) n (B U CC)
= ((AnBr)n(An(BuC)))n(BuCCc)
= (((AnBC)nA)n(BuC))n(BuCC)
= ((A n (A n BC)) n (B u C)) n (B U CC)
= (((A n A) n BC) n (B u C)) n (B U CC)
= ((An BC) n (B U C)) n (B U CC)
= (A n BC) n ((B U C) n (B U CC))
= (A n BC) n (B U (C n CC))
= (A n BC) n (B u 0)
= (AnBC)nB
= An(BCnB)
= An(BnBC)
= AnO
=0

by the set difference law
by the commutative law for n
by the associative law for n
by the commutative law for n
by the associative law for n
by the idempotent law for n
by the associative law for n
by the distributive law
by the complement law for n
by the identity law for U
by the associative law for n
by the commutative law for n
by the complement law for n
by the universal bound law for n.

37. c. There is no single correct answer to this question, but students might notice that the main
idea of the element proof is simply that no element can be simultaneously in B and ill A - B
(because for it to be in A - B means that it is not in B). On the other hand the algebraic
proof involves five rather formal steps, which could reasonably be viewed as more complicated.
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38. a. Proof: Let A, B, and C be any sets.

(A - B) U (B - C) C (A u B) - (B n C): Suppose x X (A -B) U (B -C). By definition
of union, x C A - B or x C B - C.

Case 1 (x E A - B): In this case, by definition of set difference, x G A and x ¢ B. Then since
x E A, by definition of union, x e A u B. Also, since x V B, then x ¢ B n C (for otherwise, by
definition of intersection, x would be in B, which it is not). Thus x C A U B and x g B n C,
and so, by definition of set difference, x c (A U B) -(B n C).

Case 2 (x C B - C): In this case, by definition of set difference, x c B and x V C. Then since
x e B, by definition of union, x e A u B. Also, since x ¢ C, then x 0 B n C (for otherwise, by
definition of intersection, x would be in C, which it is not). Thus x C A U B and x 0 B n C,
and so, by definition of set difference, x c (A U B) - (B n C).

Therefore, in either case, x E (A U B) -(B n C), and so, by definition of subset, (A -B) U
(B -C) C (AuB)-(BnC).

(A u B) - (B n C) C (A-B) u (B-C): Suppose x E (A u B)-(B n C). By definition
of set difference, x C A u B and x V B n C. Note that either x C B or x ¢ B.

Case 1 (x C B): In this case x V C because otherwise x would be in both B and C, which
would contradict the fact that x ¢ B n C. Thus, in this case, x e B and x ¢ C, and so
x C B - C by definition of set difference. Then x e (A -B) U (B -C) by definition of union.

Case 2 (x 0 B): In this case, since x C A U B, then x E A. Hence x C A and x ¢ B, and so
x C A - B by definition of set difference. Then x C (A - B) U (B -C) by definition of union.

Hence, in both cases, x e (A -B)U(B-C), and so, by definition of subset, (AUB)-(BnC) C
(A -B) u (B -C).

Therefore, since both set containments have been proved, we conclude that (A - B) U (B -C) =

(A u B) - (B n C) by definition of set equality.

b. Proof: Let A, B, and C be any sets. Then

(A - B) u (B - C)

= (AnBC)u(BnCC)
= ((A n BC) u B) n ((A n BC) u CC)
= (B U (A n BC)) n ((A n BC) U CC)
= ((B u A) n (B U BC)) n ((A n BC) U CC)
= ((B u A) n U) n ((A n BC) u CC)
= (B u A) n ((A n BC) u CC)
= (A u B) n ((A n BC) U CC)

((A u B) n (A n BC)) u ((A u B) n CC)
= (((AuB)nA)nBC)u((AuB)n CC)
= ((An(AuB))nBC)u((AuB)nCC)
= (A n BC) U ((A U B) n Cc)
= ((A n BC) u 0) u ((A u B) n CC)
= ((A n BC) u (B n BC)) u ((A u B) n CC)
= ((Bc n A) U (BC n B)) U ((A u B) n CC)
= (Bc n (A u B)) u ((A u B) n CC)
= ((Au B) n BC)) u ((Au B) n CC)
= (AuB)n(BCuCC)

= (AuB)n(BnC)C

= (Au B) -(Bn C)

by the set difference law (used twice)
by the distributive law
by the commutative law for U
by the distributive law
by the complement law for U
by the identity law for n
by the commutative law for U
by the distributive law
by the associative law for n
by the commutative law for n
by the absorption law
by the identity law for U
by the complement law for n
by the commutative law for n
by the distributive law
by the commutative law for n
by the distributive law
by De Morgan's law
by the set difference law.

c. Although writing down every detail of the element proof is somewhat tedious, its basic idea
is not hard to see. In this case the element proof is probably easier than the algebraic proof.
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39. b. B A C ({3,4,5,6} - {5,6,7,8}) U ({5,6,7,8} - {3,4,5,6}) = {3,4} U {7,8} = {3,4,7,8}

c. A A C = ({1, 2,3,4} - {5,6,7,8}) U ({5,6,7,8} - {1, 2,3,4}) = {1, 2,3,4} U {5,6,7,8} =

{1, 2,3,4,5,6,7, 8}

d. By part (a), A A B = {1, 2,5,6}. So (A A B) A C = ({1, 2,5,6} - {5,6,7,8}) U ({5,6,7,8} -
{1,2,5,6}) = {1,2} U {7,8} = {1,2,7,8}.

42. Proof: Let A be any subset of a universal set U. Then

A A AC = (A -AC) U (AC - A) by definition of A
= (A n (AC)C) U (AC n Ac) by the set difference law (used twice)
= (A n A) U (AC n AC) by the double complement law
= A U Ac by the idempotent law for n (used twice)
= U by the complement law for U.

43. Proof 1: Let A be any subset of a universal set U. Then

AAA = (A-A)U(A-A) by definition of A
= (A n AC) U (A n AC) by the set difference law (used twice)
= 0 U 0 by the complement law for n (used twice)
= 0 by the identity law for U.

Proof 2: Let A be any subset of a universal set U. Then

A A A = (A-A) u (A -A) by definition of A
= A-A by the idempotent law
= A nAc by the set difference law
= 0 by the complement law for n.

44. Lemma: For any subsets A and B of a universal set U and for any element x,

(1) x e A A B 4 (x E A and x B) or (x V A and x E B)

(2) x V A A B X (x V A and x ¢ B) or (x E A and x e B).

Proof:

(1) Suppose A and B are any sets and x is any element. Then

x e A A B X x e (A-B) U (B -A) by definition of A
X= .x. A-BorxeB-A by definition of U
m> (xeAandxVB)or(xEBandxVA) by definition of n.

(2) Suppose A and B are any sets and x is any element. Observe that there are only four
mutually exclusive possibilities for the relationship of x to A and B: (x E A and x ¢ B) or
(x C B and 2 ¢ A) or (x G A and x C B) or (x V A and x V B). By part (1), the condition
that x C A A B is equivalent to the first two possibilities. So the condition that x ¢ A A B is
equivalent to the second two possibilities. In other words, x V A A B 4 (x V A and x g B) or
(x e A and x e B).

Theorem: For all subsets A, B, and C of a universal set U, if A A C = B A C then A = B.

Proof: Let A, B, and C be any subsets of a universal set U, and suppose that A A C = B A C.
[We will show that A = B.]

A C B: Suppose x e A. Either x C C or x V C. If x e C, then x E A and x C C and so by
the lemma, 2 V A A C. But A A C = B A C. Thus x V B A C either. Hence, again by the
lemma, since x G C and x V B A C, then x E B. On the other hand, if x C C, then by the
lemma, since x C A, x C A A C. But A A C = B A C. So, again by the lemma, since x V C
and x c B A C, then x e B. Hence in either case, x C B [as was to be shown].

B C A: The proof is exactly the same as for A C B with the letters A and B reversed.

Since A C B and B C A, by definition of set equality A = B.
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45. Proof 1: Suppose A, B, and C are any subsets of a universal set U. Then

xE(AAB)AC X (xcAABandx0C)or(xECandx¢AAB)
by the lemma from the solution to 44

> ([(xEAandxB)or(xEBandxA)]andxgC)or
(x C C and [(x c A and x e B) or (x ¢ A and x V B)])

by the lemma from the solution to 44
X ([xeAandx Bandx C]or[xeBandx Aandx C])or

([x E C and x C A and x e B] or [x E C and x V A and x 5 B])
by the distributive and associative laws of logic

x £ is in exactly one of the sets A, B, and C, or
x is in all three of the sets A, B, and C.

On the other hand,

rE AA(BAC) > (xcAandx0BAC)or(xeBACandx A)
by the lemma from the solution to 44

4 (xeBACandxVA)or(xGAandx0BAC)
by the commutative law for or.

By exactly the same sequence of steps as in the first part of this proof but with B in place of
A, C in place of B, and A in place of C, we deduce that

x C A A(B A C) ¢> x is in exactly one of the sets A, B, and C, or
x is in all three of the sets A, B, and C.

So X C (A A B) AC , x c A A (B A C), and hence (AL B) AC = A A (B A C).

Proof 2: Suppose A, B, and C are any subsets of a universal set U. Then

(A A B) A C

= ((AAB) -C)U(C-(AAB))
by definition of symmetric difference

= (((A -B)U(B -A))-C)U(C -((A -- B)u(B-A)))
by definition of symmetric difference (used twice)

= (((A n BC) U (B n AC)) n Cc) u (C n ((A n BC) U (B n AC))C)
by the set difference law (used six times)

= (((A n BC) n Cc) u ((B n AC) n CC))) u (C n ((A n BC) U (B n AC))c)
by the commutative law for n and the distributive law

= (((An BC)e CC))u ((AC n B) n CC)) u (Cn ((An BC)C n (B n AC)C))
by the commutative law for n and De Morgan's law

= (((A n BC) n CC) U ((AC n B) n CC)) u (C n ((AC U B) n (BC U A)))
by De Morgan's law and the double complement law

= ((An BC nCC) u (AC n B n CC)) u ((Cn (AC U B)) n (BC U A))
by the associative law for n

= ((AnBCnCC)u(ACnBnCC))u(((CnAC)u(CnB))n(BCUA))

by the distributive law
= ((A n Bc n CC) u (AC n B n CC)) u (((C n AC) n (BC U A)) u ((C n B) n (BC U A)))

by the commutative law for n and the distributive law
= ((AnBCnCC)u(ACnBnCc))u

(((C n AC) n BC) u ((C n AC) n A)) U ((C n B) n BC) u ((C n B) n A)))
by the distributive law (used twice)
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= ((AnBCnCC)u(ACnBnCC))u
(((AC nBC n C) u (C n (AC n A))) u ((C n (B nBC)) u (An B nC)))

by the commutative and associative laws for n
= ((A n BC n CC) U (AC n CC))u

(((ACn BC n C) u (Cn 0)) u ((C n 0) u (An B n C)))
by the complement law for n (used twice)

= ((AnBCncC)u(AcnBnCc))u(((AcnB CiC)u0)u(0u(AnBnC)))

by the universal bound law for n (used twice)
= ((AnBCnCC)U(ACnBnCC))u((ACnBCnC)u(AnBnC))

by the commutative and identity laws for U
= (AnBCnCC)u(AcnBnCc)u(A-nBcnB C)u(AnBnC)

by the associative law for U.

A similar set of steps shows that A A (B A C) = (A n BC n CC) u (Ac n B n CC) u (AC n BC n
C) U (A n B n C) also. Hence (A A B) A C = A A (B A C).

46. Proof: Suppose A and B are any subsets of a universal set U. By the universal bound law for
U, B U U = U, and so, by the commutative law for U, U U B = U. Take the intersection of
both sides with A to obtain A n (U u B) = A n U. But the left-hand side of this equation
is A n (U u B) = (A n U) u (A n B) = A U (A n B) by the distributive law and the identity
law for n. And the right-hand side of the equation equals A by the identity law for n. Hence
A U (A n B) = A [as was to be shown].

47. Proof: Suppose A and B are any subsets of a universal set U. By the universal bound law
for n, B n 0 = 0, and so, by the commutative law for n, 0 n B = 0. Take the union of
both sides with A to obtain A U (0 n B) = A U 0. But the left-hand side of this equation is
A u(On B) = (A u0) n (A u B) = A n (A U B) by the distributive law and the identity law for
U. And the right-hand side of the equation equals A by the by the identity law for U. Hence
A n (A U B) = A [as was to be shown].

49. a. complement law for + b. associative law for + c. complement law for +

50. a. commutative law for . b. distributive law for * over +

c. idempotent law for (exercise 48) d. identity law for

e. distributive law for over + f. commutative law for + g. identity law for

Note that once Theorem 5.3.2(5b) has been proved (exercise 51), the proof of this property
(Theorem 5.3.2(7a)) can be streamlined as shown below.

Proof: For all elements a and b in B,

(a + b) a = (a + b) (a + 0) by the identity law for +
= a + (b 0) by the distributive law for + over
= a + 0 by exercise 51
= a by the identity law for +.

52. Proof: For all elements a and b in B,

(a b) + a = (a b) + (a * 1) by the identity law for-
= a (b + 1) by the distributive law for over +
= a 1 by exercise 49
= a by the identity law for

54. Proof: By the uniqueness of the complement law, to show that 1 = 0, it suffices to show that
1 + O = 1 and 1 0 = 0. But the first equation is true by the identity law for +, and the second
equation is true by exercise 51 (the universal bound law for -). Thus 1 = 0.
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56. Proof 1: By exercise 55, we know that for all x and y in B, x * y = x +' . So suppose a and
b are any elements in B. Substitute a and b in place of x and y in this equation to obtain

-a 6 = a + b, and since a + b = a + b by the double complement law, we have-a b = a + b.
Hence by the uniqueness of the complement law, the complement of a . b is a + b. It follows
by definition of complement that

(E b) + (a + b) = 1

By the commutative laws for + and .,

(a+b) + (a b) = 1

and (.- b) (a + b) = 0.

and (a + b) (-a b) = 0,

and thus by the uniqueness of the complement law, the complement of a + b is E * b. In other
words, a + b = a b.

Proof 2: An alternative proof can be obtained by taking the proof for exercise 55 in Appendix
B and changing every + sign to a * sign and every sign to a + sign.

57. Proof: Let x, y, and z be any elements in B such that x + y = x + z and x * y = x z. Then

y = (y+x) y
= (x+y) Y
= (x+ z) y
= y (x+z)

II x+y-z
(x y) + (z )

= (x * z) + (z * y)

= (z x) + (z * Y)
= z. (x+y)
= z. (x+z)
= (z+x) z

by exercise 50
by the commutative law for +
by hypothesis
by the commutative law for
by the distributive law for over +
by the commutative law for (used twice)
by hypothesis
by the commutative law for
by the distributive law for over +
by hypothesis
by the commutative laws for and +
by exercise 50.

58. a. (ii) 1.0=O 1 =0

The following verifications check all possible cases.

(iii)

0+ (0+0) =0+0=0-0+0= (0+0) +0

0+(0+1)=0+1 1 0+1=(0+0)+1

0+(1+0)=0+1 11+0=(0+1)+0

1+(0+0) 1+0=1=1+0 (1+0)+0

0+(1+1)=0+1 1=+1=(O+1)+1

1+(0+1) 1+1-1 1+1=(1+0)+1

1+(1+0)=1±1 1 = 1+1 (1+1)+0

1+(1+1) 1±1=1=1±1-(1+1)+1

(iv)

0-(0-0) 0-0=0=00 (0-0) 0

0-(0 1) 0-0=0=0 1=(0-0) 1

0.(1.0)=0.0 0 0 .=(0.1).0

1- (0 - 0) 1 0 0 = 0 0 - (1 - 0) - 0

0 (1 1) 0-1 =0=0 1 (0. 1) 1

1 (0 1) 1.0-0=0=0 1 (1 0) 1
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I1-(I1-0) =1-0=0 =1 0= (I1 1) .0
1.(1.1) =1-1 =0=-11 = (1.1)0

(v)

0+(0 0) 0+00 0 0 =0 (0+0) (0+0)

0+(0-1) 0±+0 0 01 (0+0) (0+1)

0 + (1 0) = 0 0 1 0 (0 + 1) (0 + 0)

1+(0 0) =10 1 =1 1 (1+0) (1+0)

0 + (1 1) 0 + 1 1 1 1 I (0 + 1) (0 + 1)

1 + (0 1) 1 + 0 = 1 =(1 + 0) (1 + 1)

1+(1 0) 1+0= 1 1=- (1+1) ((1+0)

1+ (11)=1+1 =11-11(1+1) (1+1)

(vi)

0 (0+0) 0 =00=0+0= (0 0)+(0 0)

0 (0±1)-0 1-0-0±0 (000)+(0 1)

0 (1+0) 0 I 00 0±0-(0 1)+(0 0)

1 (0+0)-1 0-0 0+0 (1 0)+(1 0)

0 (1+1) =0 1-0 0±0 (0. 1)+(0* 1)

1 (0+1) 1 1=0+1 = (1 0)+(1-1)

1 (1+0) =11 1 1+0 (1 1)+(1 0)

1 (1 +1)= 1 I I 1 = +1 I (I-1) +(I 1)

b. Because 0 + 0 0 and 1 + 0 = 1, 0 is an identity element for +. Similarly, because 0( 1 0
and 1 = 1 1, 1 is an identity element for

c.0 + 0+1 =1andO 0= 10 0=

1+1= 1+0= 1 and 1 1 o=o

59. Proof: The proofs of the absorption law and the idempotent law do not use the associative
law. See, for example, Example 5.3.6 and the solutions to exercises 48, 50, and 52. Thus we
may make free use of the absorption and idempotent laws in this proof.

Part 1: We first prove that for all x, y, and z in B, (1) (x + (y + z)) * x = x and (2)
((x + y) + z) . x = x. So suppose x, y, and z are any elements in B. It follows immediately
from the absorption law that (1) (x + (y + z)) x = x. Also,

((x + y) + z)) x x ((x + y) + z) by the commutative law for
x (x + y) + x z by the distributive law for . over +
(x + y) x + x z by the commutative law for

= x + x z by the absorption law
- x.x + x z by the idempotent law for
= x (x + z) by the distributive law for over +

(x + z) .x by the commutative law for
= xby the absorption law.

Hence (2) ((x + y) + z) x = x.

Part 2: By the commutative law for + and equation (2), for all x, y, and z in B, ((x + y) +
z) -y = ((y + x) + z) . y = y. And by the commutative law for + and equation (2), for all x, y,
and z in B, (x + (y + z)) y = ((y + x) + z) -y = y. Thus we have (3) ((x + y) + z) y = y and
(4) (x + (y + z)) . y = y. By similar reasoning we can also conclude that (5) ((x + y) + z) * z = z
and (6) (x + (y + z)) z = z.
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Part 3: We next prove that for all a, b, and c in B, (7) a + (b + c) = ((a + b) + c) * (a + (b + c))
and (8) (a + b) + c) = ((a + b) + c) . (a + (b + c)). To prove (7), suppose a, b, and c are any
elements in B. Then

((a+b) +c) (a+ (bc))

= ((a+b) +c) .a+((a+b) +c) * (b+c))
= a+((a+b)+c) (b+c))
= a+[((a+b)+c) b+((a+b)+c) c]
= a+(b+c)

by the distributive law for over +
by equation (2)
by the distributive law for over +
by equations (3) and (5).

Similarly, if a, b, and c are any elements in B. Then we can prove equation (8) as follows:

((a + b) + c) * (a + (b + c))

= (a+(b+c)) ((a+b)+c)
= (a+(b+c)) . (a+b)+(a+(b+c)) c
= (a+(b+c)) (a+b)+c
= [(a+(b+c)) a+(a+(b+c))-b] +c
= (a+b) +c

by the commutative law for
by the distributive law for over +
by equation (6)
by the distributive law for over +
by equations (1) and (4).

Therefore, since both a + (b + c) and (a + b) + c are equal to the same quantity, they are equal
to each other: a + (b + c) = (a + b) + c.

Part 4: In the last part of the proof, we deduce the associative law for . Suppose a, b, and
c are any elements in B. Then

(a. b)*c = (a * b) + c by De Morgan's law
= (a+b) +c
= -a+ (beg )
= +(b. c)
= a-(b c)

by De Morgan's law
by Part 3
by De Morgan's law
by De Morgan's law.

Take the complement of both sides to obtain (a - b) * c
complement law, (a b) c = a (b c).

a * (b6 c), and so, by the double

Section 5.4

3. This statement contradicts itself. If it were true, then because it declares itself to be a lie,
it would be false. Consequently, it is not true. On the other hand, if it were false, then it
would be false that "the sentence in this box is a lie," and so the sentence would be true.
Consequently, the sentence is not false. Thus the sentence is neither true nor false, which
contradicts the definition of a statement. Hence the sentence is not a statement.

4. Since there are no real numbers with negative squares, this sentence is vacuously true, and
hence it is a statement.

6. In order for an and statement to be true, both components must be true. So if the given
sentence is a true statement, the first component "this sentence is false" is true. But this
implies that the sentence is false. In other words, the sentence is not true. On the other hand,
if the sentence is false, then at least one component is false. But because the second component
"1 + 1 = 2" is true, the first component must be false. Thus it is false that "this sentence is
false," and so the sentence is true. In other words, the sentence is not false. Thus the sentence
is neither true nor false, which contradicts the definition of a statement. Hence the sentence
is not a statement.

7. a. Assuming that the sentence "If this sentence is true, then 1 + 1 = 3" is a statement, then the
sentence is either true or false. By definition of truth values for an if-then statement, the only
way the sentence can be false is for its hypothesis to be true and its conclusion false. But if
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its hypothesis is true, then the sentence is true and therefore it is not false. So it is impossible
for the sentence to be false, and hence it is true. Consequently, what its hypothesis asserts
is true, and so (again by definition of truth values for if-then statements) its conclusion must
also be true. Therefore, 1 + 1 = 3.

b. We can deduce that "This sentence is true" is not a statement. For if it were a statement,
then since 1 + 1 = 3 is also a statement, the sentence "If this sentence is true, then 1 + 1 = 3"
would also be a statement. It would then follow by part (a) that 1 + 1 = 3, which we know to
be false. So "This sentence is true" is not a statement.

8. Suppose Nixon says (ii) and the only utterance Jones makes about Watergate is (i). Suppose
also that apart from (ii) all of Nixon's other assertions about Watergate are evenly split between
true and false.

Case 1 (Statement (i) is true): In this case, more than half of Nixon's assertions about Wa-
tergate are false, and so (since all of Nixon's other assertions about Watergate are evenly split
between true and false) statement (ii) must be false (because it is an assertion about Water-
gate). So at least one of Jones' statements about Watergate is false. But the only statement
Jones makes about Watergate is (i). So statement (i) is false.

Case 2 (Statement (i) is false): In this case, half or more of Nixon's assertions about Watergate
are true, and so (since all of Nixon's other assertions about Watergate are evenly split between
true and false) statement (ii) must be true. But statement (ii) asserts that everything Jones
says about Watergate is true. And so, in particular, statement (i) is true.

The above arguments show that under the given circumstances, statements (i) and (ii) are
contradictory.

10. No. Suppose there were such a book. If such a book did not refer to itself, then it would
belong to the set of all books that do not refer to themselves. But it is supposed to refer to
all books in this set, and so it would refer to itself. On the other hand, if such a book referred
to itself, then it would belong to the set of books to which it refers and this set only contains
books that do not refer to themselves. Thus it would not refer to itself. It follows that the
assumption that such a book exists leads to a contradiction, and so there is no such book.

11. The answer is neither yes nor no. (In other words, the definition of heterological is inherently
contradictory.) For if heterological were heterological, then it would describe itself. But by
definition of heterological, this would mean that it would not describe itself. Hence it is
impossible for heterological to be heterological. On the other hand, if heterological were not
heterological, then it would not describe itself. But by definition of heterological this would
mean that it would be a heterological word, and so it would be heterological. Hence it is
impossible for heterological to be not heterological. These arguments show that heterological
is neither heterological nor not heterological.

12. Because the total number of strings consisting of 11 or fewer English words is finite, the number
of such strings that describe integers must be also finite. Thus the number of integers described
by such strings must be finite, and hence there is a largest such integer, say m. Let n = m + 1.
Then n is "the smallest integer not describable in fewer than 12 English words." But this
description of n contains only 11 words. So n is describable in fewer than 12 English words,
which is a contradiction. (Comment: This contradiction results from the self-reference in the
description of n.)

13. There is no such algorithm.

Proof: Suppose there were an algorithm, call it CheckPrint, such that if a fixed quantity a,
an algorithm X, and a data set D are input to it, then

CheckPrint(a, X, D) prints

"yes" if X prints a when it is run with data set D
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"no" if X does not print a when it is run with data set D.

Let SignalHalt be an algorithm that operates on an algorithm X and a data set D as follows:
SignalHalt runs X with D and prints "halts" if X terminates. If X does not terminate,
SignalHalt does not terminate either. Observe that

CheckPrint( "halt", SignalHalt, (X, D)) prints

"yes" if SignalHalt prints "halts" when it is run with data set (X, D)

"no" if SignalHalt does not print "halts" when it is run with data set (X, D).

Thus, we may define a new algorithm CheckHalt, whose input is an algorithm X and a data
set D, as follows:

CheckHalt(X, D) prints

"halts" if CheckPrint("halts", SignalHalt, (X, D)) prints "yes"

"loops forever" if CheckPrint( "halts", SignalHalt, (X, D)) prints "no" .

The above discussion shows that if there is an algorithm CheckPrint which, for a fixed quantity
a, an input algorithm X, and a data set D, can determine whether X prints a when run with
data set D, then there is an algorithm CheckHalt that solves the halting problem. Since
there is no algorithm that solves the halting problem, there is no algorithm with the property
described.

14. Proof: Suppose there exists a set A such that `9(A) C A. Let B = {x G A I xr 0 x}. Then
B C A, and so B E -(A). But then, because 97(A) C A, by definition of subset B E A.
Either B C B or B ¢ B. Now if B e B, then, by definition of B, B ¢ B, but if B ¢ B, then
B satisfies the defining property for B, and so B E B. Thus both B f B and B e B, which
is a contradiction. Hence the supposition is false, and we conclude that there is no set that
contains its power set.
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Chapter 6: Counting and Probability

The primary aim of this chapter is to help students develop an intuitive understanding for fun-
damental principles of counting and probability and an ability to apply them in a wide variety of
situations.

Students seem most successful in solving counting problems when they have a clear mental image
of the objects they are counting. It is helpful to encourage them to get into the habit of beginning
a counting problem by listing (or at least imagining) some of the objects they are trying to count.
If they see that all the objects to be counted can be matched up with the integers from m to n
inclusive, then the total is n -m + 1 (Section 6.1). If they see that all the objects can be produced
by a multi-step process, then the total can be found by counting the distinct paths from root to
leaves in a possibility tree that shows the outcomes of each successive step (Section 6.2). And in case
each step of the process can be performed in a fixed number of ways (regardless of how the previous
steps were performed), the total can be calculated by applying the multiplication rule (Section 6.2).
If they see that the objects to be counted can be separated into disjoint categories, then the total
is just the sum of the subtotals for each category (Section 6.3). And in case the categories are not
disjoint, the total can be counted using the inclusion/exclusion rule (Section 6.3). If they see that
the objects to be counted can be represented as all the subsets of size r of a set with n elements,
then the total is (r) for which there is a computational formula (Section 6.4). And if the objects
can be represented as all the multisets of size r of a set with n elements, then the total is (n+r-1).

Pascal's formula is discussed in Section 6.6 and the binomial theorem in Section 6.7. Each is
proved both algebraically and combinatorially. Exercise 21 of Section 6.4 is a warm-up for the
combinatorial proof of the binomial theorem, and exercise 10 of Section 6.7 is intended to help
students perceive how Pascal's formula is applied in the algebraic proof of the binomial theorem.

Note that exercise 20 of Section 6.1 should have been placed in Section 6.9. It is best to wait to
assign it until that section is covered.

Section 6.1

4. {24,44,64,84,104,24,44,64,84,104} Probability = 10/52 = 5/26 - 19.2%

6. {2$,36,46,20,30,40,2W,3C),4W,24,34,44} Probability = 12/52 = 3/13 -23.1%

8. {11,22,33,44,55,66} Probability = 6/36 = 1/6 16.7%

10. {36,45,46,54,55,56,63,64,65,66} Probability = 10/36 = 5/18 ^- 27.8%

11. b. (ii) {HHT,HTH,THH,HHH} Probability = 4/8 = 1/2 = 50%

(iii) {TTT} Probability = 1/8 12.5%

12. b. (ii) {GGB, GBG, BGG, GGG} Probability = 4/8 = 1/2 = 50%

(iii) {BBB} Probability = 1/8 = 12.5% n B)

13. b. (ii) {CCW, CWC, WCC, CCC} Probability = 4/8 = 1/2 = 50%

(iii) {WWW} Probability = 1/8 = 12.5%

14. b. 4/8 = 1/2 = 50%

c. 1/8 = 12.5%

15. The methods used to compute the probabilities in exercises 12, 13, and 14 are exactly the same
as those in exercise 11. The only difference in the solutions are the symbols used to denote the
outcomes; the probabilities are identical. These exercises illustrate the fact that computing
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various probabilities that arise in connection with tossing a coin is mathematically identical
to computing probabilities in other, more realistic situations. So if the coin tossing model is
completely understood, many other probabilities can be computed without difficulty.

17. a. {RBB, RBY, RYB, RYY, BRB, BRY, YRB, YRY, BBR, BYR, YBR, YYR}

Probability = 12/27 - 44.4%

b. Out of the 27 possible outcomes, there are only 8 in which none of the faces is red:
{BBB, BBY, BYB, YBB, BYY, YBY, YYB, YYY}. So the event that at least one face is red
consists of the remaining 27 -8 = 19 outcomes. This event has probability = 19/27 'v 70.4%

19. a. {B1 B1 ,B1 B2 ,B1 W1 ,B1 W2 ,B1 W3 ,B 2 B1 ,B 2 B2 ,B 2 W1 ,B2 W2 ,B 2 W3 ,VWIB1 ,W17B2 ,W lW l,

W1 W2, WI W3, W2 B1, W2 B2 , W2 W 1, W2 W2, W2 W3, W3 B1, W3 B2 , W31WI, W3 W2, W3 W3}
b. {BIBB, B1 B2 , B1 WI, B1 W 2 , B1 W 3 , B2 B1 , B2 B2 , B2 W1 , B2 W2 , B21V3}

Probability = 10/25 = 2/5 - 40%
C {WIW 1 , W1 W 2 , W1 W3 , W2 W1 , W 2W2 , W2W3 , W 3W1 , W3 W2 , W3 W3}

Probability = 9/25 - 36%

20. a. 1/5 = 20%

b. When there are five doors, as described in the exercise statement, there are 16 possible sets
of outcomes if you switch doors. These are shown in the table below. For each set of outcomes,
the door with the prize is marked with an asterisk. There are fewer possible sets of outcomes
if the prize is not behind door A, because in that case the host will not open the door with
the prize.

Prize is behind door You choose one of
A* BCD BCE BDE CDE
B B*CD B*CE B*DE
C BC*D BC*E BC*D
D BCD* CD*E BD*E
E BCE* BDE* CDE*

In 12 sets of outcomes you would increase your chance of winning the prize by switching, and
only 4 sets of outcomes would you not increase your chance of winning by switching. So, if all
16 sets of outcomes were equally likely, you would increase your chance of winning the prize in
12/16 of the sets of outcomes by switching. In fact, however, the 16 sets of outcomes are not
equally likely. Because it is just as likely for the prize to be behind door A as it is for the prize
to be behind one of the other doors, each of the four sets of outcomes for when the prize is
behind door A is less likely than each of the three sets of outcomes for when the prize is behind
another door. This implies that your chance of winning by switching is even greater than it
would be if all 16 sets of outcomes were equally likely. So the probability of your winning the
prize increases if you switch.

Another way to arrive at the conclusion that you are more likely to win the prize by
switching is to reason as follows: If the prize is not behind door A and you switch, you have
a 1/3 chance of choosing correctly and there is a 4/5 chance that the prize is not behind
door A. So the probability of winning the prize if you switch is (1/3)(4/5) = 4/15 - 26.7%.
This reasoning is formalized using the concept of conditional probability, which is discussed
in Section 6.9: Let A be the event that the prize is not behind door A. Then P(A) = 4/5
because it is assumed that the prize is equally likely to be behind any of the five doors. Let
B be the event that you choose the door with the prize. Then P(BIA) = 1/3 because given
that the prize is behind one of doors B, C, D, or E, once the host has opened one door, the
prize is equally likely to be behind any of the other three doors. Thus the event that you win
by switching is the intersection of the event that the prize is not behind door A and the event
that you chose the right door out of the three that remain. So the probability that you win
by switching is P(A n B) = P(A)P(BIA) = (4/5)(1/3) = 4/15 - 26.7%.
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22. a.

100 101 102 103 104 105 106 107 108 ... 990 991 992 993 994 995 996 997 998 999

I I I I
6- 17 6 18 6 165 6- 166

The above diagram shows that there are as many three-digit integers that are multiples of 6 as
there are integers from 17 to 166 inclusive. But by Theorem 6.1.1, there are 166 -17+ 1 = 150
such integers.

b. The probability that a randomly chosen three-digit integer is a multiple of 6 is

150/(999-100+1) = 150/900 = 1/6 16.7%.

23. a. n

b. 39 -4+1 =36

25. a. (i) When n is even, Ln]n
2' 0o the answer is n

(ii) When n is odd, [2] _ 2 , so the answer is n

n+2

b. (i) 2
n

n+2 1 1
2n 2 n

n+3

(ii) 2
n

n n+1 n+2
2 2 2
n -1 2n-'n+1+2 n+3

+1 2
2 2 2

n+3 1 3
2n 2 2n

27. Let k be the 62nd element in the array. By Theorem 6.1.1, k-29 + 1 = 62, so k = 62 + 29-1 =
90. Thus the 62nd element in the array is B[90].

29. Let m be the smallest of the integers. By Theorem 6.1.1, 326-m+1 = 87, so m = 326-87+1 =
240.

30.

1 2 3 4 5 6 ...

I I I
2 1 2 2 2 3

998 999 1000 1001

I
2 - 499

I
2 500

The diagram above shows that there are as many even integers between 1 and 1001 as there
are integers from 1 to 500 inclusive. There are 500 such integers.

32. b.

M Tu W Th
1 2 3 4

7*0+1

F
5

Sa Su M Tu
6 7 8 9

I
7*1+1

... F Sa Su M
362 363 364 365

1
7 -52+1I

In the diagram above, Mondays occur on days numbered 7k + 1 where k is an integer from 0 to
52 inclusive. Thus there are as many Mondays in the year as there are such integers, namely
52-0 + 1 = 53 of them.

33. Proof: Let m be any integer, and let the property P(n) be the sentence "The number of
integers from m to n inclusive is n - m + 1." We will prove by mathematical induction that
the property is true for all integers n > m.

Show that the property is true for n = m: There is just one integer, namely m, from m
to m inclusive. Substituting m in place of n in the formula n -m + 1 gives m -m + 1 = 1,
which is correct.
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Show that for all integers k > m, if the property is true for n = k then it is true
for n = k + 1: Suppose k is an integer with k > m, and suppose the number of integers
from m to k inclusive is k - m + 1. /This is the inductive hypothesis.] We must show that the
number of integers from m to k + 1 inclusive is m - (k + 1) + 1.

Consider the sequence of integers from m to k + 1 inclusive:

m, m+1, m+2, ... , k, (k+1).

k-m+l

By inductive hypothesis there are k - m + 1 integers from m to k inclusive. So there are
(k-m + 1) + I integers from m to k + I inclusive. But (k-m + 1) + 1 = (k + 1)-m + 1. So
there are (k + 1) - m + 1 integers from m to k + 1 inclusive /as was to be shown].

Section 6.2

2.

game 3 game 4 game 5 game 6 game 7

A (A wins) A (A wins) A (A wins) _
- - -A

Start:
A has

first two

(A wins)

(B wins)

(A wins)

(B wins)

(A wins)

(B wins

(A wins)

(B wins)

11 (S wins)

The number of ways to complete the series equals the number of branches on this possibility
tree, namely 15. So there are fifteen ways to complete the series.

5.

game 4 game 5 game 6 game 7

Y (Y wins) X (X wins) X (X wins)
Start: X
X has won =
the first game
and Y has won the = -
second and third games Y (Y wins)

- Y(Y wins)
X (Xwins)

- Y (Y wins)

The number of ways to play the competition equals the number of branches on this possibility
tree, namely 7. So there are seven ways to play the competition.
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7. a.

Step 1: Step 2: Step 3:
Choose urn Choose ball I Choose ball 2

Rs
By-- R2

/-= R3

R4 Bi
R41 / R3

/ = =BI

Rs B2

2 B3

B2 Rs

-R5

\ B3

R4

B2
= BB3

b. There are 24 outcomes of this experiment.

c. The probability that two red balls are chosen is 8/24 = 1/3.

10. Sketch:

North P Star Lake

a. Think of creating a route from North Point to Star Lake that passes through Beaver Dam
as a 3-step process. Step 1 is to choose a route from North Point to Boulder Creek, step 2 is
to choose a route from Boulder Creek to Beaver Dam, and step 3 is to choose a route from
Beaver Dam to Star Lake. There are 3 choices for step 1 and 2 choices for each of steps 2 and
3. Thus, the number of routes from North Point to Star Lake that pass through Beaver Dam
is 3 2 2 = 12.

b. Imagine the following 2-step process for creating a route from North Point to Star Lake
that bypasses Beaver Dam: Step 1 is to choose a route from North Point to Boulder Creek,
step 2 is to choose a direct route from Boulder Creek to Star Lake. There are 3 choices for
step 1 and 4 choices for step 2. Thus, the number of routes from North Point to Star Lake
that bypass Beaver Dam is 3 .4 = 12.

11. c. If a bit string of length 8 begins and ends with a 1, then the six middle positions can be
filled with any bit string of length 6. Hence there are 26 = 64 such strings.

d. 2" = 256

12. b. Think of creating a string of hexadecimal digits that satisfies the given requirements as a
6-step process. Step 1 is to choose the first hexadecimal digit. It can be any hexadecimal digit
from 4 through D (which equals 13) There are 13-4 + 1 = 10 of these. Steps 2-5 are to choose
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the second through the fifth hexadecimal digits. Each can be any one of the 16 hexadecimal
digits. Step 6 is to choose the last hexadecimal digit. It can be any hexadecimal digit from 2
through E (which equals 14) There are 14 - 2 + 1 = 13 of these. So the total number of the
specified hexadecimal numbers is 10 16 16- 16. 16 13 = 8, 519,680.

13. c. There are four outcomes in which exactly one head occurs: HTTT, THTT, TTHT, TTTH.
Since there are 16 outcomes in all, the probability of obtaining exactly one head is 4/16 = 1/4.

14. Think of creating license plates that satisfy the given requirements as multi-step processes.

c. Because the license plate begins with TGIF positions 1 4 in the plate are already taken.
Let steps 1-3 be to choose digits for each of positions 5-7. There are 10 ways to perform each
of these steps, so there are 10. 10. 10 = 1000 license plates satisfying the given requirements.

e. Because the license plate begins with AB, positions 1 and 2 in the plate are already taken.
Let steps 1 and 2 be to choose letters for positions 3 and 4, and let steps 3-5 be to choose
digits for positions 5-7. Because all letters and digits must be distinct, there are 24 ways to
perform step 1 (choose any letter but A or B), 23 ways to perform step 2 (choose any letter
but A or B or the letter chosen in step 1), 10 ways to perform step 3 (choose any digit), 9 ways
to perform step 4 (choose any digit but the one chosen in step 3), and 8 ways to perform step 5
(choose any digit but one chosen in a previous step). Thus there are 24 .23 109. 8 = 397,440
license plates satisfying the given requirements.

15. Think of creating combinations that satisfy the given requirements as multi-step processes in
which steps 1-3 are to choose a number from 1 to 30, inclusive.

a. Because there are 30 choices of numbers in each of steps 1-3, there are 303 - 27, 000 possible
combinations for the lock.

b. In this case we are given that no number may be repeated. So there are 30 choices for step
1, 29 for step 2, and 28 for step 3. Thus there are 30 . 29. 28 = 24,360 possible combinations
for the lock.

16. b. Constructing a PIN that is obtainable by the same keystroke sequence as 5031 can be
thought of as the following four-step process. Step 1 is to choose either the digit 5 or one of
the three letters on the same key as the digit 5, step 2 is to choose the digit 0, step 3 is to
choose the digit 3 or one of the three letters on the same key as the digit 3, and step 4 is to
choose either the digit 1 or one of the two letters on the same key as the digit 1. There are
four ways to perform steps 1 and 3, one way to perform step 2, and three ways to perform
step 4. So by the multiplication rule there are 4 1 - 4 . 3 = 48 different PINs that are keyed
the same as 5031.

c. Constructing a numeric PIN with no repeated digit can be thought of as the following
four-step process. Steps 1-4 are to choose the digits in position 1-4 (counting from the left).
Because no digit may be repeated, there are 10 ways to perform step one, 9 ways to perform
step two, 8 ways to perform step three, and 7 ways to perform step four. Thus the number of
numeric PINs with no repeated digit is 10 . 9 - 8. 7 = 5040.

18. b. There are 10 ways to perform step one, 22 ways to perform step two /because we may choose
any of the thirteen letters from N through Z or any of the nine digits not chosen in step 1], 34
ways to perform step three [because we may not use either of the two previously used symbols],
and 33 ways to perform step four (because we may not use any of the three previously used
symbols). So the total number of PINs is 10. 22- 34. 33 = 246,840.

20. In parts a-c, think of constructing a 4-digit integer as a 4-step process where step i is to choose
the ith digit (counting from the left) for i = 1, 2,3,4.

a. There are 9 choices for step 1 [because the first digit cannot be 0], and 10 choices for each
of steps 2-4 [because any digits can be in positions 2 4]. So the number of integers from 1000
through 9999 is 9- 10 10. 10 = 9000.
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(An alternative solution is to use Theorem 6.1.1 to say that the number of integers from 1000
through 9999 is 9999 - 1000 + 1 = 9000.)

b. There are 9 choices for step 1 because the first digit cannot be 0], 10 choices for steps 2
and 3 [because any digits can be in positions 2-3], and 5 choices for step 4 [because the last
digit must be 1, 3, 5, 7, or 9]. So the number of odd integers from 1000 through 9999 is
9 10 10 5 = 4500.

c. There are 9 choices for step 1 [because the first digit cannot be 0], 9 choices for step 2 /because
the digit chosen in step 1 cannot be used], 8 choices for step 3 [because the digits chosen in
steps 1 and 2 cannot be used], and and 7 choices for step 4 [because the digits chosen in steps
1 3 cannot be used] So the number of integers from 1000 through 9999 with distinct digits is
9 9 8 7 = 4536.

d. Think of constructing a 4-digit integer as a 4-step process where step 1 is to pick the right-
most digit, step 2 is to pick the left-most digit, step 3 is to pick the second digit from the left,
and step 4 is to pick the third digit from the left. There are 5 choices for step 1 [because the
right-most digit must be 1,3,5,7, or 9], 8 choices for the left-most digit [because it cannot be
O or the digit chosen to be right-most], 8 choices for step 3 [because it cannot be either of the
digits chosen in steps 1 and 2], and 7 choices for step 4 [because it cannot be any of the digits
chosen in steps 1-3]. Thus the number of odd integers from 1000 through 9999 with distinct
digits is 5 . 8 8- 7 = 2240.

e. The probability that a randomly chosen four-digit integer has distinct digits is 4536/9000 -
50.4%. The probability that a randomly chosen four-digit integer has distinct digits and is odd
is 2240/9000 - 24.9%.

22. mn

23. mnp

25. (b- a+1)(d- c+1)

26. Use five digits to represent each number from 1 through 99,999 by adding leading 0's as
necessary. Constructing a five-digit number can then be thought of as placing five digits into
five adjacent positions. Imagine constructing a number containing one each of the digits 2, 3,
4, and 5 as the following five-step process: Step one is to choose a position for the 2, step two
is to choose a position for the 3, step three is to choose a position for the 4, step four is to
choose a position for the 5, and step five is to choose an unused digit to fill in the remaining
position. There are 5 ways to perform step one, 4 ways to perform step two, 3 ways to perform
step three, 2 ways to perform step four, and 6 ways to perform step five (because there are six
digits not equal to 2, 3, 4, or 5). So there are 5. 4 . 3 2. 6 = 720 numbers containing one each
of the digits 2, 3, 4, and 5.

27. a. Call one of the integers r and the other s. Since r and s have no common factors, if pi is
a factor of r, then pi is not a factor of s. So for each i = 1,2, ... , m, either pi k is a factor
of r or piki is a factor of s. Thus, constructing r can be thought of as an m-step process in
which step i is to decide whether piki is a factor of r or not. There are two ways to perform
each step, and so the number of different possible r's is 2'. Observe that once r is specified,
s is completely determined because s = n/r. Hence the number of ways n can be written as
a product of two positive integers rs which have no common factors is 2m. Note that this
analysis assumes that order matters because, for instance, r = 1 and s = n will be counted
separately from r = n and s = 1.

b. Each time that we can write n as rs, where r and s have no common factors, we can also
write n = sr. So if order matters, there are twice as many ways to write n as a product of two
integers with no common factors as there are if order does not matter. Thus if order does not
matter, there are 2'/2 = 2 m1 ways to write n as a product of two integers with no common
factors.
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28. c. A divisor of paqbrc is any one of the (a + 1)(b + 1) divisors of paqb counted in part (b)
times any one of the c + 1 numbers 1, r, r2. . ., r'. So by the multiplication rule, there are
(a + 1)(b + 1)(c + 1) divisors in all.

d. By the multiplication rule, the answer is (aI + 1)(a2 + 1)(a3 + 1) ... (am + 1). (A full formal
proof would use mathematical induction.)

e. Let n be the smallest positive integer with exactly 12 divisors, and suppose n = pI1p2 . . .pma
where all the pi are prime numbers with pi < P2 < < Pm and where all the ai are integers
with ai > 1. By the result of part (d), 12 = (a, + 1)(a 2 + 1)(a 3 + 1) . (am + 1). Then each
(ai + 1) > 2, and so, because the prime factorization of 12 is 12 = 22 3, m < 3.

In case m 1, then a, = 11 and n- p1  > 21 = 2048.

In case m =2, then because 12 =3 *4 = 2 6, either a, = 3 and a2 = 2, in which case
n 13 P2 > 2332 = 8.9 = 72, or a= 5 and a 2 = 1, in which case n = PP2 > 25 31  323 = 96.

In case m = 3, then because 12= 3 2 2, a, = 2, a2 = 1, and a 3 =1, and n = p1P2P3 >

22351 = 4 3 .5 = 60.

Therefore, the smallest positive integer with exactly 12 divisors is 60.

Because 12 = 2 .2 3 = 4 3 = 6 .2, by part (d) the possibilities area 1 = 1, a2 = 1, and a3 = 2
(of which the smallest example is 22 . 31 . 51 = 60), or a, = 3, a2 = 2 (of which the smallest
example is 2 3 32 = 72), or a, = 5, a2 = 1 (of which the smallest example is 2 5- 31 = 96). The
smallest of the numbers obtained is 60, and so the answer is 60. (The twelve divisors of 60 are
1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, and 60.)

29. c. Because the letters GOR remain together as an ordered unit, there are 7 items that can be
arranged in order: A, L, GOR, I, T, H, and M. Thus the number of arrangements is 7! = 5040.

30. a. The number of ways the 6 people can be seated equals the number or permutations of a set
of 6 elements, namely, 6! = 720.

b. Assuming that the row is bounded by two aisles, the answer is 2 . 5! = 240. Under this
assumption, arranging the people in the row can be regarded as a 2 -step process where step 1
is to choose the aisle seat for the doctor [there are 2 ways to do this] and step 2 is to choose
an ordering for the remaining people [there are 5! ways to do this]. (If it is assumed that one
end of the row is against a wall, then there is only one aisle seat and the answer is 5! = 120.)

c. Each married couple can be regarded as a single item, so the number of ways to order the
3 couples is 3! = 6.

33. stu, stv, sut, suv, svt, svu, tsu, tsv, tus, tuv, tvs, tvu, ust, usv, uts, utv, uvs, uvt, vst, vsu, vts, vtu, vus, vut

34. b. P(6,6) = 6!/(6 - 6)! = 6!/0! = 6!/1 = 720

c. P(6,3) = 6!/(6 - 3)! = 6!/3! = 6 5 4 = 120

d. P(6, 1) = 6!/(6 - 1)! = 6!/5! = 6
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35. b. P(8, 2) = 8!/(8 - 2)! = 8!/6! = 8 7 = 56

36. b. P(9,6) =9!/(9 -6)! =9!/3!=9 8 7 6 -5 4=60,480

d. P(7,4) = 7!/(7 - 4)! = 7!/3! = 7 6 5. 4 = 840

37. Proof 1: Let n be any integer such that n > 2. By the first version of the formula in Theorem
6.2.3,

P(n + 1, 3) (n + 1)! _ (n + 1)n(n- 1)(n - 2)! = n3-n

((n±+1) -3)! (n -2)!

Proof 2: Let n be any integer such that n > 2. By the second version of the formula in
Theorem 6.2.3,

P(n + 1, 3) = (n + 1)(n) ... ((n + 1)-3 + 1) = (n + 1)(n)(n -1) = n3 -n.

39. Proof 1: Let n be any integer such that n > 3. By the first version of the formula in Theorem
6.2.3,

P(n + 1, 3) -P(n, 3) ((n ( 1)! -3n!

(n + 1)! n!

(n - 2)! (n - 3)!

(n+ 1) n! (nr-2) n!
(n -2)! (n -2) (n- 3)!

n!((n + 1)-(n- 2))
(n - 2)!

n!
= (n -2)!

3P(n, 2).

Proof 2: Let n be any integer such that n > 3. By the second version of the formula in
Theorem 6.2.3,

P(n + 1, 3) -- P(n, 3) = (n + 1)n(n -1) -n(n- 1)(n -2)

= n(n - 1)[(n + 1) - (n - 2)]

= n(n-1)(n + 1-n + 2)

= 3n(n -1)

= 3P(n, 2).

40. Proof: Let n be any integer such that n > 2. By Theorem 6.2.3,

n! n! n!P(n, n) ( )! =- 0!= = n!.

On the other hand,

n! - n! n!
Pnn 1-(n -(n -1))! 1! I

also. Hence P(n, n) = P(n, n -1).
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41. Proof: Let the property P(k) be the sentence "If an operation consists of k steps and the
first step can be performed in n, ways, the second step can be performed in n2 ways, ....

and the kth step can be performed in nk ways, then the entire operation can be performed in
nin2 .nk ways." We will show that the property is true for k = 1 and then use mathematical
induction to show that that the property is true for all integers k > 2.

Show that the property is true for k = 1: If an operation consists of one step that can
be performed in n1 ways, then the entire operation can be performed in n1 ways.

Show that the property is true for k = 2: Suppose an operation consists of two steps
and the first step can be performed in n 1 ways and the second step can be performed in n2

ways. Each of the n1 ways of performing the first step can be paired with one of the n2 ways
of performing the second step. Thus the total number of ways to perform the entire operation

is n2 + n 2 +* + n2 , which equals n 1 n2 .

n1 terms

Show that for all integers i > 2 , if the property is true for k = i then it is true
for k = i + 1: Let i be an integer such that i > 2 and suppose that P(i) is true. /This is

the inductive hypothesis.] Consider an operation that consists of i + 1 steps where the first
step can be performed in n1 ways, the second step can be performed in n2 ways, ... , the ith

step can be performed in ni ways, and the (i + 1)st step can be performed in ni+1 ways. This
operation can be regarded as a two-step operation in which the first step is an i-step operation
that consists of the original first i steps and the second step is the original (i + 1)st step.
By inductive hypothesis, the first step of the operation can be performed in n1 n2  ni ways
and by assumption the second step can be performed in ni+1 ways. Therefore, by the same
argument used to establish the case k = 2 above, the entire operation can be performed in

(nmn2 ... ni)ni+ = n1 n2 ... nini+1 ways. [This is what was to be shown.]

42. Proof: For each integer n > 1, let the property P(n) be the sentence "The number of per-

mutations of a set with n elements is n!." We will prove by mathematical induction that the

property is true for all integers n > 1.

Show that the property is true for n = 1: If a set consists of one element there is just
one way to order it, and 1! = 1.

Show that for all integers k > 1, if the property is true for n = k then it is true
for n = k + 1: Let k be an integer with k > 1 and suppose that the number of permutations
of a set with k elements is k!. [This is the inductive hypothesis.] Let X be a set with k + 1

elements. The process of forming a permutation of the elements of X can be considered a

two-step operation where step 1 is to choose the element to write first and step 2 is to write

the remaining elements of X in some order. Since X has k + 1 elements, there are k + 1 ways
to perform step 1, and by inductive hypothesis there are k! ways to perform step 2. Hence by
the product rule there are (k + 1)k! = (k + 1)! ways to form a permutation of the elements of

X. But this means that there are (k + 1)! permutations of X [as was to be shown].

43. Proof: Let n be any integer with n > 1, and let the property P(r) be the equation P(n, r)

n!/(n - r)!. We will prove by mathematical induction that the property is true for all integers
r with 1 < r < n.

Show that the property is true for r = 1: For r = 1, P(n, r) is the number of 1-

permutations of a set with n elements which equals n because there are n ways to place one ele-
ment from a set with n elements into one position. But when r 1, n!/(n-r)! = n!/(n-1)! n

also. Hence the formula holds for r = 1.

Show that for all integers 1 < k <n - 1 , if the property is true for r = k then
it is true for r = k + 1: Let k be an integer with 1 < k < n - l and suppose P(n, k) =

(n k [ [We must show that P(nk+1) = (n (k +1))! Consider the process of forming

a (k + 1)-permutation of a set X of n elements. This process can be thought of as a two-step
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operation as follows: Imagine k + 1 positions spread out in a row. Step 1 is to place k elements
from X into the left-most k positions and step 2 is to place one element into the right-most
position. By inductive hypothesis, there are n!/(n - k)! ways to perform step 1. After step
1 has been performed there are n - k elements left to choose from to place in the (k + 1)st
position. It follows that there are n -k ways to perform step 2. Thus by Theorem 6.2.1,

nI
there are .(n - k) ways to perform the entire operation, or, in other words, to form

(n - k)!(n-kwastpefrthenieoeainorinohrwrstoom
a (k + 1)-permutation of X. But

n_ _ k_ n!(n-k) n! n!
(n -k)! k) (n -k)(n- k -1)! (n-k-i)! (n -(k + 1))!

Thus the number of (k + 1)-permutations of X equals n!/(n -(k + 1))!, or, equivalently,

P(n ) (n (k + 1))! /as was to be shown].

Section 6.3

2. a. 16 + 162 + 16 3= 4,368

b. 162 + 163 + 164 + 165 = 1,118,464

5. a. Such integers must end in a 0 or a 5. Therefore, the answer is 9 * 10 . 10 . 10 . 2 = 18,000.

b. The total number of five-digit integers is 99999 - 10000 + 1 = 90000. By part (a), 18,000 of
these are divisible by 5. So the probability that a randomly chosen five-digit integer is divisible
by 5 is 18000/90000 = 1/5 = 20%.

7. Solution 1: As indicated in the problem statement, certain numbers are equal and should
therefore not be counted twice. For instance, 001.90 = 1.9 = 1.90 and so forth.

Numbers that consist of one significant digit: Excluding zero, there are 9 such numbers that
have the form "x." and 9 that have the form ".Y". Thus, including zero, there are 2 .9 + 1 = 19
such numbers.

Numbers that consist of two significant digits: There are 9 10 such numbers of the form "xx. ",

9 . 9 such numbers of the form x.x, and 10 . 9 such numbers of the form ".xx". Thus there are
90 + 81 + 90 = 261 such numbers in all.

Numbers that consist of three significant digits: There are 9* 102 such numbers of the form
"xxx. ", 9 10 9 such numbers of the form "xx.x", 9 10 9 such numbers of the form "x.xx" and
102 - 9 such numbers of the form ".xxx". Thus there are 2 *900 + 2- 810 = 3420 such numbers
in all.

Similar analysis shows that there are 2 .9 9 103 + 3 . 92 . 102 = 42,300 such numbers with four
significant digits, 2 - 9 10 4 + 4 . 92 . 103 = 504, 000 such numbers with five significant digits,
29* 105 + 5.92. 104 = 5, 850, 000 such numbers with six significant digits, 2. 9. 106 + 6.92 105 =

66,600,000 such numbers with seven significant digits, and 2 -9 -107 + 7.92.106 = 747,000,000
such numbers with eight significant digits. Adding gives that there are 820,000,000 distinct
numbers that can be displayed. Note that if the calculator has a ± indicator, the total is
2 -820000000 -1 = 1,639,999,999 (so as not to count zero twice).

Solution 2 /with thanks to a student of Norton Starr at Amherst College]: Note that there
are 99,999,999 distinct positive integers that can be represented on the calculator described
in the exercise, 99,999,999 distinct negative integers, and zero. Thus the total number of
distinct integers that can be represented on the calculator is 99, 999, 999 + 99, 999, 999 + 1 =
199, 999, 999. Note also that a number that is not an integer has a left-most or an interior
decimal point, and to count only distinct such numbers, trailing O's should be ignored (because,

http://pakimonda.blog.com 
paki.monda@gmail.com 
paki.monda@yahoo.com



Section 6.3 149

for example, 12.90 = 12.9 = 12.900 and so forth). Thus we may assume that the right-most
digit of any such number is not zero. Hence constructing a number that is not an integer
can be regarded as a process of filling in 10 positions in the calculator display: first the left-
most (which is either blank or contains a minus sign), second the right-most position (which
is a nonzero digit), and finally the middle eight positions (seven of which are digits and one
of which is a decimal point). So step 1 is to choose whether the left-most position will be
blank or have a minus sign, step 2 is to choose one of the 9 nonzero digits for the right-most
position, step 3 is to choose one of 8 positions for the decimal point, and each of steps 4-
10 is to choose one of 10 digits to place into the empty positions, moving from left to right
along the display. Therefore there are 2 * 9 - 8 * 107 = 1,440,000,000 numbers that are not
integers and that can be represented on the display, and hence, by the addition rule, there are
199,999,999 + 1,440,000,000 = 1,639,999,999 distinct numbers that can be represented.

8. b. On the ith iteration of the outer loop, there are i iterations of the inner loop, and this
is true for each i = 1,2, .. ., n. Therefore, the total number of iterations of the inner loop is
1+2+3+ .. +n =n(n+1)/ 2.

10. a. The number of ways to arrange the 6 letters of the word THEORY in a row is 6! = 720

b. When the TH in the word THEORY are treated as an ordered unit, there are only 5
items to arrange, TH, E, 0, R, and Y. and so there are 5! orderings. Similarly, there are 5!
orderings for the symbols HT, E, 0, R, and Y. Thus, by the addition rule, the total number
of orderings is 5! + 5! = 120 + 120 = 240.

13. The set of all possible identifiers may be divided into 30 non-overlapping subsets depending on
the number of characters in the identifier. Constructing one of the identifies in the kth subset
can be regarded as a k-step process, where each step consists in choosing a symbol for one of
the characters (say, going from left to right). Because the first character must be a letter, there
are 26 choices for step 1, and because subsequent letters can be letters or digits or underscores
there are 37 choices for each subsequent step. By the addition rule, we add up the number
of identifiers in each subset to obtain a total. But because 82 of the resulting strings cannot
be used as identifiers, by the difference rule, we subtract 82 from the total to obtain the final
answer. Thus we have

(26 + 26 37 + 26 . 372+ . + 26 .3729) - 82 = 26(1 + 37 + 372+ ... + 3729) - 82

29 / 37 30 -14
=26. E 3 7 -82=26 _ 37-1) -82 -v 8.030 x 1046 v

k=O

15. a. Imagine the process of constructing a string of four distinct hexadecimal digits as a 4-step
operation:

Step 1: Choose a hexadecimal digit to place into the first position in the string.

Step 2: Choose another hexadecimal digit to place into the second position in the string.

Step 3: Choose yet another hexadecimal digit to place into the third position in the string.

Step 4: Choose yet another hexadecimal digit to place into the fourth position in the string.

The total number of ways to construct the string (and hence the total number of such strings)
is 16 15 * 14 * 13 = 43,680.

b. The process of constructing an arbitrary string of four hexadecimal digits (including those in
which not all the digits are distinct) can also be regarded as a 4-step operation with 16 ways to
perform each step. So the total number of strings of four hexadecimal digits is 164 = 65,536.
Note that if not all the digits in a string are distinct, then at least one is repeated, and
so by the difference rule, we may subtract the number that consist of four distinct digits
from the total to obtain the number with at least one repeated digit. Thus the answer is
16 4 _16 .15 .14 .13 = 21,856.
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c. Because there are 164 = 65, 536 strings of four hexadecimal digits and because, by part (b),
21,856 of these have at least one repeated digit, the probability that a randomly chosen string
of four hexadecimal digits has at least one repeated digit is 21856/65536 - 33.3%.

16. b. Proof: Let A and B be events in a sample space S. By the inclusion/exclusion rule
(Theorem 6.3.3), N(A U B) = N(A) + N(B)- N(A n B). So by the equally likely probability
formula,

P(A U B) N(A U B) N(A) + N(B)- N(A n B) _ N(A) N(B) N(A n B)
N (S) N(S) N(S) N(S) N(S)

= P(A)+ P(B)- P(A n B).

17. Imagine the process of constructing a combination that satisfies the given conditions as a 3-
step operation: step 1 is to choose an integer from 1 through 39 to use second, step 2 is to
choose an integer to use first (any integer but the one chosen to use second may be chosen),
and step 3 is to choose an integer to use third (again, any integer but the one chosen to use
second may be chosen). There are 39 ways to perform step 1 and 38 ways to perform steps 2
and 3. Thus the number of ways to perform the entire operation (which equals the number of
possible combinations for the lock) is 39 . 38 . 38 = 56, 316.

18. b. As in part (a), represent each integer from 1 through 99,999 as a string of five digits. The
number of integers from 1 through 99,999 that do not contain the digit 6 is 95 -1 because
there are 9 choices of digit for each of the five positions (namely, all ten digits except 6),
except that 000000 is excluded. In addition, 100,000 does not contain the digit 6. So there are
(95 -1) + 1 = 95 integers from 1 through 100,000 that do not contain the digit 6. Therefore,
by the difference rule, there are 100, 000 -95 = 40, 951 integers from 1 through 100,000 that
contain at least one occurrence of the digit 6.

c. By parts (a) and (b) and the difference rule, the number of integers from 1 through 100,000
that contain two or more occurrences of the digit 6 is the difference between the number
that contain at least one occurrence and the number that contain exactly one occurrence,
namely, 40, 951 -32, 805 = 8146. Since there are 100,000 integers from 1 through 100,000, the
probability that a randomly chosen integer in this range contains two or more occurrences of
the digit 6 is 8146/100000 = 8.146%.

19. Call the employees U, V, W, X, Y, and Z, and suppose that U and V are the married couple.
Let A be the event that U and V have adjacent desks. Since the desks of U and V can be
adjacent either in the order UV or in the order VU, the number of desk assignments with U
and V adjacent is the same as the sum of the number of permutations of the symbols F,
W, X, Y, Z plus the number of permutations of the symbols VU , W, X, Y, Z. By the
multiplication rule each of these is 5!, and so by the addition rule the sum is 2 5!. Since the total
number of permutations of U, V, W, X, Y, Z is 6!, P(A) = 2 5!/6! = 2/6 = 1/3. Hence by the
formula for the probability of the complement of an event, P(AC) - 1 P(A) = 1-1/3 = 2/3.
So the probability that the married couple have nonadjacent desks is 2/3.

20. a. By the multiplication rule, the number of strings of length n over {a, b, c, d} with no two
adjacent characters the same is 4 . 3 -3... 3 = 4 - 3 -l because any of the four letters may

n-1
be chosen for the first character and for each subsequent character any letter except the one
directly to its left may be chosen. The total number of strings over {a, b, c, d} of length n is 4nl,
and so by the difference rule the number of such strings with at least two adjacent characters
the same is 4n - 4 3 n-1

b. The probability is 4 -4 139 1 - (3) 9 92.5%.
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21. b. By part (a) and the equally likely probability formula, the probability that an integer chosen

at random from 1 through 1000 is a multiple of 4 or a multiple of 7 is 1( 0 ) 1 0
1000 1000

35.7%.

c. By the difference rule the number of integers from 1 through 1000 that are neither multiples
of 4 nor multiples of 7 is 1000 -357 = 643.

22. a. Let A and B be the sets of all integers from 1 through 1,000 that are multiples of 2 and
9 respectively. Then N(A) = 500 and N(B) = 111 (because 9 = 9 1 is the smallest integer
in B and 999 = 9 111 is the largest). Also A n B is the set of all integers from 1 through
1,000 that are multiples of 18, and N(A n B) = 55 (because 18 = 18 . 1 is the smallest
integer in A n B and 990 = 18 - 55 is the largest). It follows from the inclusion/exclusion
rule that the number of integers from 1 through 1,000 that are multiples of 2 or 9 equals
N(A u B) = N(A) + N(B) -N(A u B) = 500 + 111 -55 = 556.

b. The probability is 556/1000 = 55.6%.

c. 1000 - 556 = 444

23. e. The first 3 bits in a Class C network address are 110 and the remaining 21 bits can be any
ordering of O's and 1's. So the number of network ID's for Class C networks is 221 = 2,097,152.

f. The first eight bits in a Class C network address go from 11000000 (which equals 192) to
11011111 (which equals 223). The second two 8-bit sections of the network address go from
00000000 (which equals 0) to 11111111 (which equals 255). The final 8 bits, which are used
for individual host ID's, go from 00000001 (which equals 1) to 11111110 (which equals 254).
So the dotted decimal form of a computer in a Class C network has the form w.x.y.z, where
192 < w < 223, 0 < x < 255, 0 < y < 255, and 1 < z < 254.

g. The host ID's for a Class C network go from 1 to 254, so there can be 254 hosts in a Class
C network.

h. If the first of the four numbers in the dotted decimal form of an IP address is between 1 and
126 inclusive, the network is Class A. If the first number is between 128 and 191, the network
is Class B. If the first number is between 192 and 223, the network is Class C.

j. Because 192 < 202 < 223, the IP address comes from a Class C network.

25. Given a group of n people, imagine them lined up alphabetically by name. Assuming that
each year has 365 days, the number of assignments of birthdays to individual people with
repetition allowed is 365' [because any one of 365 birthdays can be assigned to each position in
the line], and the number of assignments of birthdays to individual people without repetition
is 365 . 364 . 363 ... (365 - n + 1). Assuming that all birthdays are equally likely, each of the
365' assignments of birthdays to individual people is as likely as any other. So the probability

365. 364 363 . .. (365-n + 1)
that no two people have the same birthday is 365n 'and thus by

the formula for the probability of the complement of an event, the probability that at least

two people have the same birthday is p =1 (- 365 364 363 - . (365-n + 1) If n 22,

then p 1 -. 5243 = .4757 < 1/2, and if n = 23, then p 1 -. 4927 = .5073 > 1/2. Moreover,
the greater n is, the greater the probability that two people in a group of n will have the same
birthday. Therefore n must be 23 (or more) in order for the probability to be at least 50%
that two or more people in the group have the same birthday.

26. N(T) = 28, N(N) = 26, N(U) = 14, N(T n N) = 8, N(T n U) = 4, N(N n U) = 3,
N(TnNnU) = 2.

a. N(TUNUU) = N(T) +N(N) +N(U) -N(TnN) -N(TnU)-N(NnU)+N(TnNnU) =

28+26+14- 8 -4 -3+2 =55

b. N((T u N U U)c) = 100 - N(T u N u U) = 100 - 55 = 45
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C.

Sample of Students

e. 1 f. 17

27. Let A, B, and C be the sets of all people who reported relief from drugs A, B, and C
respectively. Then N(A)= 21, N(B) = 21, N(C) = 31, N(A n B) =9, N(A n C) = 14,
N(B n C) = 15, and N(A U BUC) = 41.

a. N((AUBUC)C)=50 -N(AUBUC)=50-41=9

b. N(AnBnC) =N(AuBuC)-N(A)-N(B)-N(C)+N(AnB)+N(AnC)+N(BnC) =

41-21-21-31+9+14+15=6

C.

Sample of Subjects

A

4 69

d. Solution 1: From the picture in part (c), it is clear that the number who got relief from A
only is 4.

Solution 2: Because (AnB) U(AnC) =A and (AnB)n(A nC) = A nBn C,we may apply
the inclusion/exclusion rule to A to obtain the result that the number who got relief from A
only equals N(A)-N(AfnB) -N(A nC)+N(AnB nC)= 21 - 9 - 14 + 6 = 4.

29. a. by the difference rule b. by De Morgan's law c. by the inclusion/exclusion rule

31. Solution 1: Let U be the set of all permutations of a, b, c, d, and e, let A be the set of all
permutations of a, b, c, d, and e in which the left-most character is a, b, or c, and let B be the
set of all permutations in which the right-most character is c, d, or e. By the formula from
exercise 29, N(A n B) = N(U) -(N(AC) + N(Bc) -N(Ac n BC)). Now by the multiplication
rule, N(U) = 5! = 120. Also the number of permutations of a, b, c, d, and e in which the
left-most character is neither a, b, or c is 2 .4. 3 2. 1 = 48 (because only d or e may be chosen
as the left-most character). And the number of permutations of a, b, c, d, and e in which the
right-most character is neither c, d, or e is 2 . 4 . 3 . 2 1 = 48 (because only a or b may be
chosen as the right-most character -imagine choosing the right-most character first and then
the four on the left one after another). Thus N(AC) = 2.4! = N(BC). Furthermore, AC n Bc is
the set of permutations of a, b, c, d, and e in which the left-most character is neither a, b, nor
c and the right-most character is neither c, d, nor e. In other words, the left-most character
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is d or e and the right-most character is a or b. Imagine constructing such a permutation as a
five-step process in which the first step is to choose the left-most character, the second step is
to choose the right-most character, and the third through fifth steps are to choose the middle
characters one after another. By the multiplication rule there are 2 .2 * 3 .2 2 1 = 24 such
permutations, and so N(AC n Bc) = 24. Thus the number of permutations of abcde in which
the first character is a, b, or c and the last character is c, d, or e is

N(A n B) = N(U) -(N(AC) + N(BC) -N(AC n BC)) = 120 -(48 + 48 -24) = 48.

Solution 2: An alternative solution to this exercise does not use the inclusion/exclusion rule.
The number of permutations in which the first character is an a or a b and the last character
is a c, d, or e is 2 . 3 . 3! = 36 fthe number of choices for the first position times the number
of choices for the last position times the number of ways to order the characters in the middle
three positions]. The number of permutations in which the first character is a c and the last
character is a d or an e is 1 * 2 -3! = 12 [the number of choices for the first position times the
number of choices for the last position times the number of ways to order the characters in the
middle three positions]. Thus, by the addition rule, the number of permutations of abcde in
which the first character is a, b, or c and the last character is c, d, or e is 36 + 12 = 48.

32. Imagine each integer from 1 through 999,999 as a string of six digits with leading O's allowed.
For each i = 1, 2, 3, let Ai be the set of all integers from 1 through 999,999 that do not contain
the digit i. We want to compute N(Alc n A2c n A3 c). By De Morgan's law,

Ale n A2c n A3 c = (Al u A2)c n A3c = (Al u A2 u A3)c = U - (Al u A2 u A3 ),

and so by the difference rule

N(Alc n A2 c n A3 c) = N(U) - N(Ai U A2 u A3).

By the inclusion/exclusion rule,

N(A 1 UA 2UA3 ) = N(A1 )+N(A2 )+N(A 3 )-N(An0A2 )-N(AlrA3)-N(A2 nA3 )+N(AlnA2 nA3 ).

Now N(A1) = N(A2 ) = N(A3 ) = 96 because in each case any of nine digits may be chosen
for each character in the string (for Ai these are all the ten digits except i). Also each
N(Ai n Aj) = 86 because in each case any of eight digits may be chosen for each character of
the string (for AinAj these are all the ten digits except i and j). Similarly, N(A1 nA2 nA3 ) = 76
because any digit except 1, 2, and 3 may be chosen for each character in the string. Thus

N(AlUA 2 UA 3 )=3 96- 3.86+76,

and so

N(A 1c n A2f 0 A3c) = N(U) N(A1 U A2 U A3) = 106 -(3 . 96 - 3 86 + 76) = 74,460.

33. Proof (by mathematical induction): Let P(k) be the property "If a finite set A equals the union
of k distinct mutually disjoint subsets Al, A2 ,. .. , Ak, then N(A) = N(A1 ) + N(A2 ) + +
N(Ak)-

Show that the property is true for k 1: Suppose a finite set A equals the "union" of
one subset Al, then A = Al, and so N(A) N(A1).

Show that for all integers i > 1 , if the property is true for k = i then it is true
for k = i + 1: Let i be an integer with i > 1 and suppose the property is true for n = i.
[This is the inductive hypothesis.] Let A be a finite set that equals the union of i + 1 distinct
mutually disjoint subsets A 1 ,A 2 , .. . ,Ai+,. Then A = Al U A2 U... U Ai+, and Ai n Aj = 0
for all integers i and j with i ; j. Let B be the set Al U A2 U ... U Ai. Then A = B U Ai+,
and B n Ai+, = 0. [For if x E B n Ai+,, then x E Al U A2 U ... U Ai andx E Ai+,, which
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implies that x E Aj, for some j with 1 < j < i, and 2 C Ai+,. But Aj and Ai are disjoint.
Thus no such x exists.] Hence A is the union of the two mutually disjoint sets B and Ai+,.
Since B and Ai+, have no elements in common, the total number of elements in B U Ai+,
can be obtained by first counting the elements in B, next counting the elements in A,+,, and
then adding the two numbers together. It follows that N(BUAi+l) = N(B) + N(Ai+L) which
equals N(A1 ) + N(A2 ) + + N(Ai) + N(Ai+,1 ) by inductive hypothesis. Hence P(i + 1) is
true [as was to be shown].

34. Proof: Let A and B be sets. We first show that A U B can be partitioned into A - (A n B),
B -(A nB), and AnB.

1. A U B C (A -(A n B))U(B -(A n B))U(A n B): Let x C A U B. Then x C A or
x c B.

Case 1 (x E A): Either 2 C B or x V B. If x E B, then x c An B by definition of intersection,
and so by definition of union x G (A -(A n B)) U (B -(A n B)) U (A n B). If x V B, then
x f A n B either [by definition of intersection] and so x E A - (A n B). Hence by definition
of union, x c (A - (A n B)) U (B - (A n B)) U (A n B).

Case 2 (x E B): Either x C A or x 0 A. If x c A, then x e A n B by definition of intersection,
and so by definition of union x E (A -(A n B)) U (B -(A n B)) U (A n B). If x 0 A, then
x ¢ A n B either [by definition of intersection] and so x C B -(A n B). Hence by definition
of union, x G (A - (A n B)) U (B - (A n B)) u (A n B).

Thus in either case x c (A - (A n B)) U (B - (A n B)) u (A n B) [and so A U B C (A - (A n
B)) U (B -(A n B)) u (A n B) by definition of subset].

(A -(A n B))U(B - (A n B))U(A n B) C A U B: Letx c (A - (AnB))U(B - (An
B)) u (A n B). By definition of union, x G (A (A n B)) or x C (B - (A n B)) or x c (A n B).
If x c (A -(A n B)), then by definition of set difference x C A and x V A n B. In particular,
x C A, and so by definition of union, x C A U B. If x c (B -(A n B)), then by definition
of set difference x E B and x V A n B. In particular, x C B, and so by definition of union,
x c A u B. If x E (A n B), then by definition of intersection x c A and x C B. In particular,
x C A, and so by definition of union, x C A U B. Hence in all cases, x C A U B [and so by
definition of subset (A -(A n B)) u (B - (A n B)) u (A n B) C A u B.]

[Since both set containments AuB C (A-(AnB))u(B- (AnB))u(AnB) and (A- (AnB))u
(B-(AnB))u(AnB) C AuB have been proved, AuB = (A-(AnB))u(B-(AnB))u(AnB)
by definition of set equality.]

2. The sets (A -(A n B)), (B - (A n B)), and (A n B) are mutually disjoint because if
x C A n B then x A A- (A n B) and x 0 B -(A n B) by definition of set difference. Next
if x C A - (A n B), then x V A n B and so x 0 B; consequently x V B - (A n B). Finally, if
x C B -(A n B), then x , A n B and so x 0 A; consequently x V A-(A n B).

Next we derive the inclusion/exclusion formula from this partition. Since A U B can be parti-
tioned into A - (A n B), B - (A n B), and A n B, then

N(AuB) = N(A-(AnB))+N(B -(AnB))+N(AnB)
by the addition rule

= N(A)-N(A n B) + N(B)-N(A n B) + N(A n B)
by the difference rule and the fact
that A n B is a subset of both A and B

= N(A) + N(B) - N(A n B)
by basic algebra.

Note: An alternative way to show that A U B is the union of the three sets A - (A n B),
B- (BnA), and AnB begins by showing that for all sets U and V, U = (U-(UnV))u(UnV).
It then follows that A U B = [(A -(A n B)) u (A n B)] u [(B-(B n A)) u (B n A)] =

(A- (AnB))u(B- (BnA))u(AnB).
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35. Proof: Suppose

N(A U B U C)

A, B, and C are finite sets.
N(A U (B U C)) by the associative law for U
N(A) + N(B U C) - N(A n (B U C)) by the inclusion/exclusion rule

= N(A) + N(B) + N(C)- N(B n C)
-N(A n(B u C))

= N(A) + N(B) + N(C) - N(Bn c)
-N((A n B) U (A n C))

= N(A) + N(B) + N(C)- N(B n C)
-[N(A n B)+ N(A n C)

-N((A n B) n (A n C))]

= N(A) + N(B) + N(C) - N(A n B)
-N(A n C)- N(B n C)
+N(A n B n C)

for two sets
by the inclusion/exclusion rule
for two sets

by the distributive law for sets

by the inclusion/exclusion rule
for two sets
by basic algebra and because
(A n B)n(A n C)

(A n A)n B n C
A n B n C.

36. Proof (by mathematical induction):

Show that the property is true for n = 2: This was proved in one way in the text
preceding Theorem 6.3.3 and in another way in the solution to exercise 34.

Show that for all integers r > 2 , if the property is true for n = r then it is true
for n = r + 1: Let r be an integer with r > 2, and suppose that the formula holds for any
collection of r finite sets. /This is the inductive hypothesis.] Let Al,A 2 ,... , Ar,+ be finite
sets. Then

N(Ai U A2 U ... U Ar+i)

= N(AlU(A 2 u A 3u u Ar+l)) by the associative law for U

= N(Ai)+ N(A 2 U A 3 U u Ar+1)- N(Aln(A2 u A3 U U Ar+l))

by the inclusion/exclusion rule for two sets

= N(Ai)+ N(A 2 u A 3 U u Ar+,)- N((Ain A2 )U(Aln A3 ) .U(Aln Ar+l))

by the generalized distributive law for sets
(exercise 35, Section 5.2)

= N(A1 ) + (Z2<i<r+l N(A,) - Z2<i<j<r+l N(Ai n Ai)

+ 72<i<j<k<,+1 N(Ai n Ai n Ak)- ... + (-1)r+ N(A 2 n A3 n ... n Ar+l))

- (Z 2 <i<r+l N(A ln Ai) - Z 2 <i<j<r+l N((Al n Ai) n (Al n Ai)) +-

+(-l)r+lN((Al n A2 ) n (Al n A3 ) n ... n (Al n Ar+i)))

by inductive hypothesis

= N(A 1 ) + (E 2 <i<r+l N(A,) E 2 <i<j<r+l N(Ai n Ai)

+ Z2<i<j<k<r±1 N(Ai n Ai n Ak) - ... + (-l)r+lN(A2 n A3 n ... nAr+l))

(2<i<r+ 1 N(A n Ai) E2<i<j<r+l N(A n Ai n A3) + ...

+(_1)r+lN(Al n A2 n A3 n ... n Ar,+))

= Zl<i<r+l N(Ai) - Zl<i<j<r+l N(Ai n A) + 1l<i<j<k<r+l N(A n A3 n Ak)

-... + (-l)r+2N(Al n A3 n ... n Ar+1).

[This is what was to be proved.]
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Section 6.4

2. a. The 3-combinations are xIx2x3 , xlx2 x4 , xIx2 x 5 , xIx3 X4 , x1x 3 x5 , xpX4 x5 , x 2x 3x 4, x2 x 3x5 ,

X2 X4 X5 , X 3 X 4 X 5 . Therefore, (3) = 10.

b. The unordered selections of two elements are xlX2 , xlx3 , xlx 4 , XlX5 , xIx6 , x2 x:3 , x2X4 ,

X2 X5 , X2 X6 , X3 X4 , X3 X5 , X 3 X6 , X 4 X5 , X4 X6 , X5 X6 . Therefore, ( 6) = 15.

4 (8) P(8,3)

\2,/ !5 ( 5! 5! 5. 4 3! d. 5 5! 43!1

2) 2!(5 - 2)! 2! 3! 2 .1 3! 1 3) 3!(5-3)! 3! -2. 1
5! 5 ! 5!__ 4! 5! 51

4 ) 4!(5 - 4)! 4! -1! 4! -5 5!(5-5)! 5! _0!=

7. a. 13 13 .12 .11 10 9 8 7! -1716
( 7 ( 6 5 643217! 676

b. (i) ( 7) 6) - 32 154!6 3.2 = 700 fthe number of subsets of four women chosen

from seven women times the number of subsets of three men chosen from six men]

(ii) ( 1) 7() = 1716 -1 = 1715 [the total number of groups minus the number that

contain no men]

. 7) ( 6) 7) ( 6) 7) ( 6) 7 + 7 6 5! 6 -5! 7 6 5 4! 6-5-4!
( 1) 6) 2)t 5) t 3)t 4) 2 -1 5! -1. 5! 4! 3 2. 1 4! 2. 1

7 + 126 + 525 = 658 [the number of groups with one woman and six men plus the number with
two women and five men plus the number with three women and four men there are no
groups with no women because there are only six men]

C. 11+/ 110 + 110 2 11-10-9 8 7 -6! 11-10 9-8 9 3

c 6 )+( 6 ) (7) 2 5.4.3.2.1.6!) + (1 2 10 T) = 924±+330 =
1254 [Let the people be A and B. The number of groups that do not contain both A and B
equals the number of groups with A and six others (none B) plus the number of groups with B
and six others (none A) plus the number of groups with neither A nor B.]

d. ( 1) + ( ) -462 + 330 = 792 [the number of groups with both A and B and five others

plus the number of groups with neither A nor B]

8. a. 12) = 66
\(10J

b. (i) ( 5) 7 ) = 5 7 = 35

(ii) Because there are only seven questions that do not require proof, any group of ten questions
contains at least three that require proof. Thus the answer is the same as for part (a):(12) =66.

(10)

(iii) Because there are only seven questions that do not require proof, the only groups of ten
questions with three or fewer questions requiring proof are those groups with exactly three

questions requiring proof. Thus the number is ( 7) ( 5) = 1 10 = 10.
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c. Any set of questions containing at most one of questions 1 and 2 can be split into three
subsets: (1) those that contain question 1 and not 2, (2) those that contain question 2 and not

1, and (3) those that contain neither question 1 nor 2. There are ( 9) choices of questions
(10k(ioN)

in the first set, 9 choices of questions in the second set, and 10 choices of questions

in the third set. So there are 2 (1 ) + ( =) 2 10 + 1 = 21 choices of ten questions

containing at most one of questions 1 and 2.

d. There are (8) choices of questions that contain both questions 1 and 2, and there are

(10) choices of questions that contain neither question 1 nor 2. So by the addition rule,
\( 10,/

there are( 1') + ( 10) = 45 + 1 = 46 choices of questions that contain either both questions
X 8J 10)

1 and 2 or neither question 1 nor 2.

9. a. (40) = 3,838,380( 6
( 22) 22) 22!38! 22!16! 3.148 x 1026

[The assignment of treatments to mice can be considered a two-step operation. Step 1 is to
choose 22 mice out of the 60 to receive treatment A, step 2 is to choose 22 mice out of the
remaining 38 to receive treatment B. The remaining 16 mice are the controls.]

11. b. (1) The number of hands with a straight flush is 4 * 9 = 36 (the number of suits, namely
4, times the number of lowest denominated card in the straight, namely 9, because aces can be
low]

(2) probability = 6 0.0000139
52)2,598,960

d. (1) The number of hands with a full house is (13) (4) (12) (4) = 3744 [because con-

structing a full house can be thought of as a four-step process where step one is to choose the
denomination for the three of a kind, step two is to choose three cards out of the four of that
denomination, step three is to choose the denomination for the pair, and step four is to choose
two cards of that denomination].

(2) probability = 34 = 0.00144
(52)2,598,960

e. (1) The number of hands with a flush (including a royal or a straight flush) is 4- (3) = 5148

[the number of suits times the number of ways to pick five cards from a suit]. Forty of these
are royal or straight flushes, and so there are 5108 hands with a flush.

5108 5108
(2) probability = 52) = 2598 960 0.00197

5

g. (1) The number of hands with three of a kind is (13) (4) ( 2) (4) (4) = 54,912 [the

number of ways to choose the denomination for the three of a kind times the number of ways
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three cars from that denomination can be chosen times the number of ways to choose two other
denominations for the other two cards times the number of ways a card can be chosen from the
lower ranked of the two denominations times the number of ways a card can be chosen from
the higher ranked of the two denominations].

(2) probability =52 = 54912 = 0.021
52)2,598,960

h. (1) The number of hands with one pair is (1) (4) (132) (4) (4) (4) = 1,098, 240 [the

number of ways to choose the denomination for the pair times the number of ways two cars from
that denomination can be chosen times the number of ways to choose three other denominations
for the other three cards times the number of ways a card can be chosen from the lowest ranked
of the three denominations times the number of ways a card can be chosen from the middle
ranked of the three denominations times the number of ways a card can be chosen from the
highest ranked of the three denominations].

(2) probability = ' (52) = 1'098,240-0.4226
(52) 2,598,960

i. (1) The sum of the answers from (a)-(h) plus the answer from Example 6.4.9 (the number

of poker hands with two pairs) is 1,296,420, and so by the difference rule there are (52)

1,296,420 = 2, 598,960 - 1,296,420 = 1,302, 540 hands whose cards neither contain a repeated
denomination nor five adjacent denominations.

(2) probability = ' 302) = 12'540 0.5012
(52) 2,5896

5
The results of this exercise are summarized in the following table.

Type of Hand | Probability l]
royal flush 0.0000015 = 0.00015%

straight flush 0.000014 - 0.0014%
four of a kind 0.00024 = 0.024%

full house 0.00144 = 0.144%
flush 0.00197 =0.197%

straight 0.00392 = 0.392%
three of a kind 0.02113 = 2.113%

two pairs 0.0475 = 4.75%
one pair 0.4226 = 42.26%

none of the above 0.5012 = 50.12%

12. The sum of two integers is even if, and only if, either both integers are even or both are odd
[see Example 3.2.3]. Because 2 = 2. 1 and 100 = 2 .50, there are 50 even integers and thus 51

odd integers from to 101 inclusive. Hence the number of distinct pairs is (2) + ( 2 )
2 2

1225 + 1275 = 2500.

13 iON0) 10.9.8.7.5.5!=25
13 b. ( 5) 5.4.3.2.1.5! = 252

( 10) + ( 109 +J ( 10) 45 + 10 + 1 56

( ) 9 1 ) 0 1
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K 16\ 16 15 14 13 12 11 10.9!1
1 7) 9! 7 6 5 4321 = 11,440

16) 16) +( 16+ ( 167 15 14 13! 16.15.14! 16 15! 16!
13 14 15) t 16 13! 3 2 1 14! 2 1 + 15! 1 + 16! 1

560 + 120 + 16 + 1 = 697

c. 216 _ 1 65,535 d. (16) + ( 16) = 1 + 16 = 17

16. a. 0) =658,008

b. Solution 1: (4) - (3 7) = 658008 - 435897 = 222,111 [The number of samples with at

least one defective equals the total number of samples minus the number with no detectives.]

Solution 2: (37) ( 3) + ( 37) ( 3) + ( 37) ( 3) = 198135 + 23310 + 666 = 222,111 [The

number of samples with at least one defective equals the number with one defective plus the
number with two defectives plus the number with three defectives.]

c. probability = 222111 0.337550 - 33.8%

17. b. (= 2= 98=36 c. (1o)= 109 = 120 d. ( 3) = 9 84
92/ 2 \ 10 3-2 \3/ 3.2

K8 11) K 10) ( 6) ( 2) 11! 10! 6! 2! 11 4,5 [hc
1 1 )k4 )\4) 2 2) 1! 10! 4!. 6! 4! 2! 2!. 0! 1!.4!.4!-2! 3 [

agrees with the result in Example 6.4.11!

20. a. ( 2) ( 9) ( 6) ( 4) ( 3) ( 2) ( 1) = 55 84 15 4 3 2 1 = 1,663, 200.

[The word MILLIMICRON has 2 M's, 3 I's, 2 L's, 1 C, IR, 10, and 1 N. To construct an
ordering of the letters, choose 2 positions for the M's, then 3 positions for the I's, then 2
positions for the L's, then 1 position for the C, 1 position for the R, 1 for the 0, and 1 for the
N. If the groups of letters are chosen in a different order, the same answer is obtained.]

Note also that one could use the formula
/ 11 9 6 3 2 1011!

2 3 2 1 1 1 1 1,663,200

b. ( )( 8)( 5)( 3)( 2) ( 1)=9.5610.3 2 1=30,240(= 9!

[Once the M and the N have been fixed, there are 9 positions left to fill in.]

c. ( 9) ( 8) ( 7) ( 5) ( 2) = 9 8 21 10 1 = 15,120 (= 9!

[There are 9 symbol groups to arrange in order: 1 CR, 1 ON, 2 M's, 3 I's, and 2 L's.]

21. c. There are as many strings of length 4 with 2 a's and 2 b's as there are ways to choose

2 positions out of 4 into which to place the a's. Thus the answer is ( 4) = 4 3 = 6.

[Alternatively, one could think of choosing 2 positions (out of 4) for the a's and then 2 positions

(out of the remaining 2) for the b's, and write the answer as ( 4) ( 2) = 6.

22. 2+22+23+24+25+26+2 =2(1+2+22+23+24+2526) =2( 2-1) =254
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23. ( ') + ( ') + ( 6) + ( ) + ( ') + ( 6) =6+15+20+15+6+1=63

25. a. 210= 2-3.57, distinct factorizations: 1 -210, 2 105, 3.70, 5 42, 7. 30, 6 35,10 21.14-15,
answer = 8

c. As in the answer to part (b), there are two apparently different ways to look at the solution
to this problem.

Solution 1: Separate the factorizations into categories: one category consists only of the
factorization in which one factor is 1 and the other factor is all five given primes [there is 1 =

(0) such factorization], a second category consists of those factorizations in which one factor

is a single prime and the other factor is a product of the four other primes /there are (1) such

factorizations], and the third category contains those factorizations in which one factor is a
product of two of the primes and the other factor is a product of the other three primes [there

are (2) such factorizations]. All possible factorizations are included among these categories,

and so the answer is (0) + (1) + () = 1 + 5 + 10= 16.

Solution 2: Let S = {P1,P2,P3,P4,P5}, let P1P2P3P4P5 = P, and let flf2 be any factorization
of P. The product of the numbers in any subset A C S can be used for fi, with the product of
the numbers in AC being f2.. Thus there are as many ways to write f1f2 as there are subsets
of S, namely 25 = 32 (by Theorem 5.3.1). But given any factors fi and f2, we have that
fif2 = f2fl. Thus counting the number of ways to write fif2 counts each factorization twice.

So the answer is 2 - 16.
2

Note: In Section 6.6 we will show that (n) = ( ) whenever n > r > 0. Thus, for example,

the answer can be written as (0) + (1) + (2) = I( (0) + (1) + (2) + (3) + (4) + (5)

In Section 6.7 we will show that for all integers n > 0, (n) + (1) + (2) + + ( 2) +

( 1) + (n) = 2n, and so, in particular, 1((5) + (1) + (2) + (3) + (4) + ())=

25 =- = 16. These facts illustrate the relationship between the two solutions to this part
2 2

of the exercise.

d. Because the second solution given in parts (b) and (c) is the simplest, we give a gen-
eral version of it as the answer to this part of the exercise. Let S = {P1,P2,P3... p,,P} let
P1P2P3... Pn = P, and let flf2 be any factorization of P. The product of the numbers in any
subset A C S can be used for fl, with the product of the numbers in AC being f2.. Thus there
are as many ways to write flf2 as there are subsets of S, namely 2' (by Theorem 5.3.1). But
given any factors fi and f2, we have that f1f2 = f2fi. Thus counting the number of ways to

write flf2 counts each factorization twice. So the answer is 2 = 2

26. The answer is the total number of committees (which equals ( 16) 12,870) minus the

number of committees that have no members from at least one class. Let Al be the set
of committees with no freshmen, A2 the set of committees with no sophomores, A3 the set
of committees with no juniors, and A4 the set of committees with no seniors. Then the
set of committees with no members from at least one class is Al U A2 U A3 U A4 . By the
inclusion/exclusion rule for four sets (see exercise 36 of Section 6.3),
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N(A U A2 u A3 u A4) = Zl<i<4 N(Ai)- Z1<i<j<4 N(Ai n Aj)

+ 1K<i<j<k<4 N(Ai A Ai n Ak)

- Z1•<i<j<k<1<4 N(Ai n Ai n Ak A Al).

Now N(A1 ) 3( ) /because a committee that contains no freshmen has its entire membership

of eight taken from the 4 + 4 + 5 13 sophomores, juniors, and seniors]. Similarly, N(A2 ) =

(-), N(A3) 1(2), N(A 4 ) '(I), N(A1 n A2 ) =() /because a committee that

contains no freshmen or sophomores has its entire membership of eight taken from the 4 + 5 -

9 juniors and seniors, N(A1 n A 3 ) = ( 8), N(Al n A 4 ) = ( 8), N(A2 n A 3 ) 8
N(A2 n A4 ) = because if students from the sophomore and senior classes are taken away, not
enough students remain to form a committee of eight], N(A 3 n A4) = 0, N(Ai n A3 n Ak) = 0

for all possible i, j, and k [because if students from three of the classes are taken away, not
enough students remain to form a committee of eight], and N(Al n A2 n A3 n A4) = 0 [because
every committee must contain students from some class]. Consequently,

N(Al U A2 U A3 U A4) (13) + ( 12) + ( 12) + ( 11) (9) _( 9) (8) (8)

1287 + 495 + 495 + 165 - 9 - 9 - 1 - 1 = 2422.

So the answer is ( -) 2422 = 12,870- 2422 = 10,428.

27. Given nonnegative integers r and n with r < n, P(n, r) is the set of r-permutations that can
be formed from a set of n elements. Partition this set of r-permutations into subsets so that
all the r-permutations in each subset are permutations of the same collection of elements.
For instance, if n = 5 and r = 3 and X = {a, b, c, d, e} is a set of n = 5 elements, then
acd, adc, cda, cad, dac, and dca are all permutations of the same collection of elements,
namely {a, c, d}. Thus each subset of the partition corresponds to a subset of X of size r.
Furthermore, all subsets of the partition have the same size, namely r! [because there are r!
permutations of a set of r elements]. Hence the number of subsets of X of size r equals the
number of subsets of the partition. By the division rule, this equals the number of elements

in the partition divided by the number of elements in each set of the partition, or ( !)

28. The error is that the "solution" overcounts the number of poker hands with two pairs. In fact,
it counts every such hand twice. For instance, consider the poker hand {44, 4K>, JR), J*, 94}.
If the steps outlined in the false solution in the exercise statement are followed, this hand is
first counted when the denomination 4 is chosen in step one, the cards 44 and 4K> are chosen in
step two, the denomination J is chosen in step three, the cards J g and J* are chosen in step
four, and 94 is chosen in step five. The hand is counted a second time when the denomination
J is chosen in step one, the cards JR2 and J 4 are chosen in step two, the denomination 4 is
chosen in step three, the cards 446 and 40> are chosen in step four, and 94k is chosen in step
five.

Section 6.5

2. b. [x,,x,x], [x,x,zy], [z,x,x,z], [x,xy,y], [x,z,y,z], [xx,z,z], [zyyy], [x,y,y,z],
[xY.zzj, [x,z,z,z], [YYYY], [YYYyz], [Yyyz,z, [Y.z,z,zJ, [zzz,z]

4. a. 30 -) = 17) = 10,295,472
30 ,I 301
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b ( 26 ) = (26) =4,272,048

(26) - 4,272,048 _ 41.5%

37) 10,295,472

(30)

26 + 7 - 1 (32>

d. 26 J \26) 906192 At 0 088 = 8.8%
37) (37) 10, 295,472

(30J 30J

6. (5 1) (n+4) =4(n +4)(n+3)(n l(n+ 1)n

7. Consider any nonnegative integral solution x1 , x2 , ... ., x of the equation x1 +x 2 + Xn +x = m.
For each i = 1,2,.... n, let yi = X1 + x2± + - * + xi. Then 0 < y• < Y2 < .< Yn= m
Conversely, suppose (Y1,Y2, * Yn) is any n-tuple of nonnegative integers such that 0 < yI <

Y2 < .< yn= m, and let x1 = Yi, and xi =i - yi- 1 for all integers i = 1,2,...,n.
Then x1+ x2 + + Xn = Y1 + (Y2 -y) + (y3 Y2) + + (n Yn -1) = Yn= m, and so
x1 + x 2 + -- + Xn = m. Consequently, the number of nonnegative integral solutions of the
equation x 1 + x 2 +* + n-X = m is the same as the number of n-tuples of nonnegative integers
(YIY2,. f iYn) such that 0 < Y 2 < ... < n = m. Since Yn = m, this is the same as the
number of (n -1)-tuples of nonnegative integers (Y1, Y2, . ,-, Yn-) where 0 < Yi < Y2 < <
Yn-1 < m. By reasoning similar to that of Example 6.5.3, this number is the same as the
number of ways of placing m + 1 objects (the integers from 0 through m) into n -1 categories

(the elements ofthe (n-1)-tuple), which is ((n ) ( 1 ) )= ((n 1) 1 Thus

the number of nonnegative integral solutions of x1 +x 2  +Xn = mis ((fl 1 ) * (In

Section 6.6 we show that this number equals ((n + ), and so this result agrees with

the one obtained in Example 6.5.5.

9. The number of iterations of the inner loop is the same as the number of integer triples (i, j, k)
where 1 < k < j < i < n. By reasoning similar to that of Example 6.5.3, the number of such

triples is (n + 2) n(n + 1)(n + 2)

12. Think of the number 30 as divided into 30 individual units and the variables (Y1, Y2, Y3, Y4) as
four categories into which these units are placed. The number of units in category yi indicates
the value of yi in a solution of the equation. By Theorem 6.5.1, the number of ways to place

30 objects into four categories is (30 1) = (33) = 5456. So there are 5456 nonnegative
30 1 30,

integral solutions of the equation.

13. The analysis for this exercise is the same as for exercise 12 except that since each yi > 2, we
can imagine taking eight of the 30 units, placing two in each category (Y1, Y2, Y3, Y4)) and then
distributing the remaining 22 units among the four categories. The number of ways to do this

is (22 1) = (2) = 2300. So there are 2300 integral solutions of the equation where

each integer in the solution is at least two.

14. By reasoning similar to that of Example 6.5.6 or exercise 13, after ten units have been placed
in each category a, b, c, d, and e, 450 units remain to distribute among the five categories.
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The number of ways to do this is (450+5 1) = (454) = 1, 746,858,751. So there are
450 ,1 \450,

1, 746,858, 751 solutions to a + b + c + d + e = 500 for which each of a, b, c, d, and e is at least
ten.

15. a. Think of the 30 kinds of balloons as the n categories and the 12 balloons to be chosen as the
r objects. Each choice of 12 balloons is represented by a string of 30 -1 = 29 vertical bars (to
separate the categories) and 12 crosses (to represent the chosen balloons). The total number
of choices of 12 balloons of the 30 different kinds is the number of strings of 41 symbols (29

vertical bars and 12 crosses), namely, (12 1) = (1) = 7,898,654,920.

b. By the same reasoning as in part (a), the total number of choices of 50 balloons of the 30
different kinds is the number of strings that consist of 30 - 1 = 29 vertical bars (to separate the

categories) and 50 crosses (to represent the balloons that are chosen), namely, ( 5±30 1)

79) 3.326779701 x 1021. If at least one balloon of each kind is chosen, we can imagine
(~50/
choosing those 30 first and then choosing 50 -30 = 20 additional balloons. Again, by the same
reasoning as in part (a), the number of ways to do this is the number of strings that consist of

29 vertical bars and 20 crosses, namely, (20 + 30 1) = (492) 2.827752735 x 1013. Thus
20 20

the probability that a combination of 50 balloons will contain at least one balloon of each kind((50 - 30) + 30 - I 49)

is 50- 30 J= - 20J 8 5 x 10-9.
(50 +30 -1) 9

( 50 ) (50)

16. a. 30 4 -) = 33) = 5456
30 / 30j

(30 - 4 4) + 4 - 1 67 8

b. probability = 3- 4 -414 = 680 _0125 = 12.5%
5456 5456 5456 012-125

17. Any number from 1 through 99,999 whose digits add up to 9 can be thought of as a 5-digit
number with leading zeroes allowed. Imagine that the 5 digits are categories into which we
place 9 crosses. (For instance, x x I I x x x x x x I x x corresponds to the number

20512.) By Theorem 6.5.1, there are ( 9 2 = - 1 ) = 715 ways to place the crosses

into the categories.

19. a. For each selection of k A76 batteries (where 0 < k < 10), 30 - k other batteries are
obtained from the 7 remaining types. The number of ways to select these other batteries is

( 30 k ) = k36 k) So the total number of ways the inventory can be distributed

is

10 36-k)
E 30 - k

k=O

= (30 (35 + (34) +29 + + + 28 271 +26
30 29 28 27 +26 +25 +24 +23 +22 +21 20

= 9,637,672.

b. For each selection of k A76 batteries (where 0 < k < 10) and m D303 batteries (where
0 < m < 6), 30- k - m other batteries are obtained from the 6 remaining types. The number
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of ways to select these other batteries is ((30 k m) 6 6 (35 - .k m So the
30- k -m J 30-k-mrn

6 10 k m
total number of ways the inventory can be distributed is E E k ) 7,652, 260.

Ok 30 -k-m)m=O k=O

20. Consider those columns of a trace table corresponding to an arbitrary value of k. The values
of j go from 1 to k, and for each value of j, the values of i go from 1 to j.

k k

I 1 2 1 2 3 1 2 3 . .. k

So for each value of k, there are 1 + 2 + 3 + + k columns of the table. Since k goes from 1
to n, the total number of columns in the table is

1 + (I + 2) + (I + 2 + 3) + + (I + 2 + 3 + + n)

1 2 n-1 n

= Ek + k+ + Ek + k
k=1 k=1 k=1 k=i
1 2 2 .3+ + (n-1) * n + n (n +1)

2 2 + 2

22
- 2[1.2+2-3+.-±(n 1).n~r.(ri+1)]

= ((n + 1)(n + 2)) by exercise 13 of Section 4.2

n(n + 1)(n + 2)
6

which agrees with the result of Example 6.5.4.

Section 6.6

2. (n) n! n(- n(n -1)!
() - (n - 1)!n 1)!

4 ( n) n! n (n-1) * (n -2) (n -3)! n(n- 1)(n -2)

k 3J 3! (n - 3)! 3 2. 1 (n - 3)! 6

7. By formula (6.6.3), (n 2 ) =n( 2 ) for n > 2. If n > -1, then n + 3 > 2, and so

_____(n+3)(n+3)-1)_ (n3)(n+±2)
substituting n + 3 for n gives n + 3) (n + 2n+ 3) 1) _ (n + 2

8. By (6.6.1), (n) = 1 for n > 0. If k -r > 0 then k - r may be substituted for n giving

10. We first compute the values in the row of Pascal's triangle that corresponds to n = 6.

Th)n , ( t6)e= 1v+56, f6)5+710=15, ( 6)=10+10=20, ( 6)=10+5=15,

(6) 5 + 1 6, ( 6)=1=7

Then we compute the values for n =7.
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(17 =,(71+6 =7, (7) = 6+15 =211, (7=15+20 =35, ( 7) =20+15 =35,

(7) =15+6= 21, (7) =6+1=7, ( 7)=1

11. (O) =1, (I) =1+8=9, (2) =8+28=36, () =28+56-84, (4) =56+70=126,

(5)=70+56 126, 6() 56+28=84, 7()=28+8=36, () =8+1=9, ()1

12.

(n.r ) r

n
r

r

( n+ 1))

$r 2 + ((rn2 + (n))
I (r-1) (( r-1 ( r))

( n

13. Proof: Suppose n and r are nonnegative integers with r + 1 < n. Then

n -r tn) n -r n!
r +l rJ r+lI r!(n -r)!

n-r n!
r±l r!(n -r)! (n-r-

n!

(r+1)! (n -r-1)!
n!

(r + 1)!(n -(r +1))!

(r +1)

[This is what was to be shown.]

nl+1 / 2A
15. Proof: Let n be an integer with n > 1. By exercise 14, 2 (3) ( 3 ) But for each

i =23...,n + 1
i _ i! i (i -2 i) (i-l) i

= ~ = =___ ___ ___2 i(i-2) 2 2

So

( ) i=2 )
1 .2 2 3 3 4 n(n +)

2 2 2 2

1 2+2.3+3.4+- +n(n+1)
2

Multiplying both sides by 2 gives

1- 2 +2 -3 +3-.4+ - +n(n +1)=2( n+ ).
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/as was to be shown].

16. Proof by mathematical induction : Let r be a fixed nonnegative integer, and let the property
P(n) be the formula

E r ( r + 1
i r

Show that this property is true for n = r: To prove this property for n = r, we must
show that

r

E~ (r) (r + 1)

But the left-hand side of this equation is (r) =1, and the right-hand side is ( +) which

also equals 1. So the property is true for n = r.

Show that for all integers k > r, if the property is true for n = k then it is true
for n = k + 1: Let k be any integer with k > r, and suppose that

E ( ) + 1). finductive hypothesis]

We must show that

E (i) = ((k + 1) + 1).
i r

But the left-hand side of equation (*) is

zQ (r) - (i) (k 1) by writing the last term separately

= ~\r±} + 1 ) by inductive hypothesis

(r + 1) + ir
(k r ±1 ) by Pascal's formula,

and this is the right-hand side of equation (*) [as was to be shown.

17. b. Proof: Let n be an integer with n > 1. Then

( 2n+2 2) 1 ) ( (2n+ 2)! /

4n + 2 n + I 2(2n+ 1)JV (n +1)!((2n +2) - (n +

1 ( (2n +2)!

V 2(2n+ 1)) (n+1)!(n+1)!J

I ( 2 1 (2n + 2)(2n + 1)(2n)! )
2(2n + 1)J (n + 1) -n! (n + 1) n!J

1 ( 2(n + 1) (2n)!

2 (n +l) (n +1)J V n!n!J

1 K2n 1

= Cn.

http://pakimonda.blog.com 
paki.monda@gmail.com 
paki.monda@yahoo.com



Section 6.6 167

18. Suppose m and n are positive integers and r is a nonnegative integer that is less than or equal
to the minimum value of m and n. Let S be a set of m + n elements, and write S = A U B,
where A is a subset of S with m elements, B is a subset of S with n elements, and A n B = 0.
The collection of subsets of r elements chosen from S can be partitioned as follows: those
consisting of 0 elements chosen from A and r elements chosen from B, those consisting of
1 element chosen from A and r - 1 elements chosen from B, those consisting of 2 elements
chosen from A and r - 2 elements chosen from B, and so forth, up to those consisting of r
elements chosen from A and 0 elements chosen from B. By the multiplication rule, there are

(m) ( ) ways to choose i objects from m and r -i objects from n, and so the number of

subsets of size r in which i elements are from A and r-i objects are from B is (i)( i

Hence by the addition rule, the total number of subsets of S of size r is

( ° )) (n (m 1 )(-1) + ( 2n) ( 2) +. + (m) (n).

But also since S has m + n elements, the number of subsets of size r of S is (m+n .So

(m+) =(m) (n) + 7(ni) + (m) (r2) +**_*+ ()()

(r ) (0 ) +r ( m ) (r 1) 2 ) ( 2) (r )0)

19. Proof: Let n be any integer with n > 0. By exercise 18 with m = r = n

an + (n) (n ) +n (n) n 1) (n) n +. (nA Any

( n ) 0 On t1 On-1 t2 On -2) On) t0

But by Example 6.6.2, ( k k) (n) for all k = 0, 1, 2,. . . n Hence

(2n) = -n ) + (n)2 ± (n)2 + + (n)2

[as was to be shown].

20. Proof: Let m be any nonnegative integer, and let the property P(n) be the equation

(m) + (m+) + (+2) + .. + (m +n) = (m +n+l)

We will show by mathematical induction that the property is true for all integers n > 0.

Show that the property is true for n = 0: For n = 0, the equation states that (n) =

(mO ) =( I ). But this is true because by exercise 1 both sides of the equation

equal 1.

Show that for all integers k > 0, if the property is true for n = k then it is true
for n = k + 1: Let k be an integer with k > 0, and suppose

(m) + (m +1) + (m +2) +.. + (m +k) = (m +k +1).

[This is the inductive hypothesis.]
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We must show that

(m >(m+1 + (m+2 + + m (k+ () n A- (k +1) +±I
0oJ t 1 Jkt2} k1 J k+1 JI

or, equivalently,

1 2 k + k±1 I

But

(m) + (m + 1) + (m + 2 + (m + k + 1) = (m + k+ ) + (m k+ 1)

by inductive hypothesis

=(m+k+2)
k±+ J

by Pascal's formula (m + k + 1 in
place of n and k + 1 in place of r).

/This is what was to be shown.]

21. Proof: Let p be a prime number and r an integer with 0 < r < p. Then P!
( rI r! (p -r)!

AP -)! or, equivalently, p(p-1)!! (P) (r!(p r)!). Now ( is an integer because it

equals the number of subsets of size r that can be formed from a set with p elements. Thus we
can apply the unique factorization theorem to express each side of this equation as a product
of prime numbers. Clearly, p is a factor of the left-hand side, and so p must also be a factor
of the right-hand side. But 0 < r < p, and so p does not appear as one of the prime factors in

either r! or (p - r)!. Therefore, p must occur as one of the prime factors of ( ),and hence

( P) is divisible by p.

Section 6.7

2. (p + q)= ( 6) p6q0 + () p5q± ( 6)p4q2 + (6) p3q3+ (6 ) P2q4 + (6)p q5+ (6)pOq6

= p
6 + 6p5q + 15p

4
q

2 + 20p3 q3 + 15p
2

q
4 + 6pq5 + q6

4. (u v) 5

( o)5(_V) +( ')U4(-V) +( 5)U3(_V)2+( 5)U2(-v)3+( 5)Ul(_V4 ( 5)u_ )

-u5 -5u 4v + 10U 3 V2  10u2 v 3 + 5u 1V 4 -V5

6. Solution 1: (u2 - 3v)4 ( 4) (u2 ) 4 (-3v)o + ( 4) (U2)3(-3v)l + ( 4) (u2)2(- 3v)2

+ ( 4) (U2)1 (-3v )3+ ( 4) (U2)0 (-3v )4

= u8 - 12U6 V + 54U4 v 2 - 108U2 V3 + 81v4

Solution 2: An alternative solution is to first expand and simplify the expression (a + b)4 and
then substitute u2 in place of a and (-3v) in place of b and further simplify the result. Using
this approach, we first apply the binomial theorem with n = 4 to obtain
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(a + b)4  4 ( )a4bo + (4)a3bl + (4)a2b2 + ( 4)a'b3 + ( 4)b4

=a4 + 4a3 b + 6a2b2 + 4ab3 + br

Substituting u2 in place of a and (-3v) in place of b gives

(U2 - 3v)4 = (u2 + (-3v)) 4 = (u 2 ) 4 + 4(u2 )3(-3v) + 6(U2 )2 (-3v)2 + 4(u2 )(-3v)3 + (-3v)4

u8 - 12u 6v + 54u
4 v 2 

- 108u
2

V
3 + 81v4 .

8. 3 a)5
a 3J

3 a) ( 1) ( 3) (4 3) +( 2) ( a)3 3a) ( 3)2( a)( 3)

+( 51) (3) (-a)4+ -a)5

243 135 30 10 5a 3 a5

=- -- +---a +-a --
a5  a3  a 3 27 243

9. (x2 )5

- (x2) + ( () (X2)4 (_ x) + () (X (- I) + () (x2)2 ( x)

+(5) (X2)1 ( 1)4 ( 1)5

22 x5

10. (a + b)6 = (a + b) (a + b)5

= (a + b) (a' + 5a4 b + 10a3b2 + 10a2b3 + 5ab4 + b5)

= a6 + 5a5b + 10a4 b2 + 10a3b3 + 5a2b4 + ab5 + a5 b + 5a4b2 + 10a3 b3 + 10a2 b4 + 5ab5 + b6

= a6 + (5 + 1)a 5b + (10 + 5)a 4b2 +(10 + 10)a 3 b3 + (5 + 10)a 2b4 + (1 + 5)ab5 + b6

= a6 + 6a5 b + 15a4 b2 + 20a3b3 + 15a2 b4 + 6ab5 + b6

12. Term is (3) (2x)733. Coefficient is 31! .27 33 = 120. 128 27 = 414,720.

14. Term is 1 (U2 )8 (_V2)2. Coefficient is 10! (_1)2=45

16. Term is ( 5 )( 2 x)14-5(- 3Y2)5. Coefficient is 5!4! 29 . (-3)5 = 2002 512- (-243) -

-249,080,832.

18. Proof: Let n be an integer with n > 0. Apply the binomial theorem with a = 1 and b = 2 to

obtain
3 = (1 + 2)-

b ecun2 + ( ln 121 +2*+ ( nk2k + + ()in 2n

- ) + 2( 1) +22( - ) + 12lt )

because 2° 1 and In-k = 1 for all integers k.
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20. Proof: Let n be an integer with n > 0. Apply the binomial theorem with a = 3 and b = -1
to obtain

2 (3 +( 1))n

(n)3 (- 1)0 + 11)3 ±(-1) .. + (n)3n-i (-1)i + + (n)3n-n(_1)n

0 n
= E 1)(ni) 3ni

21. Proof: Let n be an integer with n > 0 and suppose x is any nonnegative real number. Apply
the binomial theorem with a = 1 and b = x to obtain

(1 + X)n = (O1X0 + (1)n1 i +I ( + n) in-k~k+ +( n) In-nXn

( + ( )x + ( )x2.. + ( n)Xn because 1 raised to any power is 1

- ±0 2 2
=1 +nx + n(n 1) x2 +,, + Xn.

But each term to the right of nx is nonnegative. Hence (1 + X)n > 1 + nx.

22. Proof: Let n be an integer with n > 0. Apply the binomial theorem with a = 1 and b =-1/2
and use the fact that 1 to any power equals 1 to obtain

(2)' ( + (_--) )n

= E ()n k)1(- 1)

- ( n) I( )

{ ( n) ( )k
| E ( n) ( k )

*i (-
(,2)

( I) 11

if n is even

if n is odd

Subtracting (2)n from both sides of the first equation and adding (1)n to both sides of the
second equation gives

E (2(1\l2 0' if n is even
if n is odd

Thus, in expanded form,

1(n1) 1(n)
2 1 }2 2

-)( n)+.. +1) (n 1) =){ 0

23. Proof by mathematical induction: Let the property P(n) be the sentence "For any set S with
n elements, S has 2 n-1 subsets with an even number of elements and 21-1 subsets with an
odd number of elements."

Show that the property is true for n = 1: Any set S with just 1 element, say x, has two
subsets: 0, which has 0 elements, and {x}, which has 1 element. Since 0 is even and 1 is odd,
the number of subsets of S with an even number of elements equals the number of subsets of
S with an odd number of elements, namely, 1; and 1 = 20 = 21- .

Show that for all integers k > 1, if the property is true for n = k then it is true
for n = k + 1: Let k be an integer with k > 1, and suppose that for any set S with k elements,
S has 2 k-1 subsets with an even number of elements and 2 k-1 subsets with an odd number

( n)
V O)

if n is even

if n is odd
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of elements. [This is the inductive hypothesis.] We must show that for any set S with k + 1
elements, S has 2 (k+1)-l = 2 k subsets with an even number of elements and 2 (k+1)-l = 2k

subsets with an odd number of elements. Call the elements of S = {X1 ,X2 ,. . ,Xkk+x 1 I

By inductive hypothesis, {xI,x 2 , ... ,i Xk} has 2 k-1 subsets with an even number of elements
and 2 k-1 subsets with an odd number of elements. Now every subset of {Xl,X 2 , ., Xk}

is also a subset of S, and the only other subsets of S are obtained by taking the union of
a subset of {X1,X2,. .. ,Xk} with {Xk+1}. Moreover, if a subset of {x1,X2 ,. .. ,Xk} has an
even number of elements, then the union of that subset with {Xk+1} has an odd number of
elements. So 2 k-1 of the subsets of S that are obtained by taking the union of a subset of
{ X,X 2 , , Xk} with {Xk+l} have an even number of elements and 2 k- 1 have an odd number
of elements. Thus the total number of subsets of S with an even number of elements is
2k-I + 2 k-1 = 2 2 k-1 = 2 1+(k-1) = 2k Similarly, the total number of subsets of S with an
odd number of elements is also 2 k-1 + 2 k-1 = 2 k [as was to be shown!.

Justification for the identity in exercise 17: Let n be any positive integer, let E be the largest
even integer less than or equal to n, and let 0 be the largest odd integer less than or equal to
n. Let S be any set with n elements. Then the number of subsets of S with an even number

of elements is (n) + (n) + (4) +±.' + (E), and the number of subsets of S with an odd

number of elements is (1) + (n) + (n) + ... + (n). But there are as many subsets with

an even number of elements as there are subsets with an odd number of elements, so if we
subtract the second of these quantities from the first we obtain 0:

o [(°) (2) (4) + + (E)] [(1) + (3) + (n) + + (n)]

= (n) _ (n) + (n) _ (n) + .*+ (1) n(n)

25. Let m be an integer with m > 0. Then

4i = E (7) lm 4 because 1 raised to any power is 1

= (1 + 4)m by the binomial theorem with a = 1 and b = 4

= 5m

27. Let m be an integer with m > 0. Then

j (a) 2-k~ k = (2 + x)"1 by the binomial theorem with a 2 and b x.
kO

29. Let n be an integer with n > 0. Then

E(n) 2r ( )y i (X2)

r 0r0

by the laws of exponents and because 1 raised to any power is 1
- (1 + X 2 )

by the binomial theorem with a = 1 and b = x2 .

30. Let m be an integer with m > 0. Then

E ()pm-i q2 i = (m)p M-i(q2 )1 by the laws of exponents

= (p + q2 )m by the binomial theorem with a = p and b = q2 .

31. Let n be an integer with n > 0. Then
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E k 2k I- (k)
k=O

by the laws of exponents and because 1 raised to any power is 1

= (1 + -)n

b1 t
by the binomial theorem with a 1 and b --

3()n.

2

33. Let n be an integer with n > 0. Then

E (n) 2 2k2 2k = E (n)( 3 2)n-k(2 2)k

by the laws of exponents

kEO
because 32 = 9 and 22 = 4

(9 + 4)n

by the binomial theorem with a = 9 and b = 4
= 13'.

35. Let n be an integer with n > 0. Then

k (n) 22k2k( (n) 2)n 2)k
k kk

by the laws of exponents

k=O k
by the laws of exponents and because 32 = 9 and 22 4

= (9 - 4)n

by the binomial theorem with a = 9 and b = -4
= 5n

36. a. Let n be an integer with n > 0. Apply the binomial theorem with a = 1 and b = x to
obtain

(1 + x) = k = E (Y ) k because any power of 1 is 1.
k=O k=O

c. (ii) Let n be an integer with n > 1. Apply the formula from part (b) with x =-1 to obtain

0 = n(l + (-1)) 1i (n)k(-1)k-1
k

d. Apply the formula of part (b) with x = 3 to obtain

)1 i1- (k)k3 =E() k3 31 =-E() k3k.

Sk-=
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Section 6.8

3. a. P(AUB) = 0.4+0.2 = 0.6

b. By the formula for the probability of a general union and because S = A U B U C,
P(S) = ((A u B) u C) = P(A u B) + P(C) - P((A U B) n C).

Suppose P(C) = 0.2. Then, since P(S) = 1,

1 =0.6+0.2 -P((AUB)nC) 0.8-P((AuB)nC).

Solving for P((AuB)nC) gives P((AUB)nC) -0.2, which is impossible. Hence P(C) # 0.2.

5. We apply the formula for the probability of the complement of an event to obtain P(BC) -
0.4 = 1 - P(B). Solving for P(B) gives P(B) = 0.6. So, by the formula for the probability of
a general union, P(A U B) = P(A) + P(B) -P(A n B) = 0.6 + 0.6 -0.2 = 1.

6. First note that we can apply the formula for the probability of the complement of an event to
obtain 0.3 = P(UC) = 1 -P(U). Solving for P(U) gives P(U) 0.7. Second, observe that by
De Morgan's law U'U UV = (U n V)C. Thus 0.4 = P(UC UVC) = P((U n V)C) = 1-P(U n V).
Solving for P(U n V) gives P(U n V) = 0.6. So, by the formula for the union of two events,
P(U u V) = P(U) + P(V) - P(U n V) =0.7 + 0.6 - 0.6 = 0.7.

8. a. Because A n B = 0, P(A U B) = P(A) + P(B) = 0.5 + 0.4 = 0.9.

b. Note that C = (A U B)C. Thus P(C) = 1 -P(A U B) = 1 -0.9 = 0.1.

c. Because A n C = 0, P(A u C) = P(A) + P(C) = 0.5 + 0.1 = 0.6.

d. P(Ac) = 1- P(A) = 1- 0.5 = 0.5

e. By De Morgan's law ACnBc = (AuB)C. Thus, by part (a) and the formula for the probability
of the complement of an event, P(AC n BC) = P((A u B)C) = - P(A u B) = 1 - 0.9 = 0.1

f. By De Morgan's law AC U BC = (A n B)C. Thus by the formula for the probability of the
complement of an event and because A n B = 0 and P(0) = 0, P(Ac U BC) = P((A n B)c)
1 -P(AnB) = 0-o= 1.

9. b. By part (a), P(A U B) = 0.7. So, since C = (A U B)C, by the formula for the probability of
the complement of an event, P(C) = 1 -P(A U B) = 1 - 0.7 = 0.3.

c. By the formula for the probability of the complement of an event, P(AC) = 1 - P(A) -
1 - 0.4 = 0.6.

e. By De Morgan's law Ac u Bc = (A n B)C. Thus, the formula for the probability of the
complement of an event, P(AC u BC) = P((A n B)C) = 1 - P(A n B) = 1 - 0.2 = 0.8.

f. Solution 1: Because C = S - (A U B), C = (A U B)C. Thus by substitution, De Morgan's
law, and the associative, commutative, and idempotent properties of n,

BcnC = Bcn(AuB)c = BCn(ACnBc) = (BcnAc)nBc = (ACnBc)nBC = ACn(BcnBc)
AC n Bc = (A u B)c C. Hence, by part (b),

P(BC n C) = P(C) = 0.3.

Solution 2: Because C = S -(A u B), C = (A U B)C. Thus by De Morgan's law, C = AC n BC.
Now Ac n Bc C BC (by Theorem 5.2.1(1)a) and hence BC n C = C (by Theorem 5.2.3a).
Therefore P(Bc n C) = P(C) = 0.3.

10. a. By the formula for the probability of a general union, P(AUB) = P(A) +P(B) -P(An B) -

0.7 + 0.3 - 0.1 = 0.9.

b. By part (a), P(A U B) = 0.9. So, since C = (A U B)C, by the formula for the probability of
the complement of an event, P(C) = 1 - P(A U B) = 1 - 0.9 = 0.1.
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c. By the formula for the probability of the complement of an event, P(AC) = 1- P(A) -
1 - 0.7 = 0.3.

d. By De Morgan's law ACnBC = (AUB)c = C. Thus, by part (b), P(AC nBc) P(C) = 0.1.

e. By De Morgan's law Ac U Bc = (A n B)C. Thus, by the formula for the probability of the
complement of an event, P(Ac U BC) = P((A n B)c) = 1 - P(A n B) = 1-0.1 = 0.9.

f. Because C = S -(A U B), C = (A U B)c. Thus by substitution, De Morgan's law, and the
associative, commutative, and idempotent laws for n,

Bc nC = BCn(AuB)c = BCn(Acnc) = (BCnAc)nAc = (AcnBC)nBc Acn(BC nBC)
AC n Bc = (A U B)c = C. Hence, by part (b),

P(BC n C) = P(C) 0.1.

11. Proof: Suppose S is any sample space and U and V are events in S with U C V. [We will show
that P(U) < P(V).] First note that by the set difference, distributive, identity, and universal
bound laws and the definition of union, U U (V - U) = U U (V n UC) = (U u V) n (U u UC) -
(UuV)nS = UUV = V Also by the set difference law, and the associative, commutative, and
universal bound laws for n, Un(V-U) = Un(VnUc) = Un(UCnV) = (UnUC)nV = OnV = 0.
Thus, by probability axiom 3 (the formula for the probability of mutually disjoint events),
P(V) = P(U U (V -U)) = P(U) + P(V -U). But V -U is an event in S, so P(V -U) > 0.
Hence P(U) < P(V).

12. Proof 1: Suppose S is any sample space and U and V are any events in S. First note that
by the set difference, distributive, universal bound, and identity laws, (V n U) u (V -U)
(VnU)u(VnUC) =Vn(UuUC) =VnS = V Next, observe that ifxc (VnU)n(V -U),
then, by definition of intersection, x C (V n U) and x e (V - U), and so, by definition of
intersection and set difference, x E V, x E U, x C V, and x ¢ U, and hence, in particular,
x C U and x V U, which is impossible. It follows that (V n U) n (V - U) = 0. Thus, by
substitution and by probability axiom 3 (the formula for the probability of mutually disjoint
events), P(V) = P((V n U) U (V - U)) = P(V n U) + P(V - U). Solving for P(V - U) gives
P(V - U) = P(V) - P(U n V).

Proof 2: Suppose S is any sample space and U and V are any events in S. First note
that by the set difference, distributive, universal bound, and identity laws, U U (V -U) =
U u (V n UC) = (U u V) n (U u Uc) = (U u V) n S = U U V. Next, observe that, by the same
sequence of steps as in the solution to exercise 11, U n (V -U) = 0. Thus, by substitution,
P(U U V) = P(U U (V - U)) = P(U) + P(V - U). But also by the formula for the probability
of a general union, P(U U V) = P(U) + P(V) -P(U n V). Equating the two expressions for
P(U U V) gives P(U) + P(V - U) = P(U) + P(V) - P(U n V). Subtracting P(U) from both
sides gives P(V -U) = P(V) - P(U n V).

13. We precede the proof of the statement in the exercise with a technically necessary, but slightly
pedantic, lemma.

Lemma: For any positive integer n, 0 U 0 U ... U 0 = 0.
n terms

Proof (by mathematical induction): Let P(n) be the property " 0 U 0 U ... U 0 = 0."
In terms

Show that the property is true for n = 1: When n = 1, the property is 0 = 0, which is
true.

Show that for all integers k > 1 , if the property is true for n = k then it is true
for n = k + 1: Let k be an integer with k > 1, and suppose that 0 U 0 U U 0 = 0. [This

k terms

is the inductive hypothesis.] We must show that 0 U 0 U ... U 0 = 0. But by the definition of
k+1 terms
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a general union of sets given in the directions for exercise 35 of Section 5.2 and by inductive
hypothesis, 0 u 0 u u.. 0 = ( U 0 U u... 0) u 0 = 0 u 0 = 0 [as was to be shown!.

k+1 terms k terms

Proof of the statement in the exercise (by mathematical induction): Let P(n) be the property
"If Al, A2, .An are any mutually disjoint events in a sample space S, then P(Al u A2 U .U

n

An) = E P(Ak)."
k=1

Show that the property is true for n = 2: If Al and A2 are any two mutually disjoint
events in a sample space S, then, by probability axiom 3 (the formula for the probability of

2
mutually disjoint events), P(Al U A2) = P(Ai) + P(A2 ) = E P(Ak).

k=l

Show that for all integers k > 2, if the property is true for n = i then it is true for
n = i + 1: Let k be an integer with k > 2, and suppose that if Al, A2 ,.. -, Ai are any mutually

disjoint events in a sample space S, then P(A1UA2U .. uAi) E P(Ak). [This is the inductive
k=l

hypothesis.] We will show that if Al, A2 , . .-, Ai+, are any mutually disjoint events in a sample
i+l

space S, then P(A1 U A2 U ... U Ai+,) = P(Ak). According to the definition of a general
k=l

union of sets given in exercise 35 in Section 5.2 (the directions for the proof of the generalized
distributive law for sets), Al U A2 U ... U Ai+, = (Al U A2 U ... U Ai) U Ai+,. Also, because
A 1,A 2 ,... , Ai+, are mutually disjoint, by the commutative and generalized distributive laws
for sets and by the lemma, (Al U A2 U u Ai) n Ai+ = Ai+, n (A1 U A2 u ... u Ai) =
(Ai+, n Al) U (Ai+, n A2) U u (Ai+, n Ai) = 0 U 0 U .- U 0 = 0. Thus, by probability axiom

i terms

3 (the formula for the probability of mutually disjoint events) and the inductive hypothesis,
P(A1 U A2 u ... U Ai+,) = P((A1 u A2 u ...u Ai) u Ai+,) = P(A1 u A2 U .. u Ai)+ P(Ai+) =

i i+1

E P(Ak) + P(Ai+,1 ) = E3 P(Ak) [as was to be shown].
k=l k=l

15. Solution 1: The net gain for the first prize winner is $10,000,000 -$0.60 = $9,999,999.40,
that for the second prize winner is $1,000,000 -$0.60 = $999,999.40, and that for the third
prize winner is $50,000 -$0.60 = 49,999.40. Each of the other 29,999,997 million people who
mail back an entry form has a net loss of $0.60. Because all of the 30 million entry forms have
an equal chance of winning the prizes, the expected gain or loss is

1 1 29999997
$9999999.40. ~ + $999999.40. + $49999.40. - $0.60. 29997 $0.23,

30000000 30000000 30000000 30000000

or an expected loss of about 23 cents per person.

Solution 2: The total amount spent by the 30 million people who return entry forms is
30, 000, 000 $0.60 = $18,000,000. The total amount of prize money awarded is $10, 000, 000 +
$1,000,000+ $50,000 = $11,050,000. Thus the net loss is $18,000,000 -$11,050,000 -
$6, 950, 000, and so the expected loss per person is 6950000/30000000 -- $0.23, or about 23
cents per person.

17. Let 21 and 22 denote the two balls with the number 2, let 81 and 82 denote the two balls with
the number 8, and let 1 denote the other ball. There are (5) = 10 subsets of 2 balls that can
be chosen from the urn. The following table shows the sums of the numbers on the balls in
each set and the corresponding probabilities:
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Subset Sum s I Probability of s

{1,21}, {1,22} 3 2/10

{21,22} 4 1/10
{1,81}, {1,82} 9 2/10
{21,81},{21,82},{22,81},{22,82} 10 4/10
f8l,821 16 1/10

2 1 2 4 1 84
Thus the expected value is 3 . + 4. - + 9. ± + 10 1 + 16 - = - = 8.4.

10 10 10 10 10 10

18. Let 21 and 22 denote the two balls with the number 2, let 81 and 82 denote the two balls with

the number 8, and let 1 denote the other ball. There are (3) = 10 subsets of 3 balls that can

be chosen from the urn. The following table shows the sums of the numbers on the balls in
each set and the corresponding probabilities:

Subset I Sum s [Probability of s
{1,21,22} 5 1/10
{1,21,81},{1,22,81},{1,21,82},{1,22,82} 11 4/10
{21,22,81},{21,22,82} 12 2/10
{1,81,821 17 1/10
{21,81,82},{22,81,82} 18 2/10

1 4 2 1 2
Thus the expected value is 5 ± +11 - + 12 - +17 ± +18

10 10 10 10 10
126 = 12.6.
10

20. The probability of drawing a face card is 52* So the probability of not drawing a face card is

40 12 5240 4
52- and the expected gain or loss is 52 3 -52 1 =-52- 0.077. Hence the expected loss

is about 7.7 cents per game.

21. When a coin is tossed 4 times, there are 24 = 16 possible outcomes and there are (4) ways
to obtain exactly h heads (as shown by the technique illustrated in Example 6.4.10). The
following table shows the possible outcomes of the tosses, the amount gained or lost for each
outcome, the number of ways the outcomes can occur, and the probabilities of the outcomes.

1 4 6 4 1 6
Thustheexpectedvalueis(-$3) -+(-$2).-+(-$1) +$2 16+$3 16 =- =16 _-$0375

16 16 '616 16-±3~ 16$ - $.3
So this game has an expected loss of 37.5 cents.

22. For i = 1, 2, 3,4, let Ai be the event that a head comes up on the ith toss but not before, and
let A5 be the event that all four tosses produce tails. Because the coin is fair, there is a 50-50
chance that heads will come up on the first toss, and so P(A1 ) = 1/2. For heads to come up
on the second toss and not before, implies that 2 tosses occurred with 4 possible outcomes,
and that in only 1 of the 4 was the outcome TH. Thus P(A2 ) = 1/4. Similar reasoning shows
that P(A3 ) = 1/8 because in only 1 of the 8 equally likely outcomes of tossing a coin three
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times does TTH occur. Finally, both P(A4 ) and P(A5 ) equal 1/16 because when a coin is
tossed 4 times, in only 1 of the 16 equally likely outcomes does TTTH occur and in only 1 of
the 16 does TTTT occur.

Thus the expected number of tosses until either a head comes up or four tails are obtained is
1 1 1 1 1

1 . - ± 2. - ± 3. - ± 4 - + 4 - -= 1.875.
2 4 8 16 16

Section 6.9

2. P(X n AY) P(X I Y)P(Y) =1-1-.
3 4 12

3. b. Let A be the event that a randomly chosen person tests positive for a condition, let Bi be
the event that the person has the condition, and let B2 be the event that the person does not
have the condition. The event that a randomly chosen person tests negative for the condition
is AC. Then the probability of a false positive is P(A B2 ), the probability of a false negative
is P(Ac B1 ), the probability that a person who actually has the condition tests positive for it
is P(A B1 ), and the probability that a person who does not have the condition tests negative
for it is P(AC B 2).

(1) Suppose the probability of a false positive is 4%. This means that P(A | B2 ) = 4% = 0.04.
By part (a), P(ACI B2 ) = I-P(A I B2 ) = 1-0.04 = 0.96, and so the probability that a
person who does not have the condition tests negative for it is 96%.

(2) Suppose the probability of a false negative is 1%. This means that P(AC B1) = 1% = 0.01.
By part (a), P(AC I B1 ) = 1 -P(AI B1 ), and so P(A I B) = 1 -P(ACI B1 ) = 1 -0.01 = 0.99.
Thus the probability that a person who has the condition tests positive for it is 99%.

4. By definition of conditional probability, P(A I BC) (BP)( ) Now by the solution to

Example 6.9.5, A = (AnB)u(AnBC) and (AnB)n(AnBC) = 0, and thus, by probability axiom
3, P(A) = P(A n B)+ P(A n BC). Solving for P(A n Bc) gives P(A n BC) = P(A)- P(A n B),
and using formula 6.9.2 to substitute P(A IB)P(B) in place of P(A n B) gives P(A n BC) =
P(A) P(A I B)P(B). Also, by the formula for the complement of an event, P(BC) = 1 -P(B).

Hence, by substitution, P(A I BC ) P(B ( 1 -P(B)P(B)

6. Let R1 be the event that the first ball is red, R2 the event that the second ball is red, B1
the event that the first ball is blue, and B2 the event that the second ball is blue. Then

30 40 29 30 39
P(R1) = 70, P(B1 ) = 70, P(R2 R1) = 69'P(R2 I BI) = 69' and P(B2 I B1) 69

a. The probability that both balls are red is P(R1 n R2 ) = P(R2 I R)P(R1 ) 9 30

29 18.0%.
161
b. The probability that the second ball is red but the first ball is not is P(B1 n R2)

30 40_ 40_
P(R 2 I B1 )P(B1 ) = 70 = 161 24.8%.

c. Because B1 n R1 = 0 and B1 U R1 is the entire sample space S, R2 = S n R2 = (B1 n R2 ) U
(R1 n R2) and (B1 n R2 ) n (R1 n R2 ) = 0. Thus the probability that the second ball is red

is P(R2) = P((B1 n R2) U (R n R2)) = P(B1 n R2) + P(R1 n R2) 40 + = -6 9is~) )2) ) ) 161 161 161
0.42857 - 42.9%.

d. Solution 1: The probability that at least one of the balls is red is P(R1 U R 2) = P(R1 ) +
30 69 29 109

P(R 2 ) P(Rj n R 2 ) =- + 16 11 67.7%.
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Solution 2: The event that at least one of the balls is red is the complement of the event that

both balls are blue. Thus P(RI UR 2 ) = 1-P(BI nB2) = 1-P(B2 I BI)P(Bl) = 1-69 70=
69 70

1 - - 67.7%
161

7. b. Let W1 be the event that a woman is chosen on the first draw, W2 the event that a
woman is chosen on the second draw, M1 the event that a man is chosen on the first draw,and

3 7
M2 the event that a man is chosen on the second draw. Then P(W1 ) = 1O, P(M1) = 1o'

P(W2 I W1 ) = 2, P(W2 I MI) - 3 = I, and P(M2 I Ml) = 6 = 2, and P(M2 I WI) = 7
9' 9 39 39

Then the probability that both finalists are men is P(Ml nM2 ) = P(M2 I Ml)P(Ml) =3 10 -

7 46.7%.
15
c. Solution 1: The event that one finalist is a woman and the other is a man is (W1 n
M2) u (W2 n M1 ) and W1 n M 2 and W2 n M1 are mutually disjoint because WI and M1
are mutually disjoint. Hence the probability that one finalist is a woman and the other is
a man is P((W1 n M2) u (W2 n Ml)) = P(W1 n M2) + P(W2 n M1 ) = P(M2 I WI)P(WI) +

7 3 1 7 7 _
P(W 2 I Ml)P(MI) = 10 + 1 0O = 15 46.7%.

Solution 2: The event that one finalist is a woman and the other is a man is the complement
of the event that either both are women or both are men. Because those events are mutually
disjoint, the probability that one finalist is a woman and the other is a man is 1 -P(W 1 nW 2 )-

2 3 2 7 7
P(M1 U M2) = 1 -P(W 2 I WI)P(W1 ) -P(M 2 I MI)P(Ml) = 1-9 -3 - O = l- 46.7%.

8. Proof: Suppose that a sample space S is a union of two disjoint events B1 and B 2 , that A is
an event in S with P(A) 5 0, and that P(Bk) 5 0 for k = 1 and k = 2. Because B1 and B2 are
disjoint, the same reasoning as in Example 6.9.5 establishes that A = (A n B1) U (A n B2 ) and
(A nB 1 )n(AnB2 ) = 0. Thus P(A) = P(AnB,)+ P(AnB2). Moreover, for each k = 1 or 2, by

definition of conditional probability, we have both that P(Bk I A) = P(Bk A) P(AflBk)
P(A) P(A)

and that P(AnBk) = P(A Bk)P(Bk). Putting these results together gives that for each k = 1
or 2,

P(B I A) P(A n Bk) P(A I Bk)P(Bk) P(A I Bk)P(Bk)
Bk I P(A) P(AnB1 )+P(AnB2 ) P(AIBi)P(B1 )+P(AIB2 )P(B 2 )'

which is Bayes' theorem for n = 2.

9. Proof: Let S be a sample space, let A be an event in S with P(A) $ 0, and suppose that
B1 , B 2 , .. ., Bn, are mutually disjoint events in S such that S = B1 U B2 U ... U Bn. By the
generalized distributive law for sets, A = A n S = A n (B1 U B2 U ... U Bn) = (A n B1) U (A n
B2)U u.. U (A n B,,). Also because B1 , B 2,.. . , B,, are mutually disjoint and by the associative,
commutative, and universal bound laws for sets, (A n Bi) n (A n B.) = (A n A) n (Bi n Bj) =
(A n A) n 0 = 0 for all integers i and j with 1 < i < n, 1 < j < n, and i 5$ j. Thus the sets
(A n B1), (A n B 2),... , (A n B,,) are also mutually disjoint, and so, by substitution and the
definition of conditional probability,

P(A) = P((A n B 1)U(A n B2)U ... U(A n Bn))
= P(AnBI)+P(AnB2 )+ -i+P(AnB,)
= P(AIB 1 )P(B1 ) +P(AIB 2 )P(B 2 )+ ... P(AIB| )P(Bn).

Also by definition of conditional probability,

P(A Bk)P(Bk) =P(A n B) P(Bk) = P(A n Bk).
P(Bk)
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Putting these results together gives

I P(A n Bk)
P(Bk I A) = P(A)

P(A Bk)P(Bk)

P(AI B1 )P(BI) + P(AIB2)P(B2) + + P(A I B,)P(B,)

[as was to be shown].

11. a. Let B1 be the event that the first urn is chosen, B 2 the event that the second urn is chosen,
and A the event that the chosen ball is blue. Then

P(A I BI) = 4
10

and P(A IB2) 19

P(A n Bm) = P(A AI B D)P(BD) = 1 2 = 1
ItlIL~lI~lIL~II~~l) 20j 2 10

Also

P(A n B2) = P(A B2)P(B2) = 102 I1 5
19 2 19

Now A is the disjoint union of A n B1 and A n B2. SO

P(A) = P(A n B1 )+ P(A n B2 ) =1 19 69 36.3%.
190

So the probability that the chosen ball is blue is approximately 36.3%.

b. Solution 1 (using Bayes' theorem): Given that the chosen ball is blue, the probability that
it came from the first urn is P(B1 I A). By Bayes' theorem and the computations in part (a),

P(AI )=P(A BI)P(B1 )
P(B I ) =P(A I BI)P(B1 ) + P(A IB2)P(B2)

1
10

1 5
10 19

19 - 27.5%.
69

Solution 2 (without explicit use of Bayes' theorem): Given that the chosen ball is blue, the
probability that it came from the first urn is P(B1 I A). By the results of part (a), P(B I

1
A) = P(A n B1)A- P(A)

10
69
190

19 27.5%.
69

12. a. Let B1 be the event that the first urn is chosen, B2 the event that the second urn is chosen,
and A the event that the chosen ball is green. Then

P(A I B1) = 25
35

15
and P(A IB2)

P(A n B1) = P(A I Bi)P(B1 ) = 25 2
35 5

2
7

Also

P(A n B2 ) = P(AIB2 )P(B2 ) = _5 3 = 9
Nw A i37

Now A is the disjoint union of A ni B1 and A ni B 2. SO

P(A) = P(A n B1)+ P(A n B2) = 2 + 9
7 37

137 52.9%.
259

So the probability that the chosen ball is green is approximately 52.9%.

P(B1) = 4
10

2
5,

P(B2) 6
10

3
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b. Solution 1 (using Bayes' theorem): Given that the chosen ball is green, the probability that
it came from the first urn is P(BI I A). By Bayes' theorem and the computations in part (a),

2

~P(Bi I A) P-Ii)(i)- 7 54.0%.
P(A I BI)P(Bi) + P(A I B 2 )P(B 2 ) - 2 9 137

7 37

Solution 2 (without explicit use of Bayes' theorem): Given that the chosen ball is green,
the probability that it came from the first urn is P(BI I A). By the results of part (a),

2
P(BnBI)A) = 7 - 54.0%.

P(A) - 137 137

259
14. Let B1 be the event that the part came from the first factory, B2 the event that the part

came from the second factory, and A the event that a part chosen at random from the 180 is
defective.

a. The probability that a part chosen at random from the 180 is from the first factory is
P(B1 )= 180

b. The probability that a part chosen at random from the 180 is from the second factory is
P(B 2 )= 180'

c. The probability that a part chosen at random from the 180 is defective is P(A). Because 2%
of the parts from the first factory and 5% of the parts from the second factory are defective,

2 5
P(A B1 ) = and P(A I B2 ) = . By definition of conditional probability,

100 100

P(A n BI) = P(A B1)P(B1 ) = 2. 10 I

P(rB)5 80 2
P(A n B2) P(AIB2 )P(B 2 ) = 1OO 8=

Now because B1 and B2 are disjoint and because their union is the entire sample space, A is
the disjoint union of A n B1 and A n B2 . Thus the probability that

1 2 3
P(A) = P(A n B 1 ) + P(A n B2 ) =- + - = - =-3.3%.

90 90 90

d. Solution 1 (using Bayes' theorem): Given that the chosen part is defective, the probability
that it came from the first factory is P(B1 I A). By Bayes' theorem and the computations in
part (a),

1
P(A I B)P(Bi) __ _

___B____IA)___- _90 - 33.3% .
P(A I B1 )P(BI) + P(A I B2 )P(B 2 ) 1 2 3

90 90

Solution 2 (without explicit use of Bayes' theorem): Given that the chosen ball is green,
the probability that it came from the first urn is P(B1 I A). By the results of part (a),

P(A n B1 ) -~

P(B1 I A) =3 33.3%
P(A) 33

90

15. Let B1 be the event that a randomly chosen piece of produce is from supplier X, B2 the event
that a randomly chosen piece of produce is from supplier Y, B3 the event that a randomly
chosen piece of produce is from supplier Z, and A the event that a randomly chosen piece of
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produce purchased from the store is superior grade. From the information given in the problem
statement, we know that P(BI) = 20% = 0.2, P(B2 ) = 45% = 0.45, P(B3 ) = 35% = 0.35,
P(A B1) = 12% = 0.12, P(A I B2 ) = 8% = 0.08, and P(A I B3 ) = 15% = 0.15.

a. By definition of conditional probability,

P(A n B1) = P(A BI)P(B1 ) = 0.12 0.2 = 0.024,

P(A n B2) = P(A IB 2 )P(B 2 ) = 0.08 0.45 = 0.036,

P(A n B3 ) = P(A B3 )P(B 3 ) = 0.15 0.35 = 0.0525.

Now because B1 , B2 , and B3 are disjoint and because their union is the entire sample space,
A is the disjoint union of An B1 , An B2 , and An B3. Thus

P(A) = P(A n B1 ) + P(A n B2 ) + P(A n B3 ) = 0.024 + 0.036 + 0.0525 = 0.1125 = 11.25%.

b. Solution 1 (by direct application of Bayes' theorem): Given that the chosen part is defective,
the probability that it came from the first factory is P(B1 I A). By Bayes' theorem,

P(Bi IA) =P(A BI)P(B1 )
P(A I BI)P(BI) + P(A B2 )P(B 2) + P(A I B3)P(B3 )

0.12 .0.2

0.12 -0.2 + 0.08 -0.45 + 0.15 0.35

t 21.3%.

Solution 2 (without explicit use of Bayes' theorem): Given that the chosen ball is green, the
probability that it came from the first urn is P(Bi I A). By definition of conditional probability

P(A n B1 ) _0.024_

and the results of part (a), P(B1 I A) ( = 0 = 21.3%.
P(A) 0.1125

17. Proof: SupposeAandBareeventsinasamplespaceS, and P(AnB) = P(A).P(B), P(A) :0,
and P(B) 7 0. Applying the hypothesis to the definition of conditional probability gives P(A

P(A n B) _P(A) . P(B) P(A n B) _P(A) . P(B)-PB)
B) P(B) = P(B) =P(A) and P(BIA)= P(A) P(A) (B)

19. The sample space S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT},
A = {HHH, HHT, HTH, HTT}, B = {HHT, HTH, THH, TTT}, and AnB - {HHT, HTH}.

4 1 4 1 2 1 PAn
Then P(A)= 8-= 2 ,P(B)= 8-= 2 ,and P(AnB) 8-- .Hence P(AIB)= P(AnB)

1/ = P(A) and P(BIA)= (AnB) 1/4 1
1/2 2 P(A) 1/ 2 ()

20. If A and B are events in a sample space and An B = 0 and A and B are independent, then (by
definition of independence) P(A n B) = P(A)P(B), and (because A n B = 0) P(A n B) = 0.
Hence P(A)P(B) = 0, and so (by the zero product property) either P(A) = 0 or P(B) = 0.

21. Alternative proof to that given in Appendix B: Suppose A and B are independent events in a
sample space S. Then P(AnB) = P(A)P(B). In case P(B) = 0, then, by the result of exercise
11, Section 6.8, P(AC n B) = 0 (because Ac n B C B). Thus, P(AC n B) = 0 = P(AC) 0 0
P(AC)P(B). In case P(B) 5 0,

P(AC n B) = P(ACIB)P(B) by formula 6.9.2
= [1 -P(AIB)]P(B) by exercise 3a
= [1 - P(A)]P(B) by the result of exercise 17
= P(AC)P(B) by the formula for the complement of an event (6.8.1).

It follows by definition of independence that in either case Ac and B are independent.
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22. Proof 1: Suppose A and B are independent events in a sample space S. By Example 6.9.5,
A and Bc are independent. Now, in general, if events C and D are independent then so are
events D and C (because P(C)P(D) = P(D)P(C)), and hence Bc and A are independent.
Thus, by Example 6.9.5 a second time (with BC playing the role of A and A playing the role
of B) Bc and Ac are independent, and so AC and BC are independent.

Proof 2: Suppose A and B are independent events in a sample space S. It follows by definition
of independence, De Morgan's law, and the formulas for the probability for the complement
of an event and the probability of a general union of two events that

P(Ac n BC) = P((A U B)') 1 -P(A U B) = 1 -[P(A) + P(B) -P(A n B)]

= 1-[P(A) + P(B) P(A)P(B)] = 1 -P(A) -P(B) + P(A)P(B) = (1 - P(A))-
P(B)(1- P(A))

= P(AC)( -P(B)) = P(AC)P(Bc).

Hence Ac and BC are independent.

24. Let A be the event that a randomly chosen error is missed by proofreader X, and let B be the
event that the error is missed by proofreader Y. Then P(A) = 0.12 and P(B) = 0.15.

a. Because the proofreaders work independently, P(AnB) = P(A)P(B). Hence the probability
that the error is missed by both proofreaders is P(A n B) = P(A)P)B) = (0.12)(0.15) =

0.018= 1.8%.

b. Assuming that the manuscript contains 1000 typographical errors, the expected number of
missed errors is 1000 . 0.018% = 18.

25. Let Hi be the event that the result of toss i is heads, and let T, be the event that the result
of toss i is tails. Then P(H,) = 0.7 and P(Ti) = 0.3 for i = 1, 2.

a. Because the results of the tosses are independent, the probability of obtaining exactly two
heads is P(H1 n H2 ) = P(H1 )P(H2 ) = 0.7. 0.7 = 0.49 = 49%.

c. Because the results of the tosses are independent, the probability of obtaining no heads is
P(T1 n T2) = P(T1 )P(T2 ) = 0.3 .0.3 = 0.09 = 9%.

d. By the formula for the complement of an event, the probability of obtaining at least one
head is P(T1 n T2)C) = 1 -P(T 1 n T2) = 1 -0.09 = 0.91 = 91%.

26. One possible example among many: Consider the possible outcomes obtained when a coin is
tossed three times. Let A be the event that a head occurred on the first toss, B the event
that at least two heads were obtained, and C the event that an odd number of heads were
obtained. Then A = {HHH, HHT, HTH, HTT}, B = {HHH, HHT, HTH, THH}, and C =
{HHH, HTT, THT, TTH}. Thus A n B = {HHH, HHT, HTH} and A n B n C = {HHH}.
Hence P(A) = P(B) = P(C) = 4/8 = 1/2, P(A n B) = 3/8, and P(A n B n C) = 1/8. But
1/8 = (1/2)(1/2)(1/2), and so P(A n B n C) = P(A)P(B)P(C). However, P(A n B) = 3/8 54
(1/2)(1/2) = P(A)P(B), and so A and B are not pairwise independent.

27. Solution: The family could have two boys, two girls, or one boy and one girl. Let the subscript
1 denote the firstborn child (understanding that in the case of twins this might be by only a few
moments), and let the subscript 2 denote the secondborn child. Then we can let (BLG 2 , B1 )
denote the outcome that the firstborn child is a boy, the secondborn is a girl, and the child
you meet is the boy. Similarly, we can let (B1 B2 , B2 ) denote the outcome that both the
firstborn and the secondborn are boys and the child you meet is the secondborn boy. When
this notational scheme is used for the entire set of possible outcomes for the genders of the
children and the gender of the child you meet, all outcomes are equally likely and the sample
space is denoted by

{(B1 B2, B1), (B1B2, B2 ), (B1 G2, B1 ), (B1 G2, G2), (G1B2, Ga), (G1B2 , B2), (G1G2, G1), (G1G2 , G2)}.

The event that you meet one of the children and it is a boy is
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{(B1 B2 , B1 ), (B1 B2 , B2 ), (B1 G2 , B1 ), (G1 B2 , B2 )}.

The probability of this event is 4/8 = 1/2.

Discussion: An intuitive way to see this conclusion is to realize that the fact that you happen
to meet one of the children see that it is a boy gives you no information about the gender
of the other child. Because each of the children is equally likely to be a boy, the probability
that the other child is a boy is 1/2. Consider the following situation in which the probabilities
are identical to the situation described in the exercise. A person tosses two fair coins and
immediately covers them so that you cannot see which faces are up. The person then reveals
one of the coins, and you see that it is heads. This action on the person's part has given you
no information about the other coin; the probability that the other coin has also landed heads
up is 1/2.

28. b. Let Hi be the event that the result of toss i is heads, and let T, be the event that the result
of toss i is tails for i = 1,2,... ,10. By definition of mutual independence,

P(obtaining exactly ten heads) = P(H1 H2 H3 H4 H5H6 H7 HH 9 H1O)
= P(HI)P(H2 )P(H 3 )P(H 4 )P(H 5)P(H 6 )P(H 7 )P(H8)P(H9 )P(HJo) = (0 7)1° 0.028 = 2.8%.

c. The event of obtaining no heads is the same as the event of obtaining all tails:
10

P(T1T2 T3 T4 T5 T6 T7 T8 T9 T1O) = [l P(Ti) = (0.3)10 - 0.000006 = 0.0006%.
i=l

d. The probability of obtaining at least one head is the complement of the event of obtaining
all tails. So, by the formula for the complement of an event, P(obtaining no heads) = 1 -
P(obtaining all tails) = 1 - P(T1T2T3 T4T5 T6 T7 T8T9 Tjo) = 1 - (0.3)10 - 0.999994 = 99.9994%.

29. b. The event that at least one of the ten items is defective is the complement of the event that
none is defective, which, by part (a) is approximately 73.7%. So P(at least one is defective)
1 - 73.7% = 26.3%.

the number of ways 4
c. P(4 defectives) = defectives can be obtained P(defective) 4 P(not defective)6

in a sample of 10 items

= (10) 0.034 . 0.976 = 210 . 0.03 4 0.976- 0.000142
\4

d. By part (a), P(no defectives) - 0.737.

the number of ways 1
P(1 defective) = defective can be obtained P(defective)1 P(not defective)9

in a sample of 10 items

= (10)0.031 . 0.979 = 10 . 0.031 . 0.979 0.228

the number of ways 21
P(2 defectives) = defectives can be obtained P(defective) 2 P(not defective) 8

in a sample of 10 items J

= ('°)0.032 . 0.978 = 45 . 0.032 0.978 - 0.032
2

P(at most 2 defectives) = P(0 defectives) + P(1 defective) + P(2 defectives) = 0.737 + 0.228 +
0.032 - 0.997

the number of ways 0 false 0 ( a
30. a. P(0 false positives) = positives can be obtained p Psitie po itive

over a ten-year period j \positive k, positive JJ

(1)0.961o = 1 .0.9610 - 0.665 = 66.5%
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the number of ways 2 false
c. P(2 false positives) = positives can be obtained

over a ten-year period

(Pf( als e)) 2((not a false. 8
positv positive JJ

= (0) 0.042. 0.968 = 45 0.042 0.968 = 0.0594 - 5.2%

d. Let T be the event that a woman's test result is positive one year, and let C be the event
that the woman has breast cancer.

(i) By Bayes' formula, the probability of C given T is

P(CIT)
P(TFC)P(C)

P(TIC)P(C) + P(TICc)P(Cc)

- - (0.98) (0.0002)
(0.98)(0.0002) + (0.04)(0.9998)

A 0.00488 = 4.88%.

(ii) The event that a woman's test result is negative one year is Tc. By Bayes formula, the
probability of C given TC is

P(CITc) =
P(TCIC)P(C)

P(TcIC)P(C) + P(TcICc)P(Cc)

(0.02) (0.0002)
(0.02)(0.0002) + (0.98)(0.9998)

"- 0.000004 = 0.0004%.
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Chapter 7: Functions

Students often come out of high school mathematics courses identifying functions with formulas.
The aim of Section 7.1 is to promote a broader view of the function concept and to give students
experience with the wide variety of functions that arise in discrete mathematics. Representation of
functions by arrow diagrams is emphasized to prepare the way for the discussion of one-to-one and
onto functions in Section 7.2. Students do not usually find Section 7.1 difficult, but many seem to
need the practice working with functions defined on, say, power sets or sets of strings to be able
to reason effectively with such functions in later sections of the chapter. For instance, if you are
planning to assign exercise 24 in Section 7.2, it is desirable to have previously assigned exercise 13
in Section 7.1.

Section 7.2 focuses on function properties. As they are learning about one-to-one and onto
functions in this section, a significant number of students benefit from some explicit review of logical
principles such as the negation of V, 3, and if-then statements and the equivalence of a conditional
statement and its contrapositive. These logical principles are needed, of course, to understand the
equivalence of the two forms of the definition of one-to-one and what it means for a function not to
be one-to-one or onto. This is a good opportunity to solicit student participation since at this point
in the course students, in theory, know the logic, and so you can ask them to recall it and apply it
to the study of function properties themselves. Because the techniques used to test for injectivity
and surjectivity and to find inverse functions are quite different for functions with finite and infinite
domains, examples involving both kinds of functions are discussed in this section.

Section 7.3 on the pigeonhole principle provides a break from the emphasis on theory in the other
sections of the chapter, and many students appreciate the change of focus at this point. The range
of difficulty of the problems is deliberately broad to enable you to tailor your choice of exercises to
the abilities of your students.

Sections 7.4 and 7.5 go together in the sense that the relations between one-to-one and onto
functions and composition of functions developed in Section 7.4 are used to prove the fundamental
theorem about cardinality in Section 7.5. The proofs that a composition of one-to-one functions is
one-to-one or that a composition of onto functions is onto (and the related exercises) test the degree
to which students have learned to instantiate mathematical definitions in abstract contexts, apply
the method of generalizing from the generic particular in a sophisticated setting, develop mental
models of mathematical concepts that are both vivid and generic enough to reason with, and create
moderately complex chains of deductions.

There are always students who respond with enthusiasm to the idea of different sizes of infinity
discussed in Section 7.5. When covering the proof of the uncountablity of the reals in this section,
it is of interest to point out the connections that link Russell's paradox, the halting problem, and
the Cantor diagonalization argument.

Comments on Exercises:

Exercises #6 in Section 7.1 and #10 and #11 in Section 7.2 explore the question of how many
functions of certain types there are from a finite set of one size to a finite set of a (possibly different)
size. Exercise #11 in Section 7.1 on the identity function is a warm-up for #13 of Section 7.4.
Exercise #13 in Section 7.1 on a function defined on a power set prepares students for #24 and
#46 in Section 7.2. Exercise #14 in Section 7.1 on values of a function defined on a set of strings
leads students into #22, #23, #25, #26, #44, #45 and #47 in Section 7.2. Exercise #27 in
Section 7.1 integrates topics from Chapters 6 and 7 by relating permutations and functions. The
results of exercises #29-31 in Section 7.2 are used for some calculations in Sections 8.2, 9.4,
and 9.5. Exercises #2-4 and #15 in Section 7.2 are designed to counteract a common linguistic
misunderstanding about the definition of one-to-one (that a function f: X -* Y is one-to-one if each
element of X is sent to exactly one element of Y). Exercise #52 in Section 7.2 integrates topics
from Chapters 5, 6, and 7. The fact that a set with n elements has 2' subsets is first proved by
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induction in Section 5.3. In Section 6.7 a second proof is given using the binomial theorem. This
exercise leads students through a third proof that works by setting up a one-to-one correspondence
between subsets and strings of O's and 1's of length n.

Section 7.1

2. a. domain of g {1, 3, 5}, co-domain of g = {a, b, c, d} b. g(1) = g(3) = g(5) = b

c. range of g = {b} d. no, yes e. inverse image of b = {1, 3, 5}, inverse image of c = 0
f. {(1, b), (3, b), (5, b)}

3. c. This arrow diagram associates both 1 and 2 to 4. So this diagram does not define a function.

d. This arrow diagram determines a function. Each element in X is related to one and only
one element in Y.

e. In this arrow diagram, the element 2 in X is not related to any element in Y. So this diagram
does not define a function.

4. b False. The definition of function does not allow an element of the domain to be associated to
two different elements of the co-domain, but it does allow an element of the co-domain to be
the image of more than one element in the domain. For example, let X = {1, 2} and Y = {a}
and define f: X - Y by specifying that f(1) = f(2) = a. Then f defines a function from X
to Y for which a has two unequal preimages.

d. This statement is false. Each input to a function is related to only one output.

5. b. There is just one function from X to Y. It is represented by the arrow diagram shown
below.

X

c. There are eight functions from X to Y. They are represented by the arrow diagrams shown
below.

X Y X Y X Y X Y

X Y X Y X Y X Y

6. b. The answer is 2 2 2 2 2 - 25 = 32. The explanation is the same as that in the answer to
part (c) below, but with n = 2 and m = 5.

c. The answer is n' because the m elements of the domain can be placed in order and the
process of constructing a function can be thought of as an rn-step operation where, for each i
from 1 to m, the ith step is to choose one of the n elements of the co-domain to be the image
of the ith element of the domain. Since there are n ways to perform each of the m steps of the
operation, the entire operation can be performed in n n n (m factors) ways. (Brief version
of this explanation: The answer is nm because each of the m elements of the domain can be
sent to any one of n possible elements in the co-domain.)
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8. No. For instance, H(3) = [3] + 1 = 3 + 1 = 4, whereas K(3) = [3] = 3. In fact, H(x) -

K(x) <ts x is not an integer.

10. No. For instance, let F and G be defined by the rules F(x) = x and G(x) = 0 for all real
numbers x. Then (F-G)(2) = F(2) -G(2) = 2-0 = 2, whereas (G-F)(2) = G(2) -F(2) =

0-2=-2,and2 7-2. Infact,G-F=F-G<4tF=G.

11. c. iz(K(t)) = K(t) d. iz(Ukj) = Ukj

12. b. Define F: zrionneg - R as follows: for each nonnegative integer n, F(n) = (-1)n(2n).

13. b. F(0) = 0 (because 0 is an even number) d. F({2, 3, 4, 5}) = 0

14. b. g(aba) = aba, g(bbab) = babb, g(b) = b The range of g is the set of all strings of a's and b's,
which equals S.

15. b. 5-2 = 1/25

d. the exponent to which 3 must be raised to obtain 3fn is n

e. 40 = 1

16. b. lg 2 1024 = 10 because 210 = 1024

d. log2 1 0 because 20 = 1

e. logo0 1 -1 because 10-1 = -
10 10

f. log3 3 - 1 because 31 = 3

9. log2 2k = k because the exponent to which 2 must be raised to obtain 2 k is kv

18. Proof: Let b be any positive real number with b # 1. Then b° = 1, and so logb 1 0. (Note
that we do not allow b to equal 1 here because logb is not defined for b = 1.)

20. Proof: Suppose that log3 (7) is rational. Then log3 (7) = a/b for some integers a and b with
b #8 0. Since logarithms are always positive, we may assume that a and b are both positive.
By definition of logarithm, 3a/b = 7. Raising both sides to the bth power gives 3a = 7b Let
N = 3a = 7b, and consider the prime factorization of N. Since N = 3a, the prime factors of N
are all 3. On the other hand, since N = 7b, the prime factors of N are all 7. This contradicts
the unique factorization theorem which states that the prime factors of any integer greater
than 1 are unique except for the order in which they are written. Hence the supposition is
false, and so log 3 (7) is irrational.

22. Since logby = 2, then b2 = y. Hence (b2 7) = y, and so 1O9b2(y) = 1.

23. b. p2(2,y) = y, p2 (5,x) = x The range of P2 is {x,y}.

24. b. mod (59, 8) = 3, div(59, 8) = 7 c. mod (30, 5) 0, div(30, 5) 6

25. b. E(1010) = 111000111000, D(000000111111) = 0011

26. b. H(00110, 10111) = 2

27. b.
1 2 3 4 1 2 3 4
1 11 }1 41 111
1 2 3 4 3 2 1 4

d.
1 2 3 4 1 2 3 4 1 2 3 4
1 1 1 1 1 11 1 1 1 1
2 3 4 1 3 4 1 2 4 1 2 3
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1 2 3 4

t ~t ~t
2 1 4 3

1 2 3 4
1 t 1 1
2 4 1 3

28. b.

3
{0,11

29.

30. b.

input output

X1 X2 X 3  f
1 1 1 1
1 1 0 1
1 0 1 0
1 0 0 0
0 1 1 1
0 1 0 1
0 0 1 0
0 0 0 0

123 4

3 14 2

1 2 3 4

1 4 1 11
3 42 1

32. Student D is correct. Suppose h were well-defined. Then h(I) = h(2 ) because I = 2. But

1 2 22 1
h(2) = 2 and h(-) = - = 1, and 2 z-1. [This contradiction shows that the supposition that

22 4 4 2
h is well-defined is false, and so h is not well-defined.]

33. f is not well defined because f(n) f S for many values of n in S. For instance, f(100 000) =
(100 000)2 = 10000000000 0 S.

12 34
1t 1 1
4 3 12

1 2 3 4
1 1 1 t
4 3 2 1

input fi f2 f3 f4 ft f6 f7 fA f9 fIO fil f12 f13 f14 f5 f16

11 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 O 1 0 1 0 1 0 1 0 1 0 1 0 1
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34. a.

X 1-1 ifuEAanduGB
1.0 ifuGAanduVB

XA (U) XB (U) = 01 ifu AanduEB

0-0 ifuVAandu¢B

{ 1 ifuG-AfnB
- 0 if uZAfnB
XAnB(U)

b.

( 1+1-1.1 if ucAanduGB
1+0 -10 ifucAanduVB

XA(U) + XB(U) XA(U) XB(U) 0 +1-O 1 ifuAand uEB
0+0-0 0 if uVAanduVBI if u cA and u GB

1 if u GA and u V B
1 if uVAanduEB
0 if uVAanduVB
1i ifucAUB

= if uVAUB
XAUB(U)

35. d. 0(12) = 4 /because 1, 5, 7, and 11 have no common factors with 12 other than ±11

e. O(11) = 10 [because 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11 have no common factors with 11
other than ±1]

f. 0(1) =1 /because 1 is the only positive integer which has no common factors with 1 other
than ±1/

37. Proof: By exercise 36 with p = 2, if n is and integer with n > 1, then 0(2') = 2 - 2 n-1

2n-1(2 -1) = 2n-1. Given any odd integer n > 3, n = 2k + 1 for some integer k > 1. Hence
b(2 n) = 2n-1 = 2 (2k+1)-l = 22k = (2 k)2, which is a perfect square. Thus 0(2n) is a perfect

square for each of the infinitely many odd integers n > 3.

38. Proof: Given any integer n with n = pq, where p and q are distinct prime numbers, let
A be the set of all positive integers less than or equal to n that are divisible by p and let
B be the set of all positive integers less than or equal to n that are divisible by q. Note
that A = {p, 2p, 3p,. .. , qp}, B = {q, 2q, 3q, . . .,pq}, and A n B = {pq}. By definition of 4,

O(n) n- [n(A U B)]

n -[n(A) + n(B) -n(A n B)] by the inclusion/exclusion formula

pq -[q+p-1]

(p- 1)(q-1)

39. Proof: Given any integer n with n = pqr, where p, q, and r are distinct prime numbers, let A
be the set of all positive integers less than or equal to n that are divisible by p, B the set of
all positive integers less than or equal to n that are divisible by q, and C the set of all positive
integers less than or equal to n that are divisible by r. Note that A = {p, 2p, 3 p,..., qr pi,
B = {q, 2q, 3q,...,pr * q}, C = {r, 2r, 3r,..., pq r}, A n B = {pq, 2pq, 3pq,..., r * pq}, A n C -
{pr, 2pr, 3pr,..., q pr}, Bn C = {qr, 2qr, 3qr,..., p qr}, and An B n C ={pqr}. By definition
of 0,
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q5(n) = n -[n(A U B U C)]

= n-[n(A) + n(B) + n(C) -n(A n B)-n(A n C) -n(B n C) + n(A n B n C)]

by the inclusion/exclusion formula

= pqr -[qr+pr+pq -r- q -p+]

= pqr -qr -pr -pq +r + q + p-1

= (p- 1)(q- 1)(r -1)

41. This property is true. Proof: Let f: X -* Y be any function, and suppose A C X and B C X.

f(A U B) C f(A) U f(B): Let y E f (A U B). Then y = f (x) for some x E A U B. By
definition of union, x e A or x e B. So y = f (x) for some x e A (in which case y e f (A))
or y = f (x) for some x E B (in which case y e f (B)). Hence by definition of union, y C
f (A) U f (B).

f(A) U f(B) C f(A U B): Let y E f(A) U f(B). By definition of union, y C f(A) or
y G f (B). If y e f (A), then y = f (x) for some x G A. In this case, by definition of union,
x e A U B, and so y c f (A U B). If y e f (B), then y = f (x) for some x G B. In this case, by
definition of union, x E A U B, and so y e f (A U B). Hence, in either case, y e f (A U B).

43. This property is false. Counterexample: Let X = {1, 2,3}, Y = {a, b}, A = {1, 2}, B = {3},
and let f(1) = f(3) = a and f(2) = b. Then f(A) = {a,b}, f(B) = {a}, f(A -B) =

f({1,2}) = {a,b}, and f(A)- f(B) = {a,b} -{a} = {b}. So f(A -B) 74 f(A)- f(B).

45. This statement is true. Proof: Let f: X -* Y be any function, and suppose that C C Y and
D C Y. For any element x in X, by definition of inverse image and union,

x r f - 1 (C U D) z f (x) e C U D x f (x) G C or f (x) e D

z xcf- 1 (C) or ef-1(D) s xef- 1 (C)Uf- 1(D).

Hence f 1 (C U D) = f -'(C) U f 1 (D).

46. This statement is true. Proof: Let f: X -+ Y be any function, and suppose that C C Y and
D C Y. For any element x in X, by definition of inverse image and intersection,

eX 1f-(C nD) X f(x) e CnD 4 f(x) e C and f(x) e D

<*x G f 1 (C) and x e f - 1(D) re X f - 1 (C) n f 1 (D).

Hence f -(C n D) = f -(C) n f -'(D).

47. This statement is true. Proof: Let f: X -* Y be any function, and suppose that C C Y and
D C Y. For any element x in X, by definition of inverse image and set difference,

e f -(C- D) . f(x) C C-D f(x) c C and f(x)' D

X f -1(C) and x f - 1 (D) > x e f (C) -f- 1 (D).

Hence f -1(C- D) f -1 (C) -f - 1(D).

Section 7.2

4. True. Suppose x1 and X2 are elements of X such that f(Xi) = f(X2). Let y f(xi) = f(X2)-

According to the exercise statement, there is at most one element of X that has y as its image.
So XI = X2
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5. The statement in (b) is incorrect. The condition that every element in the domain of a
function have a corresponding image in the function's co-domain is part of the definition for
all functions, not just functions that are onto.

The statement in part (d) is just a formal way of expressing the statement in part (b). So it
is incorrect for the same reason that the statement in part (b) is incorrect.

7. b. G is not one-to-one because, for example, G(a) = y = G(b) and a :A b. G is not onto because
z is in Y but z y G(r) for any r in X.

8. a. H is not one-to-one because H(b) = y = H(c) and b # c. H is not onto because, for
example, x C Y and x -7 H(r) for any r C X.

b. K is one-to-one because no two elements of X are sent by K to the same element of Y. K
is not onto because z is in Y and z 54 K(r) for any r in X.

9. In each case below there are a number of correct answers.
b. C. d.

g h k

10. c. 3 . 2 * 1 = 6 [There are three choices for where to send the first element of the domain,
two choices for where to send the second element (since the function is one-to-one, the second
element cannot go to the same place as the first), and one choice for where to send the third,
which cannot go to the same place as either of the first two.]

d. 5 - 4. 3 = 60 [There are five choices for where to send the first element of the domain,
four choices for where to send the second element(since the function is one-to-one, the second
element cannot go to the same place as the first), and three choices for where to send the third,
which cannot go to the same place as either of the first two.]

e. The answer is n(n- 1)(n - 2) ... (n -m + 1) because there are n choices for where to send
the first element of the domain, n -1 for where to send the second (since it cannot go the
same place as the first), n -2 for where to send the third (since it cannot go the same place
as either of the first two), and so forth. At the time an image is chosen for the mth element
of the domain, the other m -1 elements of the domain have all been sent to m -1 distinct
elements of the co-domain, and so there are n -(m -1) = n -m + 1 choices for where to send
the mth element.

11. b. None.

c. 3 * 2 - 1 = 6 [For any such function, the three elements of the domain must go to three
different elements of the co-domain because otherwise the function will not be onto. Thus any
such function is also one-to-one, and so the number of such functions can be counted in the
same way as was shown in the answer to 10(c): there are three choices for where to send the
first element of the domain, two choices for where to send the second, and one choice for where
to send the third.]

e. Consider onto functions from a set with four elements to a set with three elements. Denote
the set of four elements by X = {a, b, c, d} and the set with three elements by Y = {uv, w}.
Divide the set of onto functions f from X to Y into two disjoint categories: (1) those that
send at least two elements of X to f (d), and (2) those that do not.

- . .
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An onto function in category 1 can be constructed by the following two-step operation: Step 1
is to choose an image for d. There are three ways to do this because there are three elements
of Y. Step 2 is to choose an onto function from X - {d} to Y. (This ensures that at least
two elements of X are sent to f(d).) By part (c), there are 6 such onto functions. Thus the
number of functions in category 1 is 3 6 = 18.

An onto function in category 2 can be constructed by the following two-step operation: Step 1
is to choose an image for d. (As above, there are three ways to do this.) Step 2 is to choose an
onto function from X - {d} to Y - {f(d)}. (This ensures that the only element of X that is
sent to f(d) is d.) By part (a), there are 6 such onto functions. Thus the number of functions
in category 2 is 3 6 = 18.

Therefore, by the addition rule, the number of onto functions from a set with four elements to
a set with three elements is 18 + 18 = 36.

f. Let X be a set with m elements, let Y be a set with n elements, where m > n > 1, and let x
be any particular element of X. Divide the set of onto functions f from X to Y into two disjoint
categories: (1) those for which '(f (x)) has more than one element (i.e., those functions that
send at least two elements of X to f(x)), and (2) those for which f 1 (f(x)) contains only
the single element x. Because these categories are non-overlapping, by the addition rule, the
number of onto functions from X to Y equals the sum of the numbers of onto functions in the
two categories.

Constructing an onto function in category 1 can be regarded as a two-step operation: Step 1
is to choose where to send x and Step 2 is to choose an onto function from X -{x} to Y. This
ensures that at least two elements are sent to f (x). Thus the number of such functions equals
the number of choices for where to send x times the number of onto functions from X {-x}
to Y, which equals n* Cm-Inn

Constructing an onto function in category 2 can also be regarded as a two-step operation:
Step 1 is to choose where to send x and Step 2 is to choose an onto function from X -{x} to
Y -{f(x)}. This ensures that only one element is sent to f(x). The number of such functions
equals the number of choices for where to send x times the number of onto functions from
X - {x} to Y - {f(x)}, which equals n Cml,n- 1

By the addition rule, Cm,n, the total number of onto functions from X to Y, satisfies the formula
Cen f nl Cm-ln + n Cmm-1,n-1.

13. a. (i) g is one-to-one: Suppose n1 and n2 are in Z and g(ni) = g(n2 ). By definition of g,
4n -5 = 4n 2 - 5. Adding 5 to both sides and dividing by 4 gives ni = n2.

(ii). g is not onto: Let m = 0. Then m is in Z but m 54 g(n) for any integer n. /For if
m = g(n) then 0 = 4n - 5, and so n = 5/4. But 5/4 is not in Z.]

b. G is onto: Suppose y is any element of R. Let x = (y + 5)/4. Then G(x) = G((y + 5)/4) =

4[(y + 5)/4] - 5 = (y + 5) - 5 = y [as was to be shown].

14. b. K is onto: Suppose y is any element of Rnonne9. Let x = V/y. Then X is a real number
because y > 0, and by definition of K, K(x) = K(,/;y) = (Vy-)2 = y.

18. f is one-to-one. Proof: Let x1 and x2 be any nonzero real numbers such that f(xi) = f(X2).

By -eiit- 3X2 Cross-multiplying gives (3 xi -1)x2 = (3x2 -1)x1, or,

equivalently, 3xX2 -X2 = 3x1X2 -x. Subtracting 3x1X2 from both sides gives -X =-x2,

and multiplying both sides by -1 gives xi = x2.

19. f is one-to-one. Proof: Let x1 and x2 be any real numbers other than -1, and suppose that

f(Xl) = f(X2). By definition off £ 1 2 1.Cross

(x2 + 1)(x -1), or, equivalently, X£X2 Xi + x2-1 = X1X2 -X2 +£X - 1. Adding 1 -XX2
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to both sides gives -X1 + 22 = -X2 + XI, or, equivalently, 2xI = 2X2. Dividing both sides by
2 gives x2 = £2.

20. b. h(364-98-1703) = 2. Since position 2 is occupied, the next position is examined. That also
is occupied, but the following position is free. So 364-98-1703 is placed in position 4.

c. h(283-09-0787) = 0. Since position 0 is occupied but the next position is free, 283-09-0787
is placed in position 1.

23. a. D is not one-to-one: Let s = 10 and let t = 1100. Then D(s) = 1 - 1 = 0 and D(t)
2 - 2 = 0. So D(s) = D(t) but s + t.

b. D is onto: Proof: Let m be any integer. In case m is positive, let s be the string
consisting of m I's and no O's. Then D(s) = m. In case m is 0, let s be the null string. Then
D(s) = 0 = m. In case m is negative, let s be the string consisting of no 1's and Iml O's. Then
D(s) =-Iml = m.

24. b. F is not onto: The number 4 is in Z but F(A) 7& 4 for any set A in .3({a, b, c}) because no
subset of {a, b, c} has four elements.

25. a. N is not one-to-one: Let s, = a and S2 = ab. Then N(si) = N(s 2 ) - 1 but sI 74 82.

26. Let S be the set of all strings of a's and b's.

a. C is one-to-one: Suppose s1 and 82 are strings in S and C(si) = C(s2 ). By definition of
C, this means that as, = as2 . But strings are just n-tuples written without parentheses or
commas. By definition of equality of ordered n-tuples, therefore, for each integer n > 0, the
nth character from the left in as1 equals the nth character from the left in as2 . It follows that
for each integer n > 0, the nth character from the left in s, equals the nth character from the
left in S2, and so s1 = S2-

b. C is not onto: The string b is in S but b 7$ as for any string a in S. Hence b 7# C(s) for
any s in S.

27. a. F is one-to-one: Suppose F(a, b) = F(c, d) for some ordered pairs (a, b) and (c, d) in
Z+ x Z+. By definition of F, 3 a5b 3c 5d. Thus, by the unique factorization theorem
(Theorem 3.3.3), a = b and c = d; in other words, (a, b) = (c, d).

b. G is one-to-one: Suppose G(a, b) = G(c, d) for some ordered pairs (a, b) and (c, d) in
Z+x Z+. By definition of G, 3 a6 b = 3c 6 d and so 3 a3b 2b 3 c2 d3 d, or, equivalently, 3a+b2b =

3c+d3 d. Thus, by the unique factorization theorem (Theorem 3.3.3), a + b = c + d and b = d.
Solving these equations gives a = b and c = d; in other words, (a, b) = (c, d).

28. b. Let X log1 6 9 and y = 1og4 3. By definition of logarithm, 16 = 9 and 4Y = 3. Since
16 = 42 and 9 = 32, substitution gives (4 2)x = 9 = 32 = (4Y) 2 . So by one of the laws of
exponents (property (7.2.2)), 42x = 42

y, Hence by property (7.2.4), 2x = 2y, and thus x = y.
Therefore the answer is yes.

30. Suppose b, x, and y are any positive real numbers with b $ 1. Let u = logb(x) and v = logb(y).
By definition of logarithm, x = bU and y = bV. Then x . y = bU - b= bu+v by property
(7.2.1). Applying the definition of logarithm to the extreme parts of this last equation gives
logb(X . y) = u + v = logb(X) + logb(Y)-

33. When f: R -* R and 9: R -* R are both onto, it need not be the case that f + g is onto.
Counterexample: Let f: R -*R and g: R -* R be defined by f (z) = and g(x) = -x for all
z E R. Then both f and g are onto, but (f + g)(x) = f (x) + g(x) = + (-x) = 0 for all x,
and so f + g is not onto.
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35. If f: R -* R is onto and c is any nonzero real number, then c f is also onto.

Proof: Suppose f: R - R is onto and c is any nonzero real number. Let y E R. Since
c = 0, y/c is a real number, and since f is onto, there is an x e R with f(x) = y/c. Then
y = c f(x) = (c f)(x). So c f is onto.

F-1
37.

41. The answer to exercise 13(b) shows that G is onto. It is also the case that G is one-to-one.
To see why this is so, suppose G(xi) = G(x2 ) for some xi and x2 in R. [We must show that
x1 = X2.1 Then, by definition of G, 4x1 - 5 = 4x2 -5. Add 5 to both sides of this equation
and divide both sides by 4 to obtain X1 = X2, [as was to be shown]. Note also that given
any real number y, we may let x = (y + 5)/4. Then x is a real number, and by definition
of G, G(x) = G((y + 5)/4) = 4 ((y + 5)/4) -5 = (y + 5) -5 = y. Hence for all y G R,
G1 (y) = (y + 5)/4.

42. The answer to exercise 14b shows that K is onto. It is also the case that K is one-to-one. To see
why this is so, suppose x1 and x2 are any nonnegative real numbers such that K(xi) = K(X2 ).
[We must show that Xi = X2.1 Then by definition of K, xl2 = x2. But each nonnegative real
number has a unique nonnegative square root. So since both xl and x2 are nonnegative square
roots of the same number, xi = X2 [as was to be shown]. Therefore K is both one-to-one and
onto, and thus K is a one-to-one correspondence. For all y C Rnonneg, K- 1(y) = V/y because
K (Vfy) = (V/y-)2 = y.

45. Because D is not one-to-one, D is not a one-to-one correspondence.

46. F is neither one-to-one nor onto. Hence it is not a one-to-one correspondence.

47. N is neither one-to-one nor onto. Hence it is not a one-to-one correspondence.

49. This function is not a one-to-one correspondence because it is not one-to-one.

50. By the result of exercise 18, f is one-to-one. f is also onto for the following reason. Given any

real number y other than 3, let x =- . Then x is a real number (because y 7# 3) and
3 - y

= 1 3 ( ) -1
f(£)= f (3 y) 1

3 (39y)
3

-y

1 (3
(3

y) - 3 -(3-y) - 3

y) 1

This calculation also shows that f -1(y) = 1 for all real numbers y 7# 3.

3 + y =y.
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51. By the result of exercise 19, f is one-to-one. f is also onto for the following reason. Given any

real number y other than 1, let x = 1 +_. Then x is a real number (because y $ 1) and
y

Px) =f Y l (Y+0+)±i (Y+0 )+I (y- 1) _ y+±+(y 1) y l+y-1

y 1' 1Y~l l (Y+0)I1 (y 1) y~ l (y 1) y+l-y+l-

This calculation also shows that f 1 (y) = 1 for all real numbers y 7 1.
y -1

52. a. Let X = {JX,x 2, ... , In} and let S be the set of all strings of 0's and I's that have length
n. Define a function F: 9j(X) -- S as follows: for each A in ?9(X), F(A) = the string of 0's
and I's for which the character in the ith position is a 1 if xi E A and the character in the ith
position is a 0 if xi V A. For instance, if n = 10 and A = {X2 , X4, X9}, then F(A) = 0101000010;
the 1's in positions 2, 4, and 9 indicate that x2,x4 , and xg are the elements in A.

F is one-to-one: Suppose F(A1j F(A2 ) for some sets Al and A2 in 9P(X). By definition
of equality of strings, for each integer i = 1, 2, ... , n, the ith character of F(A1 ) is a 1 if, and
only if, the ith character of F(A2) is a 1. By definition of F, this implies that xi E A1 if, and
only if, xi E A2. It follows that every element of A1 is in A2 and every element of A2 is in A1.
Consequently, A1 = A2 by definition of set equality.

F is onto: Suppose y is a string of 0's and I's of length n. Define a subset A of X as follows:
Let A consist of the set of all xi in X for which the character in position i of y is a 1; otherwise
x V A. (For instance, if n = 10 and y = 0001110100, then A = {X4,X5 ,X6 ,X8} because there
are 1's in positions 4, 5, 6, and 8 and 0's in all other positions.) Then F(A) = y by definition
of F.

Since F is one-to-one and onto, F is a one-to-one correspondence.

53. Algorithm 7.2.1 Checking Whether a Function is One-to-One
/For a given function F with domain X = {a[1],a[2],...,a[n]}, this algorithm discovers

whether or not F is one-to-one. Initially, answer is set equal to "one-to-one". Then the values
of F(a[i]) and F(a[j]) are systematically compared for indices i and j with 1 < i < j < n. If
at any point it is found that F(a[i]) = F(a[j]) and a[i] 7& a[j], then F is not one-to-one, and
so answer is set equal to "not one-to-one" and execution ceases. If after all possible values of
i and j have been examined, the value of answer is still "one-to-one", then F is one-to-one.]

Input: n [a positive integers, a[1],a[2],. . .,a[n] /a one-dimensional array representing the set
X], F / a function with domain X]

Algorithm Body:
answer:= "one-to-one"

i := 1

while (i < n -1 and answer = "one-to-one")

j := i +1

while (j < n and answer = "one-to-one")

if (F(a[i]) = F(a[j]) and a[i] 54 a[j]) then answer:= "not one-to-one"

j := j1

end while

i := i + 1

end while
Output: answer [a string]
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54. Algorithm 7.2.2 Checking Whether a Function is Onto

/For a given function F with domain X = {a[1], a[2],... , a[n]} and co-domain Y = {bLl], b[2],
. . ., b[m]}, this algorithm discovers whether or not F is onto. Initially, answer is set equal to
"onto", and then successive elements of Y are considered. For each such element, b[i], a search
is made through elements of the domain to determine if any is sent to b[i]. If not, the value
of answer is changed to "not onto" and execution of the algorithm ceases. If so, the next
successive element of Y is considered. If all elements of Y have been considered and the value
of answer has not been changed from its initial value, then F is onto.]

Input: n / a positive integer], a[1], a[2], ... , a[n] [a one-dimensional array representing the set
Xj, m [a positive integer], b[1], b[2],. . ., b[m] [a one-dimensional array representing the set Y],
F [a function with domain X]

Algorithm Body:

answer := "onto"

i := 1

while (i < m and answer= "onto")

j := 1

found := "no"

while (j < n and found "no")

if F(a[j]) = b[i] then found := "yes"

j:= j+I

end while

if found = "no" then answer:= "not onto"

i := i +1

end while

Output: answer [a string]

Section 7.3

2. a. No. For example, thirteen hearts could be selected: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A. No two
of these are of the same denomination.

b. Yes. Let X be the set consisting of the 20 selected cards, and let Y be the 13 possible
denominations of cards. Define a function D from X (the pigeons) to Y (the pigeonholes) by
specifying that for all x in X, D(x) = the denomination of x. Now X has 20 elements and Y
has 13 and 20 > 13. So by the pigeonhole principle, D is not one-to-one. Hence D(xi) = D(x2 )
for some cards x, and x2 with x1 74 x2 . Then x1 and x2 are two distinct cards out of the 20
selected cards that have the same denomination.

4. Yes. Let X be the set of the 700 people and Y the set of all of the possible ordered pairs of
first and last initials, and consider the function I from X (the pigeons) to Y (the pigeonholes)
defined by specifying that I(x) = the ordered pair of initials of person x. By the multiplication
rule, n(Y), the number of all of the possible ordered pairs of initials, is 26 . 26 = 676. By the
pigeonhole principle, since 700 > 676, I is not one-to-one, and so at least two people must
have the same first and last initials.

6. a. Yes. Let X be the set of seven integers and Y the set of all possible remainders obtained
through division by 6, and consider the function R from X (the pigeons) to Y (the pigeonholes)
defined by the rule: R(n) = n mod 6 (= the remainder obtained by the integer division of
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n by 6). Now X has 7 elements and Y has 6 elements (0, 1, 2, 3, 4, and 5). Hence by the
pigeonhole principle, R is not one-to-one: R(ni) = R(n2) for some integers nj and n2 with
n$ 54 n2. But this means that nj and n2 have the same remainder when divided by 6.

b. No. Consider the set {1, 2, 3, 4, 5, 6, 7}. This set has seven elements no two of which have
the same remainder when divided by 8.

7. Yes. Let Y be the set of all pairs of integers from S that add up to 15. There are 5 elements
in Y -{3, 12}, {4, 11}, {5, 10}, {6, 9}, {7, 8} -and each integer in S occurs in exactly one such
pair. Let X be the set of six integers chosen from S, and consider the function from X to
Y defined by the rule: P(x) = the pair to which x belongs. Since X has 6 elements and
Y has 5 elements and 6 > 5, then by the pigeonhole principle, P is not one-to-one. Thus
P(xI) = P(X2) for some integers xi and x2 in X with x1 # x2. This means that xi and x2
are distinct integers in the same pair, which implies that xI + x2 = 15.

8. No. For instance, the five integers 1, 2, 3, 4, 5 could be chosen. The sum of any two of these
is less than 10 and so no two have a sum of 10.

11. Yes. There are n odd integers in the set {1, 2,.. ., 2n}, namely, 1 (= 2 1 -1), 3 (= 2 2 -1),
..., 2n -1 (= 2 n -1). So the maximum number of odd integers that can be chosen is n.
Thus if n + 1 integers are chosen, at least one of them must be even.

13. Seven. Since there are only six pairs of boots in the pile, if at most one boot is chosen from
each pair, the maximum number of boots chosen would be six. It follows that if seven boots
are chosen, at least two must be from the same pair.

15. There are n + 1 even integers from 0 to 2n inclusive: 0 (= 2 0), 2 (= 2- 1), 4 (= 2 . 2),... , 2n (=
2. n). So a maximum of n + 1 even integers can be chosen. Thus if at least n + 2 integers
are chosen, one is sure to be odd. Similarly, there are n odd integers from 0 to 2n inclusive,
namelyl (= 2 -1),3 (= 2 21), .. .,2n- (= 2 n -1). It follows that if at least n + 1
integers are chosen, one is sure to be even. (An alternative way to reach the second conclusion
is to note that there are 2n + 1 integers from 0 to 2n inclusive. Because n + 1 of them are
even, the number of odd integers is (2n + 1) -(n + 1) = n.)

16. There are 20 integers from 1 to 100 inclusive that are divisible by 5: 5 (= 5.1), 10 (= 5-2), 15
5 . 3),. .. ,100 (= 5 . 20). Hence there are 80 that are not divisible by 5, and so it is necessary
to pick at least 81 in order to be sure to get one that is divisible by 5.

18. There are 15 distinct remainders that can be obtained through integer division by 15 (0, 1, 2,
... 14). Hence at least 16 integers must be chosen in order to be sure that at least two have
the same remainder when divided by 15.

19. Each number from 100 through 999 contains at least one of the nine digits 1, 2, 3, 4, 5, 6, 7,
8, or 9. Therefore, if ten such numbers are selected, at least two of them must have a digit in
common. In fact, at least two must have a first digit in common because there are only nine
possible first digits.

21. The length of the repeating section of the decimal representation of 5/20483 is less than or
equal to the number of possible remainders that can be obtained when a number is divided by
20,483, , namely 20,483. The reason is that in the long-division process of dividing 5.0000 ...
by 20,483, either some remainder is 0 and the decimal expansion terminates (in which case the
length of the repeating section is 0) or, at some point within the first 20,483 successive divisions
in the long-division process, a nonzero remainder is repeated. At that point the digits in the
developing decimal expansion begin to repeat because the sequence of successive remainders
repeats those previously obtained.
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23. Irrational. The decimal expansion of a rational number must either terminate or repeat,
and the decimal expansion of this number does neither because the numbers of 5's and 6's
continually increase.

27. Yes. Let X be the set of 2,000 people (the pigeons) and Y the set of all 366 possible birthdays
(the pigeonholes). Define a function B: X -* Y by specifying that B(x) = x's birthday. Now
2000 > 4. 366 = 1464, and so by the generalized pigeonhole principle, there must be some
birthday y such that B- 1 (y) has at least 4 + 1 = 5 elements. Hence at least 5 people must
share the same birthday.

28. Yes. This follows from the generalized pigeonhole principle with 500 pigeons (the lines of code),
17 pigeonholes (the days), and k = 29, using the fact that 500 > 29. 17 = 493.

30. Consider the maximum number of pennies that can be chosen without getting at least five
from the same year. This maximum, which is 12, is obtained when four pennies are chosen
from each of the three years. Hence at least thirteen pennies must be chosen to be sure of
getting at least five from the same year.

31. Proof (by contradiction): Suppose that two or fewer secretaries are each assigned to three or
more executives. Then the remaining secretaries are each assigned to two or fewer executives.
Since the maximum number of executives to which any secretary can be assigned is four, the
maximum number of executives that can be served by the secretaries occurs when 2 secretaries
(the maximum possible) are each assigned to 4 executives (the maximum possible) and the
remaining 3 secretaries are each assigned to 2 executives (the maximum possible for that
group). The maximum number of executives that can be served by the secretaries is, therefore,
2 * 4 + 3 * 2 = 14. Thus the five secretaries are assigned to at most 14 executives. It follows
that at least one executive does not have a secretary, which contradicts the fact that each
executive is assigned a secretary. Consequently, the supposition that two or fewer secretaries
are assigned to three or more executives is false [and so at least three secretaries are assigned
to three or more executives].

Proof (direct with thanks to E. W. Dijkstra): Let k be the number of secretaries assigned
to three or more executives. Because no secretary is assigned to more than four executives,
these secretaries are assigned to at most 4k executives. Each of the remaining 5 -k secretaries
is assigned to at most two executives, and so together they are assigned to at most 2(5-
k) = 10 -2k executives. Therefore the number of executives assigned secretaries is at most
4k + (10 -2k) = 10 + 2k. Since 15 executives are assigned secretaries, 15 < 10 + 2k, or A > 5/2.
So, since k is an integer, k > 3. Hence at least three secretaries are assigned to three or more
executives.

32. Proof: Let S be the set of all possible sums of elements of subsets of A and define a function
F from 9(A) to S as follows: for each subset X of A, let F(X) be the sum of the elements
of X. By Theorem 5.3.1, 9(A) has 26 = 64 elements. Moreover, because A has six elements
each of which is less than thirteen, the maximum possible sum of elements of any subset of A
is 57 (= 12 + 11 + 10 + 9 + 8 + 7). The minimum possible sum of elements of any subset of
A is 21 (= 1 + 2 + ... + 6). Hence S has 37 elements (the numbers from 21 to 57 inclusive).
Since 64 > 37, the pigeonhole principle guarantees that F is not one-to-one. Thus there exist
distinct subsets SI and S2 of S such that F(S1 ) = F(S2 ), which implies that the elements of
S add up to the same sum as the elements of S2 .

Additional Note: In fact, it can be shown that it is always possible to find disjoint subsets of
S with the same sum. A proof is given at the end of the answer to exercise 33.

33. Proof: Let T be the set of all possible sums of elements of subsets of S and define a function
F from 99(S) to T as follows: for each subset X of A, let F(X) be the sum of the elements of
X. By Theorem 5.3.1, Y(S) has 210 = 1024 elements. Moreover, because S has 10 elements
each of which is less than 50, the maximum possible sum of elements of any subset of S is
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41 + 42 + *-. + 50 = 455. The minimum possible sum of elements of any subset of S is
1 + 2 + + 10 = 55. Hence T has 455 -55 + 1 = 401 elements (the numbers from 55 to 455
inclusive). Because 1024 > 401, the pigeonhole principle guarantees that F is not one-to-one.
Thus there exist distinct subsets SI and S2 of S such that F(S1 ) = F(S2), which implies that
the elements of S1 add up to the same sum as the elements of S2.

Additional Note: In fact, it can be shown that it is always possible to find disjoint subsets of S
with the same sum. To see why this is true, consider again the sets S1 and S2 found in the proof
given above. Then Si 54 S2 and F(S1 ) = F(S2 ). By definition of F, F(S 1 -S2) + F(S1 n S2) -

the sum of the elements in SI - S2 plus the sum of the elements in SI n S2. But SI - S2
and SI n S2 are disjoint and their union is SI. So F(Si -S 2) + F(S1 n S2 ) = F(S1 ). By
the same reasoning, F(S2- Si) + F(S1 n S2) = F(S2 ). Since F(S1 ) = F(S2 ), we have that
F(S1 -S 2 ) = F(S 1 ) -F(S 1 n S2) = F(S 2 ) -F(S 1 n S2) = F(S 2 - Si). Hence the elements
in Si - S2 add up to the same sum as the elements in S2 - S. But Si - S2 and S2 -S are
disjoint because S -S2 contains no elements of S2 and S2- Si contains no elements of SI.

34. Proof: Let X be the set consisting of the given 52 positive integers and let Y be the set
containing the following elements: {00}, {50}, {01, 99}, {02, 98}, {03, 97},.. ., {49, 51}. Define
a function F from X to Y by the rule F(x) = the set containing the right-most two digits of
x. Now X has 52 elements and Y has 51 elements. So by the pigeonhole principle, F is not
one-to-one: there exist elements xLi and X2 in X such that F(x 1 ) = F(x2 ) and xLi : X2.

Case 1 (xi and X2 have the same right-most two digits): In this case that right-most two digits
of Xi - x 2 are 00, and so xi - X2 is divisible by 100.

Case 2 (xi and X2 do not have the same right-most two digits): In this case since F(x1) = F(x2 )
and xLi : X2, F(xl) = F(X2 ) must be one of the two-element sets in Y, and since x£ and X2 do
not have the same right-most two digits, the last two digits of x. must be one of the numbers
in this set and the last two digits of X2 must be the other number in this set. But the numbers
in each of the two-element sets of Y add up to 100. Consequently the sum of the last two
digits of xi and X2 add up to 100, which implies that Xi + X2 is divisible by 100.

35. Proof: Suppose that 101 integers are chosen from 1 to 200 inclusive. Call them X1, X2 ,... ,X1ol.

Represent each of these integers in the form xi = 2ki ai where ai is the uniquely determined odd
integer obtained by dividing xi by the highest possible power of 2. Because each xi satisfies
the condition 1 < xi < 200, each ai satisfies the condition 1 < ai < 199. Define a function
F from X = {xI,X2,... ,iX1o0} to the set Y of all odd integers from 1 to 199 inclusive by the
rule F(xi) = that odd integer ai such that xi equals 2 ki ai. Now X has 101 elements and Y
has 100 elements (1 = 21 -1, 3 = 2.2 -1, 5 = 2 3-1, ... , 199 = 2. 100 -1). Hence by the
pigeonhole principle, F is not one-to-one: F(xi) = F(xj) and xi 7& xj. But xi = 2ki ai and
xj = 2kj aj and F(xi) = ai and F(xj) = aj. Thus xi = 2ki-ai and xj = 2 kj -ai. If kj > ki,
then xi = 2 kj a= 2k = -ki .2ki ai = 2 kj -ki xi, and so xj is divisible by xi. Similarly, if kj < ki,
xi is divisible by xj. Thus in either case, one of the numbers is divisible by another.

36. a. Proof: Suppose a1,a 2 ,... .,a,, is a sequence of n integers none of which is divisible by n.
Define a function F from X = {al,a 2, .. ,a,,} to Y = {1, 2,...,'n -1} by the rule F(x) =

x mod n (the remainder obtained through integer division of x by n). Since no element of X
is divisible by n, F is well-defined. Now X has n elements and Y has n - 1 elements, and so
by the pigeonhole principle F(ai) = F(aj) for some elements ai and aj in X with ai ,# aj. By
definition of F, both ai and aj have the same remainder when divided by n, and so ai -aj is
divisible by n. [More formally, by the quotient-remainder theorem we can write ai = nqi + ri
and aj nqj + rj where 0 < ri < n and 0 < rj < n, and since F(ai) = F(aj), ri = rj. Thus
ai - aj - (nqi + ri) - (nqj + rj) = n(qi - qj) + (ri - r.) = n(qi - qj) because ri = rj. So by
definition of divisibility, ai - aj is divisible by n.]

b. Proof: Suppose X1,X2,. .. ,Xn is a sequence of n integers. For each k = 1,2,...,n, let
ak = Xi + X2 + . . . + Xk. If some ak is divisible by n, the problem is solved: the sum of the
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numbers in the consecutive subsequence X1, X2 ,. .. , xk is divisible by n. If no ak is divisible
by n, then a1, a2 , . . . , a satisfies the hypothesis of part a, and so aj - ai is divisible by n for
some integers i and j with j > i. But aj -ai = xi+1 + xi+2 + ... + xj. Thus the sum of the
numbers in the consecutive subsequence Xi+, Xi+2,. . . , Xj is divisible by n.

37. Let a,, a 2 ,... , an2+ be any sequence of n2 + 1 distinct real numbers, and suppose that
a,, a 2 . .. , an2+ does not contain a strictly increasing or a strictly decreasing subsequence
of length at least n + 1. That is, suppose that every subsequence that is strictly increasing or
strictly decreasing has length at most n. Let S be the set of ordered pairs of integers (i, d)
where 1 < i < n and 1 < d < n. Then we may define F: {a,, a 2 ... , an2+1} - S as follows:

F(ak) = (ik, dk)

where
ik is the length of the longest increasing subsequence starting at ak,

and
dk is the length of the longest decreasing subsequence starting at ak.

Since there are n2 + 1 elements in {a,, a 2,. .. , a,2+1} and n2 elements in S, by the pigeonhole
principle F is not one-to-one. So F(ak) = F(am) for some integers k and m with k + m.
Without loss of generality, we may assume that k < m. It follows by definition of F that ik im

and dk = dm. Now if ak < am, then the longest strictly increasing subsequence starting at ak

is at least one more than the longest strictly increasing subsequence starting at am (because ak

can be added onto the front of any increasing subsequence that starts at am). So, in this case,
ik > im, which is a contradiction. Similarly, if ak > am, then the longest strictly decreasing
subsequence starting at ak is at least one more than the longest strictly decreasing subsequence
starting at am (because ak can be added onto the front of any decreasing subsequence that
starts at a,). So, in this case, dk > dm, which is a contradiction. Hence ak 5t a, and aA 4 a,
and so ak = am. But this also is impossible because all the numbers in {ai,a2 ,. .. ,an2+1} are
distinct. Thus the supposition is false, and so {ai, a2, ... , an2+1 } contains a strictly increasing
or a strictly decreasing subsequence of length at least n + 1.

38. Let S be any set consisting entirely of integers from 1 through 100, and suppose that no integer
in S divides any other integer in S. Factor out the highest power of 2 to write each integer in
S as 2k.m, where m is an odd integer. Now consider any two such integers in S, say 2' -a and
2'-b. Observe that a 54 b. The reason is that if a = b, then whichever integer contains the
fewer number of factors of 2 divides the other integer. (For example, 22 .3 1 24.3.) Thus there
can be no more integers in S than there are distinct odd integers from 1 through 100, namely
50. Furthermore, it is possible to find a set T of 50 integers from 1 through 100 no one of
which divides any other. For instance, T = 51, 52, 53,.. ., 99,100. Hence the largest number
of elements that a set of integers from 1 through 100 can have so that no one element in the
set is divisible by any other is 50.

39. Algorithm 7.3.1 Finding Pigeons in the Same Pigeonhole

[For a given function F with domain X = {x[1], x[2],. .. , x[n]} and co-domain Y = {y[l], y[2],
.y. I y[m]} with n > m, this algorithm finds elements a and b so that F(a) = F(b) and a 7& b.
The existence of such elements is guaranteed by the pigeonhole principle because n > rn. Ini-
tially, the variable done is set equal to "no". Then the values of F(x[i]) and F(x[j]) are
systematically compared for indices i and j with 1 < i < j < n. When it is found that
F(x[i]) = F(x[j]) and x[i] :A x[j], a is set equal to x[i], b is set equal to x[j], done is set equal
to "yes", and execution ceases.]

Input: n / a positive integer], m [a positive integer with m < n], x[1],x[2],. .. ,x[n] fa one-
dimensional array representing the set X], y[l], y[2],... , y[m] [a one-dimensional array repre-
senting the set Y], F [a function from X to Y]

Algorithm Body:
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done := "no"

i := 1

while (i < n - 1 and done = "no")

j := i+1

while (j < n and done "no")

if (F(x[i]) = F(x[j]) and x[i] 74 x[j])

then do a := x[i], b := x[j], done : "yes" end do

j := j + 1

end while

i :=i+1

end while

Output: a, b [positive integers]

Section 7.4

2.

x gof x x fxg X

Then f o g 0 g o f because, for instance, (g o f )(1) = 1 whereas (f o g)(1) = 3.

4. G o F is defined by (G o F)(x) =x, for all x e R, because for any real number x, (G o F)(x) =

G(F(x)) = G(x 5) = (X
5

)
1 / 5  

X1 = x. F o G is defined by (F o G)(x) = x, for all x C R.
because for any real number x, (F o G)(x) F(G(x)) = F(x /5) = (x1 /5 )5 = X1 = x. Thus
GoF = FoG.

6. G o F is defined by (G o F)(x) = [xj, for all real numbers x, because for any real number x,

(G o F)(x) = G(F(x)) = G(3x) =xj [.=j. F o G is defined by (F o G)(n) 3 [xJ, for

all real numbers x, because for any real number x, (FoG)(x) = F(G(x)) = F(Xj) = 3. [].

Then GoF # FoG because, for instance, (GoF)(1) = L1j = 1, whereas (FoG)(1) = 3. [J -
3.0=0.

8. (Go F)(2) = G(22 /3) = G(4/3) = [4/3j = 1

(G o F)(-3) = G((-3)2 /3) = G(3) = L3J =3

(G o F)(5) = G(52 /3) = G(25/3) = L25/3J = 8

/ -
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10. For each x in R+, (G o G-1 )(x) = G(G-1(x)) = G(x/i) = (\/X)2 x because x > 0. Hence
G o G-1 = iR+ by definition of equality of functions.

For each x in R+, (G- 1 o G)(x) = G- 1(G(x)) = G(x2 ) = Vx - x because x > 0. Hence
G-1 o G = iR+ by definition of equality of functions.

11. Since H = H-1, for all real numbers x 7 1,

(H-' o H)(x) - (H o H- 1)(x) = H(x+I)

(X+) -1 1 -(1x)

(x + 1) + (x -1) 2x
(x + 1) -(x -1) 2

12. b. For all positive real numbers b and x, logb x is the exponent to which b must be raised to
obtain x. So if b is raised to this exponent, x is obtained. In other words, blogb X = x.

13. Proof: Suppose f is a function from a set X to a set Y. For each x in X, (iy o f)(x)
iy(f(x)) = f(x) by definition of iy. Hence iy o f = f.

14. Proof: Suppose f: X -* Y is a one-to-one and onto function with inverse function f 1: Y
X. Then for all y E Y, (f o f - 1 )(y) = f(f 1 (y)) = f (that element x in X for which f(x)
equals y) = y = iy(y). Hence f of 1 = iy.

15. b. z/2 = t/2 c. f(xl) = f(x 2 )

17. No. Counterexample: For the functions f and g defined by the arrow diagrams below, g o f is
onto but f is not onto.

X f Y g Z

18. Yes. Proof: Suppose f: X -* Y and g: Y -- Z are functions and g o f: X - Z is one-to-one.
To show that f is one-to-one, suppose xi and x2 are in X and f(xi) = f(x2). [We must show
that xi = X2.] Then g(f(xi))= g(f(x2 )), and so gof(x1 ) gof(x2 ). But gof is one-to-one.
Hence x1 = X2 fas was to be shown].

19. Yes. Proof: Suppose f: X -* Y and g: Y -* Z are functions and g o f: X -* Z is onto. To
show that g is onto, let z E Z. [We must show that z = g(y) for some y E Y.] Since g o f is
onto, there is an x in X such that go f(x) = z. But g o f(x) = g(f(x)); so if y = f(x) then
g(y) = z. Hence there is an element y in Y such that g(y) = z [as was to be shown].

20. Yes. Proof: Suppose f: W -* X, g: X -- Y, and h: Y - Z are functions. For each
w e W, [ho (go f)](w) = h((g o f)(w)) = h(g(f(w))) = ho g(f(w)) = [(hog) o f](w). Hence
h o (g o f) = (h o g) o f by definition of equality of functions.
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22. False. Counterexample: Define f, g, and h from Z to Z as follows: for all integers n, f(n) =
2 [n] , g(n) = n, and h(n) = 2n. Then h is one-to-one (by the answer to exercise 12a from

Section 7.2). Also (f o h)(n) = f(h(n)) = f(2n) = 2 2J = 2 En] = 2n, and (g o h)(n)

g(h(n)) = g(2n) = 2n. But f(1) = 2 [J = 2 0 = 0, whereas g(1) = 1. So f 5 g.

24. g o f: R R is defined by (g o f)(x) =g(f (x)) = g(x + 3) -(x + 3) for all x e R.

Since z =-(x + 3) if, and only if, x z - 3, (g o f)1 R R is defined by (g o f)1 (z)
-z- 3forall z cR.

Since z =-y if, and only if, y = -z, g-1: R -- R is defined by g- 1(z) = -z for all z E R.

Since y = x + 3 if, and only if, x = y - 3, f 1: R- R is defined by f 1 (y) = y - 3.
f - 1og- 1 : R R is defined by (f-1 og- 1)(z) = f 1(g-1 (z)) f -(-z) (-z) 3 3 3 3

for all z E R.

By the above and the definition of equality of functions, (g o f) f -1 g-1

25. Proof: Suppose f: X - Y and g: Y - X are functions such that g o f = ix and f o g = iy.
Since both ix and iy are one-to-one and onto, by the results of exercises 18 and 19, both f
and g are one-to-one and onto, and so by Theorem 7.2.1 and the definition of inverse function,
both have inverse functions. By Theorem 7.4.2(b), f o f -1 = iy. Since f o g = iy also,
fof -1 = f og, and so for all y C Y, (f of - 1 )(y) = (f og)(y). This implies that for all y C Y,
f(f 1 (y)) = f(g(y)). Since f is one-to-one, it follows that f-'(y) = g(y) for all y E Y, and so
by definition of equality of functions f = g.

26. Proof: Suppose f: X -- Y and g: Y Z are functions that are both one-to-one and onto.
By Theorems 7.4.3 and 7.4.4, g o f is one-to-one and onto, and so by Theorem 7.2.1 and the
definition of inverse function, g o f has an inverse function (g o f)-1: Z - X. To show that
(g o f)-' = f c o g 1, let z be any element of Z and let x = (g o f) -(z). By definition of
inverse function, (gof)-1 (z) = x if, and only if, gof(x) = z. Hence z gof(x) = g(f (x)). Let
f (x) = y. Then z = g(y). Now since f and g are one-to-one and onto, by Theorem 7.2.1 and
the definition of inverse function, f and g have inverse functions f 1: Y X and g 1 : Z -*

Y. Then g- 1(z) = y because g(y) = z and f- 1 (y) = x because f(x) y. Consequently,
f -1 -g 1 (z) f - 1 (g- (z)) = f 1 (y) = x. But then (g o f)-1 (z) = x = (f 1 g1)(z)
Since the choice of z was arbitrary, (g o f)- 1 (z) = x = (f -1 o g -1)(z) for all z C Z, and so
(g o f)-' = f- o g -1 by definition of equality of functions.

28. True. Proof: Suppose f: X -, Y is any function, suppose A is any subset of X, and suppose
x 0 is any element of A. /We must show that xo E f -1 (f(A)).] Then f(xo) E f(A) by definition
of f(A). Now according to the definition of inverse image, fl(f(A)) = {x E A l f(x) E f(A)}.
So, since xo C A and f (xo) E f(A), then xo c f 1 (f(A)) [as was to be shown]. Hence, by
definition of subset, A C f 1 (f(A)).

30. False. One counterexample among many: Let X Y = C = {1, 2}, and define f : X - Y
by specifying that f(1) = f(2) = 1. Then f(f 1 (C)) = f({1,2}) {1}. So C Z f(f '(C)
because {1,2} 2 {1}.

31. True. Proof: Let X, Y, and Z be any sets, let f: X Y and g: Y -* Z be any functions,
and let E be any subset of Z.

1. Proof that (g of) - 1(E) C f -1 (g- 1 (E)): Suppose x C (g of) - 1(E). By definition of inverse
image (for g o f), (g o f)(x) E E, and by definition of composition of functions, g(f(x)) C E.
Then by definition of inverse image (for g), f (x) C g- (E), and by definition of inverse image
(for f), x C f-1 (g- '(E)). So by definition of subset, (g o f) -'(E) C f 1 (g-1 (E)).
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2. Proof thatf-'(g-1 (E)) C (gof)- 1 (E): Suppose x e f- (g- (E)). By definition of inverse
image (for f), f(x) G g-1 (E), and by definition of inverse image (for g), g(f(x)) G E. So by
definition of composition of functions, (g o f) (x) C E. Then by definition of inverse image (for
g o f), x C (g o f)- (E). So by definition of subset, f 1 (g- (E)) C (g o f)- 1 (E).

Therefore, since each set is a subset of the other, the two sets are equal.

Alternative proof (using the logic of if-and-only-if statements): Let X, Y, and Z be any
sets, let f : X Y and g : Y -4 Z be any functions, and let E be any subset of Z.
x E (gof)'(E) (go f)(x) E E /by definition of inverse image for gof] • g(f(x)) G E [by
definition of composition of functions] X f(x) e g- (E) /by definition of inverse image for g]
A> x E f -(g-'(E)) /by definition of inverse image for f]. So by definition of set equality,
(g o ) '(E) = f '(g '(E)).

Section 7.5

4. Proof: Define a function f: 0 - 2Z as follows: f(n) = n -1 for all odd integers n. Observe
that since n is odd, n = 2k + 1 for some integer k, and so n -1 = 2k, which is even. Thus f is
well-defined. Now f is one-to-one because for all odd integers ni and n2 , if f(ni) = f(712 ) then
n1 -I = n2 -1 and hence n1 = n2 . Moreover f is onto because given any even integer m, then
m = 2k for some integer k, and so m+1 = 2k+1, which is odd. But f(m+1) = (m+1) -1 = m
by definition of f. Thus, because there is a function f: 0 -* 2Z that is one-to-one and onto,
o has the same cardinality as 2Z.

5. Define f: 2Z -4 25Z by the rule f(n) = 25(n/2) for all even integers n. The function f is
one-to-one because for any even integers n1 and n2, if f(n 1 ) = f(n 2 ) then 25(ni/2) = 25(n 2 /2)
and so /by multiplying both sides by 2 and dividing by 25] n, = n2 . Also f is onto because if
m is any element in 25Z, then m = 25k for some integer k. But then 2k is an even integer
and f(2k) = 25(2k/2) = 25k = m by definition of f. So since there is a function f: 2Z -* 25Z
that is one-to-one and onto, 2Z has the same cardinality as 25Z.

6. The function I: 2Z -4 Z is defined as follows: I(n) = n for all even integers n. I is clearly
one-to-one because if 1(n,) = I(n 2 ) then by definition of I, na = n2. But I is not onto because
the range of I consists only of even integers. In other words, if m is any odd integer, then
1(n) 7& m for any even integer n.

The function J: Z -* 2Z is defined as follows J(n) = 2 [n/2j for all integers n. Then
J is onto because for any even integer m, m = 2k for some integer k. Let n = 2k. Then
J(n) J(2k) 2 [2k/2j = 2 [kj = 2k = m. But J is not one-to-one because, for example,
J(2) 2 [2/2] = 2* 1 = 2 and J(3) = 2 [3/2j = 2 1- = 2, so J(2) = J(3) but 2 7& 3.

(More generally, given any integer k, if m = 2k, then J(m) = 2 [m/2J = 2 [2k/2j = 2 Lkj =
J(m) and J(m+ 1) = 2 [(m + 1)/2j = 2 [(2k + 1)/2] = 2 Lk + 1/2] = 2k. So J(m) = J(m+ 1)
but mi :m + 1.)

7. a. f(1) =-(1 -1)/2 = 0, f(2) = 2/2 = 1, f(3) =-(3 -1)/2 =-1, f(4) = 4/2 = 2. All these
values agree with those indicated in Figure 7.5.2.

9. Define a function f: Z+ Zn Z"'g as follows: f(n) = n-1 for all positive integers n. Observe
that if n > 1 then n -1 > 0, so f is well-defined. In addition, f is one-to-one because for
all positive integers n1 and n2 , if f(ni) = f(n 2 ) then n- 1 = n2 -1 and hence ni = n2.
Moreover f is onto because if m is any nonnegative integer, then m + 1 is a positive integer
and f(m + 1) = (m + 1)1 I= m by definition of f. Thus, because there is a function f: Z+ *

ZOOO'tg9 that is one-to-one and onto, Z+ has the same cardinality as Znonneg, It follows that
Zn,,,neg is countably infinite and hence countable.
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11. Proof: Define h: S - V by the rule h(x) = 3x + 2 for all real numbers x in S. Then h is
one-to-one because if xi and x2 are in S and h(x1 ) = h(x2 ), then 3xi + 2 = 3x2 + 2 and
so [by subtracting 2 and dividing by 3] Xi = X2. Furthermore, h is onto because if y is any
element in V, then 2 < y < 5 and so 0 < (y - 2)/3 < 1. Consequently, (y - 2)/3 G S and
h((y -2)/3) = 3((y -2)/3) + 2 = y. Hence h is a one-to-one correspondence, and so S and V
have the same cardinality.

12. Proof: Define F: S ---* W by the rule F(x) = (b -a)x + a for all real numbers x in S. Then
F is well-defined because if 0 < x < 1, then a < (b - a)x + a < b. In addition, F is one-to-one
because if xi and x2 are in S and F(xl) = F(X2 ), then (b -a)xi + a = (b -a)x 2 + a and so [by
subtracting a and dividing by b- a] X1 = X2. Furthermore, F is onto because if y is any element
in W, then a < y < b and so 0 < (y - a)/(b - a) < 1. Consequently, (y - a)/(b - a) G S and
h((y -a)/(b -a)) = (b -a)[(y -a)/(b - a)] + a = y. Hence F is a one-to-one correspondence,
and so S and W have the same cardinality.

14. Proof (without calculus): The function g is defined by the rule g(x) = 2 ( 1 + 2) + I for all

real numbers x. To show that g is one-to-one, suppose xi and X2 are in R and g(xi) = g(X2).

It follows that x1 and X2 have the same sign because if xi < 0 and X2 > 0, then g(x1) < 2

1 1 1
and 9(X2 ) > and if x1 > 0 and X2 < 0, then g(x) > 2and 9( 2 ) < . Now if x1 > 0

2 2 2
and X2 > 0, then IxiI = x1 and IX21 = X2, and so the condition g(X) = g(X2) implies that

£1 = £2 Cross multiplying gives x1 + X£X2 = X2 + X1X2, which implies that xi = X2.

Furthermore, if x1 < 0 and X2 < 0, then £x11 = -x1 and IX21 =-X2, and so the condition
£1 2

g(Xl) = g(X2) implies that 1 =i 1X2 Cross multiplying gives x1 -X1X2 = X2 -1X2,

which implies that xi = X2. Therefore, in all cases if g(xi) = g(X2) then xi = X2, and so g is
one-to-one.

1 2y -1
To show that g is onto, let y G S {x E R l < x < 1}. In case 0 < y < 2 let x = 2

and note that x < 0. Then

2y 1
g x) =9( 2p2y

i t 2y- N 12k12 12+ 2

2y I
2 + 12-1 2

1 2y- 1 1 1
+ y

2y 1 2= - y - I + -. I + I =y.

2 2y-2y- 2 2 2

In case I < Y < 1, let x 1 2y - and note that x > 0. Then
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() ( 2y
2(1 - °( ] ) )

22y-1

2(1 y)
( 2y 1 1)

2k 2- 2y+ 2 y-lJ 2
1 1

2 2+2

Y.

Therefore, in either case there exists a real number x such that g(x) = y, and so g is onto.
Since g is both one-to-one and onto, g is a one-to-one correspondence. It follows that the set
of all real numbers and S have the same cardinality.

Proof (with calculus): To show that g is one-to-one, note that for all x > 0,

g(x)=-2 x
2 1+x 2

Then
' 1 ((1+x) x) 1 >0

Hence g is increasing on the interval (0, o). In addition, for all x < 0,

I~) X 1
2 1 -x 2

Then
g'QXr I((1-x) -- II-I- >0

2 (1 - X) 2 12(1 -X) 2

Hence g is increasing on the interval (-no, 0). Now if .r < 0, then g(x) < 1/2, and if x > 0, then
g(x) > 1/2. Putting this information together with the fact that g is increasing on the intervals
(no, 0) and (0, no) gives that g is increasing on the entire set of real numbers, and so g is
one-to-one. (See the solution to exercise 18 of Section 9.1 for a proof of this last fact.) To show
g is onto, note that limbo>) g(x) = 1 and limx o g(x) = 0. Also g is continuous on its entire

1
domain (because g is obviously differentiable for all x #0 and lim g(x) = -2 = lim gWr)).

Hence by definition of limit and the intermediate value theorem, g takes every value strictly
between 0 and 1. So g is onto. Since g is also one-to-one, g is a one-to-one correspondence. It
follows that the set of all real numbers and S have the same cardinality.

15. Let B be the set of all bit strings (strings of O's and l's). Define a function F: Z+ B
as follows: F(1) = e, F(2) = 0, F(3) = 1, F(4) = 00, F(5) = 01, F(6) = 10, F(7) = 11,
F(8) = 000, F(9) 001, F(10) = 010, and so forth. At each stage, all the strings of length k
are counted before the strings of length k + 1, and the strings of length k are counted in order
of increasing magnitude when interpreted as binary representations of integers. Thus the set
of all bit strings is countably infinite and hence countable.
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Note: A more formal definition for F is the following:

F fn = Ek if n 1
F(n) { the k-bit binary representation of n - 2 k if [log 2 nj = k.

For example, F(7) = 11 because [1og 2 7j = 2 and the two-bit binary representation of 7 -22
(= 3) is 11.

17. Suppose ri and r2 are any two rational numbers with r, < r2 . Let x = (r, +r2 )/2. Now r1 +r 2
is rational by Theorem 3.2.2, and so x = (ri + r2 )/2 is rational by exercise 17 of Section 3.2.
Furthermore, since ri < r2 , ri + ri < r2 + r1 , which implies that 2r 1 < r1 + r2 , or equivalently
r, < (ri + r2 )/2. Similarly, since ri < r2 , r1 + r2 < r2 + r2 , which implies that r1 + r2 < 2r 2 ,
or equivalently (ri + r2 )/2 < r2. Putting the inequalities together gives ri < x < r2 -

18. No. For instance, both '/2 and -V"2 are irrational (by Theorem 3.7.1 and exercise 21 in Section
3.6), and yet their average is (v2 + (-v2))/2 which equals 0 and is rational.

More generally: If r is any rational number and x is any irrational number, then both r+x and
r -x are irrational (by the result of exercise 11 in Section 3.6 or by the combination of Theorem
3.6.3 and exercise 9 in Section 3.6). Yet the average of these numbers is ((r +x) + (r - x)) /2 = r,
which is rational.

19. Proof: Suppose r and s are real numbers with 0 < r < s. Let n be an integer such that

K < n. Then K < s -r. Letm =-+ 1. Then m is an integer and m -1 < m.
s-r n 72 - +/2

Multiply all parts of the inequality by VF and divide by n to obtain ( ) < r < K
nn

v/ v'2m v/2(m -1) v"2 V2
Now since s = r + (s -r) and -< s -r, then = +-< r -< s.

n n n n n

Hence, [by transitivity of order] r < K < s. Note that m is irrational because m and n
ni n

are integers, - - . V¶, and the product of a nonzero rational number and an irrational
n

number is irrational (exercise 10 of Section 3.6).

20. Two examples of many: Define f and g from Z to Z as follows: f(n) = 2n and g(n) = 4n - 5
for all integers n. By exercises 12 and 13 of Section 7.2, these functions are one-to-one but not
onto.

21. Two examples of many: Define F: Z - Z by the rule F(n) = n/2 if n is eddv Then

F is onto because given any integer m, m = F(2m). But F is not one-to-one because, for
instance, F(1) = F(3) = 0.

Define G: Z -* Z by the rule G(n) [n/2j for all integers n. Then G is onto because given
any integer m, m = [m] = [(2m)/2= G(2m). But G is not one-to-one because, for instance,
G(2) = [2/2] = 1 and G(3) = [3/2j = 1 and 2 + 3.

22. First note that g is one-to-one. For suppose g(a, b) = g(c, d) for some ordered pairs (a, b) and
(c, d) in Z+ x Z+. By definition of g, 2 a 3 b = 2c3 d, and so by the unique factorization theorem
(Theorem 3.3.3), a = b and c = d, or, equivalently, (a, b) = (c, d). Hence there is a one-to-one
correspondence between Z+ x Z+ and a subset S (the range of g) of Z+. But by Theorem
7.5.3, any subset of a countable set is countable, and thus S is countable. It follows from the
transitive property of cardinality that Z+ x Z+ is also countable.

23. b. The fundamental observation is that if one adds up the numbers of ordered pairs along suc-
cessive diagonals starting from the upper left corner, one obtains a sum of successive integers.
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The reason is that the number of pairs in the (m + 1)st diagonal is 1 more than the number in
the mth diagonal. We show below that the value of H for a given pair (m, n) in the diagram
is the sum of the numbers of pairs in the diagonals preceding the one containing (mi, n) plus
the number of the position of (m, n) in its diagonal counting down from the top starting from
0.

Starting in the upper left corner, number the diagonals of the diagram so that the diagonal
containing only (0, 0) is 0, the diagonal containing (1, 0) and (0, 1) is 1, the diagonal containing
(2,0), (1, 1), and (0,2) is 2, and so forth. Within each diagonal, number each ordered pair
starting at the top. Thus within diagonal 2, for example, the pair (2, 0) is 0, the pair (1, 1) is
1 and the pair (0, 2) is 2. Each ordered pair of nonnegative integers can be uniquely specified
by giving the number of the diagonal that contains it and stating its numerical position within
that diagonal. For instance, the pair (1, 1) is in position 1 of diagonal 2, and the pair (0,1) is
in position 0 of diagonal 1. In general, each pair of the form (m, n) lies in diagonal m + n, and
its position within diagonal m + n is n. Observe that if the arrows in the diagram of exercise
23(a) are followed, the number of ordered pairs that precede (m + n, 0), the top pair of the
(m + n)th diagonal, is the sum of the numbers of pairs in each of the diagonals from the zeroth
through the (m + n -1)st. Since there are k pairs in the diagonal numbered k - 1, the number
of pairs that precede (m + n, 0) is

(m+n)(m+n+ 1)
2

by Theorem 4.2.2. Then (m + n)(m + n + 1) +n is the sum of the number of pairs that precede
2

the top pair of the (m + n)th diagonal plus the numerical position of the pair (m, n) within

the (m + n)th diagonal. Hence H(n) = n + ( )( 2 ) is the numerical position of

the pair (m, n) in the total ordering of all the pairs if the ordering is begun with 0 at (0,0) and
is continued by following the arrows in the diagram of exercise 23(a).

24. The proof given below is adapted from one in Foundations of Modern Analysis by Jean
Dieudonn6, New York: Academic Press, 1969, page 14.

Proof: Suppose (a, b) and (c, d) are in Z+ x Z+ and (a, b) 54 (c, d).

Case 1, a + b # c + d: By interchanging (a, b) and (c, d) if necessary, we may assume that
a+b<c+d. Then

H(a, b) = b + (a + b)(a + b + 1) by definition of H
2

= H(a,b) < a+b+ (a+b)(a+b+l) because a >0

H(a,b) < (a+b+ I)+ (a+b)(a+b+l) because a + b <a + b +1

H H(a,b) < 2(a+b+1) (a+b)(a+b+1)
2 2

•> H(a, b) < (a + + 1)(a + b+ 2) by factoring out (a + b + 1)
2

H b) (c + d)(c + d + 1) since a + b < c + d and a, b, c,
2 and d are integers, a + b + 1 < c + d

=> H(a, b) < d + (c + d)(c + d + 1) because d > 0
2

= H(a, b) < H(c, d) by definition of H.

Therefore, H(a, b) 7# H(c, d).
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Case 2, a + b = c + d: First observe that in this case b #& d. For if b = d, then subtracting
b from both sides of a + b = c + d gives a = c, and so (a, b) = (c, d), which contradicts our
assumption that (a, b) :4 (c, d). Hence,

(a + b)(a + b + 1) b+(c + d)(c + d + 1) + (c d) (c H(, d),
2 2 2

and so H(a, b) 74 H(c, d).

Thus both in case 1 and in case 2, H(a, b) 7& H(c, d), and hence H is one-to-one.

25. There are many proofs of this fact, some more rigorous and some less rigorous.

Proof 1: Let x = 0.199999.... Then lOx = 1.99999..., and so lOx - 2 = 1.8. But also
lOx - x= 9x. Hence 9x = 1.8, or equivalently x = 0.2.

Proof 2: We start by assuming that 1/3 = 0.33333.... Then 1 = 3(1/3) = 3(0.33333...) =

0.99999 .... Multiplying both sides by 0.1 gives 0.1 = (0.1)(0.99999 ... ) 0.099999.... Adding
0.1 to both sides of the resulting equation gives 0.2 = 0.199999....

Proof 3 (by contradiction): Let x = 0.199999 ... and suppose x + 0.2. This means that there
is a little distance between 0.199999 ... and 2 on the number line. In other words, 0.2 - = E
for some positive number E. /We will show that this assumption leads to a contradiction by
showing that however small the distance E might be, we can construct a number of the form
0.19999 ... 9 with two contradictory properties: (1) its distance from 0.2 is greater than E
because it is farther from 0.2 than 0.199999 ... and (2) its distance from 0.2 is less than E

1
by the way we constructed it.] Let n be a positive integer such that 10' > , or equivalently

such that E > I , and let a = 0.199999 ... 9 ( n -1 nines). Then a < x < 0.2, and so

0.2 - < 0.2- a. This implies that 0.2 -a > E. But 0.2 -a = 0.2-0.199999 ... 9 (n - 1 nines

) 0.000000 ... 01 (n decimal places) = I <E. Thus 0.2 -a > E and 0.2 -a < E, which isIon
a contradiction. Hence the supposition is false, and so x = 0.2.

Proof 4 (by calculus): By the formal definition of infinite decimals using infinite series and by
the formula for the sum of an infinite geometric series,

0.199999 ... = 0.1 + 0.09 + 0.009 + 0.0009 + ...

- 0.1 + 0.09 (EOO =( I )r) = 0.1 + 0.09 (-T

= 0.1 + 0.09() -0.1 + 0.09 (19) = 0.1 + 0.1 =0.2.

28. Proof: Suppose A and B are any two disjoint countably infinite sets. Then A n B = 0 and
there are one-to-one correspondences f: Z+ - A and 9: Z+-* B. Define h: Z+ -* A U B as
follows:

For all integers n > 1, h(n) f(n/2) if n is even
h - g((n + 1)/2) if n is odd

Observe that h is one-to-one because if h(ni) = h(n2 ) then (since AnB = 0) either both n1 and
n2 are even or both n1 and n2 are odd. If both n, and n2 are even, it follows by definition of h
that f(ni/2) = f(n 2 /2), and so since f is one-to-one, ni/2 - n2 /2, which implies that n1 = n 2 .
If both n1 and n2 are odd, it follows by definition of h that g((ni + 1)/2) = g((n2 + 1)/2), and
so since g is one-to-one, (n, + 1)/2 = (n 2 + 1)/2, which implies that n1 = n2. Hence in either
case n1 = n2, and so h is one-to-one.

To show that h is onto, let y G A U B be given. By definition of union, y G A or y C B.
If y e A, then since f is onto, there is a positive integer m such that f(m) = y, and so by
definition of h, y = h(2m). If y E B, then since g is onto, there is a positive integer m such
that g(m) = y, and so by definition of h, y = h(2m -1). Now when m is a positive integer,
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then both 2m and 2m -1 are positive integers. Thus in either case, there is a positive integer
whose image under h is y. So h is onto.

The above arguments show that there is a one-to-one correspondence from Z+ to A U B, and
so A U B is countably infinite.

29. Proof: Suppose not. That is, suppose the set of all irrational numbers were countable. Then
the set of all real numbers could be written as a union of two disjoint countably infinite sets:
the set of all rational numbers and the set of all irrational numbers. By exercise 28 this union
is countably infinite, and so the set of all real numbers would be countably infinite and hence
countable. But this contradicts the fact that the set of all real numbers is uncountable (which
follows immediately from Theorems 7.5.2 and 7.5.3 or Corollary 7.5.4). Hence the set of all
irrational number is uncountable.

30. Proof: Suppose A is any finite set and B is any countably infinite set and A and B are disjoint.
In case A = 0, then A U B = B, which is countably infinite. So we may assume that for some
positive integer m there are one-to-one correspondences f: {1, 2,. .., m} - A and g: Z+-* B.
Define a function h: Z+ -* A U B as follows:

F f(n) if 1 < n < m
For allntegers n, h(n)- g(n-m) if n>m+1

Then h is one-to-one because A n B = 0 and f and g are one-to-one. And h is onto because
both f and g are onto and every positive integer can be written in the form n -m for some
integer n > m+ 1. Since h is one-to-one and onto, h is a one-to-one correspondence. Therefore,
A U B is countably infinite.

31. Proof: Suppose A and B are any two countable sets. If A and B are both finite, then, by
Theorem 6.3.1, A U B is finite and hence countable. If at least one of A or B is countably
infinite, then we consider two cases.

Case 1 (A n B = 0): In this case, if A and B are both countably infinite, then, by exercise
28, A U B is countably infinite and hence countable. If A is finite and B is countably infinite,
then, by exercise 30, A U B is countably infinite and hence countable.

Case 2 (A n B #4 0): In this case, A U B = (A-B) U (B -A) U (A n B) and the sets
A -B, B -A, and A n B are mutually disjoint. Because A and B are both countable, then,
by Theorem 7.5.3, each of A- B, B -A, and A n B is also countable. Thus, by case 1,
(A -B) U (B -A) is countable and so ((A -B) U (B -A)) U (A n B) is countable. But
((A -B)U(B -A))U(AnB) =AUB, andthusAUBiscountable.

32. Proof: Use the one-to-one correspondence F: Z+ -*Z of Example 7.5.2 to define a function
G: Z+ x Z+ Z x Z by the equation: G(m,n) = (F(m),F(n)).

G is one-to-one: Suppose G(a,b) = G(c,d). Then (F(a),F(b)) = (F(c),F(d)) by definition
of G. So F(a) = F(c) and F(b) = F(d) by definition of equality of ordered pairs. Since F is
one-to-one, then, a = c and b = d, and so (a, b) (c, d).

G is onto: Suppose (r, s) c Z x Z. Then r e Z and s e Z. Since F is onto, there exist
an m G Z+ and an n e Z+ with F(m) = r and F(n) = s. But, then, by definition of G,
G(m, n) = (r, s).

So G is a one-to-one correspondence from Z+ x Z+ to Z x Z, and thus the two sets have the
same cardinality. But by exercise 22, Z+ x Z+ has the same cardinality as Z+. So by the
transitive property of cardinality, Z x Z has the same cardinality as Z+, and hence Z x Z is
countably infinite.

33. Proof: First note that there are as many equations of the form 92 + bx + c = 0 as there are
pairs (b, c) where b and c are in Z. By exercise 32, the set of all such pairs is countably infinite,
and so the set of equations of the form x + bx + c = 0 is countably infinite.
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Next observe that, by the quadratic formula, each equation x2 + bx + c = 0 has at most two
solutions (which may be complex numbers):

- b + b 4 c b-b -  4c
x= 2 and x= 2

2 2

Let

R, = { x = x= b + for some integers b and c}

R2 = { x= ] - b for some integers b and c},
2

and R = R1 U R2 . Then R is the set of all solutions of equations of the form X2 + bx + c = 0
where b and c are integers.

Define functions F1 and F2 from the set of equations of the form X + bx + c = 0 to the sets
R1 and R2 as follows:

F1 (X2 +bxr+c=O) -b + 2 and F 2 (x
2 + bx + c = 2) = - 4

Then F1 and F2 are onto functions defined on countably infinite sets, and so, by exercise 27,
R1 and R2 are countable. Since any union of two countable sets is countable (exercise 31),
R = R1 U R2 is countable.

34. Proof 1: Define a function f: I(S) -* T as follows: For each subset A of S, let f(A) = XA(X),

the characteristic function of A, where for all x C S

{1 if x cA
XA) = A 0 if x A

Then f is one-to-one because if f(A 1 ) = f(A 2 ) then XA 1 (X) = XA 2 (X) for all x e S, which
implies that x G Al if, and only if, x e A2 /for instance, if x C Al, then XA 1 (X) = 1 = XA 2 (X)

and so x E A2], or equivalently Al = A2 . Furthermore, f is onto because given any function
g: S -- {0, 1}, let A be the set of all x in S such that g(x) = 1. Then g = XA f(A). Since
f is one-to-one and onto, 9(S) and T have the same cardinality.

Proof 2: Define H: T -* p(S) by letting H(f) = {x C S I f(x) = 1}.

H is one-to-one: Suppose H(fl) = H(f2 ). By definition of H, { x E S I fi(x) 1 } - { x C

S I f2(x) = 1}. So for all x C S, fi(x) =1 X f2(x) = 1. This implies that for all x e S,
fd(x) = f2 ((x) (because fi and f2 only take the values 1 and 0, and so if they do not have the
value 1 they must have the value 0). Thus fi = f2.

H is onto: Suppose A C S. Define g: A {0, 1} as follows: for all x e S,

1 if x e A
g = 0 if xVA

Then x C A if, and only if, g(x) = 1, and so A = H(g).

Since we have found a function H: T -9 Y(S) that is one-to-one and onto, we conclude that
T and p(S) have the same cardinality.

35. Proof (by contradiction): Suppose not. Suppose S and U?(S) have the same cardinality. This
means that there is a one-to-one, onto function f: S - £4>(S). Let A = {x C S I x V f(x)}.
Then A G p(S), and since f is onto, there is a z C S such that A = f(z). Now either z G A
or z ¢ A. In case z G A, then by definition of A, z g f(z) = A. Hence in this case z C A and
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z ¢ A which is impossible. In case z V A, then since A = f (z), z V f (z) and so z satisfies the
condition of membership for the set A which implies that z E A. Hence in this case z V A and
z e A which is impossible. Thus in both cases a contradiction is obtained. It follows that the
supposition is false, and so S and 9P(S) do not have the same cardinality.

36. Proof: Let B be the set of all functions from Z+ to {0.,1} and let D be the set of all functions
from Z+ to {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Elements of B can be represented as infinite sequences of
O's and l's (for instance, 01101010110... ) and elements of D can be represented as infinite
sequences of digits from 0 to 9 inclusive (for instance, 20775931124... ).

We define a function H: B -* D as follows: For each function f in B, consider the represen-
tation of f as an infinite sequence of O's and l's. Such a sequence is also an infinite sequence
of digits chosen from 0 to 9 inclusive (one formed without using 2,3,... ,9), which represents a
function in D. We define this function to be H(f). More formally, for each f E B, let H(f)
be the function in D defined by the rule H(f)(n) = f(n) for all n E Z+. It is clear from the
definition that H is one-to-one.

We define a function K: D -- B as follows: For each function g in D, consider the representa-
tion of g as a sequence of digits from 0 to 9 inclusive. Replace each of these digits by its 4-bit
binary representation adding leading O's if necessary to make a full four bits. (For instance, 2
would be replaced by 0010.) The result is an infinite sequence of O's and l's, which represents
a function in B. This function is defined to be K(g). Note that K is one-to-one because if
91 #4 92 then the sequences representing 91 and 92 must have different digits in some position
m, and so the corresponding sequences of O's and l's will differ in at least one of the positions
4m - 3, 4m - 2, 4m - 1, or 4m, which are the locations of the 4-bit binary representations of
the digits in position m.

It can be shown that whenever there are one-to-one functions from one set to a second and from
the second set back to the first, then the two sets have the same cardinality. This fact is known
as the Schr6der-Bernstein theorem after its two discoverers. For a proof see, for example, Set
Theory and Metric Spaces by Irving Kaplansky, A Survey of Modern Algebra, Third Edition,
by Garrett Birkhoff and Saunders MacLane, Naive Set Theory by Paul Halmos, or Topology
by James R. Munkres. The above discussion shows that there are one-to-one functions from
B to D and from D to B, and hence by the Schr6der-Bernstein theorem the two sets have the
same cardinality.

37. Proof: Let A and B be countably infinite sets and represent the distinct elements of A and
the distinct elements of B as infinite sequences A: a,, a2, a3 ,.... and B : bl, b2, b3,.  Then
all the distinct elements of A x B are listed in the following rectangular array.

('(

j) (a3 , b4)

(a 4 , b3) (a 4 , b4 )(O
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Define a function F from Z+ to A x B as follows: Let F(1) = (a,, bl) and let each successive
value of F(n) be the next successive ordered pair obtained by following the arrows. Thus
F(2) = (ai,b2 ), F(3) = (a 2 ,bi), F(4) = (a 3 ,bl), F(5) = (a2 ,b 2), and so forth. It is clear that
F is one-to-one because the elements of A x B are all distinct, and F is onto because every
ordered pair in A x B appears in the array. Hence F is a one-to-one correspondence from Z+
to A x B, and so A x B is countably infinite.

38. Proof: Let Al, A2, A3 , .... be countable sets. Represent the elements of each Ai as an infinite
sequence Ai : ail, ai2, ai3 .... where if any Ai is finite, the sequence is filled out by repeating
one of the elements forever. Consider the rectangular array of elements whose ith row is the
sequence representing Ai for each i = 1, 2, 3, ....

00

Let U Ai {x Ir x Ai for at least one value of i}, and note that each element of the array
i=l

00 00

is in U Ai Define a function G from Z+ to U Ai as follows: Let G(1) = all and let each
i=l itl

successive value of G(n) be the next successive element of the array obtained by following the
arrows unless that element has already been made the image of some integer, in which case it
is skipped. Thus (if there is no repetition) G(2) = a12 , G(3) = a 2 1 , G(4) = a31 , G(5) = a 2 2 ,

and so forth. It is clear that G is one-to-one because elements are skipped if they have already
00

been used as function values, and G is onto because every element in U Ai appears in the
Ii=

00 00

array. Hence G is a one-to-one correspondence from Z+ to U Ai, and so U Ai is countably
i=l i=l

infinite and hence countable.

http://pakimonda.blog.com 
paki.monda@gmail.com 
paki.monda@yahoo.com



Chapter 8: Recursion

This chapter can be covered at any time after Chapter 4. The first three sections discuss sequences
that are defined recursively and the fourth section explores recursively defined sets and functions
and recursive definitions for sum, product, union, and intersection.

Section 8.1 has two aims. The primary one is to introduce students to the idea of "recursive
thinking," namely assuming the answer to a problem is known for certain smaller cases and express-
ing the answer for a given case in terms of the answers to these smaller cases. The other related aim
is simply to familiarize students with the concept and notation of a recursively defined sequence.
Because the notation causes problems for some students, to help them distinguish recursive defini-
tions from explicit formulas, the letter k is used to denote the variable in a recursive definition and
the letter n is used to denote the variable in an explicit formula.

Sections 8.2 and 8.3 treat the questions of how to find an explicit formula for a sequence that
has been defined recursively and how to use mathematical induction to verify that this explicit
formula correctly describes the given sequence. In Section 8.2, the method used is "iteration," which
consists of writing down successive terms of the sequence and looking for a pattern. In Section 8.3,
explicit formulas for second-order linear homogeneous recurrence relations are derived. The main
difficulty students have with these sections is related to a lack of understanding of the extent to which
definitions are universal. For instance, given a recurrence relation that expresses ak for general k
in terms of ak-1 and ak-2, quite a few students have difficulty writing, say, ak-1 in terms of ak-2

and ak-3. In addition, more students than you might expect get tripped up by the algebra of
successive substitution, neglecting to substitute carefully and/or making errors in multiplying out
or in regrouping terms. A number of exercises are designed to address these difficulties.

Section 8.4 is not difficult for students, and at this point in the course many are able to appreciate
the elegance and effectiveness of recursive definitions for describing sets that they are familiar with
from other contexts. Structural induction is introduced in this section as a method for proving
properties of recursively defined sequences.

Comments on Exercises

Section 8.1: #1 17, #22 26, and #46 47 develop students' skill in handling the notation and
verifying properties of recursively defined sequences. Exercises #18-23, #34 43, and #53 55 explore
recursive thinking. Exercises #44 50 are intended to help students develop facility with Stirling
numbers of the second kind.
Section 8.2: #1 and #2 are warm-up exercises which review formulas used to simplify expressions
that arise in solving recurrence relations by iteration.
Section 8.3: A number of exercises in this section are designed to give students practice in the
kind of thinking used to derive the main theorems of the section. They are meant to bridge the gap
between mechanical application of the theorems and formal derivation of the theorems themselves.
Section 8.4: Exercises in this section ask students to explore recursive definitions for Boolean ex-
pressions, parenthesis structures, Douglas Hofstadter's MIU-system, and other general sets of strings.
Exercises are also included on McCarthy's 91 function, the Ackermann function, and Collatz's 3n+1
problem. In addition, a number of exercises give practice using structural induction.

Section 8.1

2. b1 = 1, b2 = b1 + 3 2 = 7, b3 = b2 + 3 3 = 16, b4 = b3 + 3 4 = 28

4. d0 = 3, d1 = 1 do2 = 9, d2 = 2d 1
2- = 162, d3 = 3 d2

2 = 78,732

6. to= -1, t1 =2, t 2 =t 1 +2 to =2+2 (-)=0, t 3 =t 2 +2 t1 =0+22 =4
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8. vI = 1, V2 = 3, V3 = V2 + VI +1= 3+ 1 +I= 5, v4 = V3 +V2 + 1 = 5+3 +1= 9

10. By definition of bo, bl, b2,. . ., for all integers k > 1, bk 4 k and bk-1 = 4 k-1. So for all integers
k > 1, 4 * bk-1 = 4 * 4k 1 4k= bk.

12. Call the nth term of the sequence sn. Then s =( for all integers n > 0. So for all

integers k > 1, Sk - and Sk-1 = It follows that for all integers k > 1,
k! ~ (k -i)!

-Sk-1 _ (k -1)! - (-I~k1 (~-s- t '= (~- I) = ( ! = Sk
k k k .(k -1)! k!

14. Call the nth term of the sequence dn. Then dn = 3n -2n for all integers n > 0. So for all integers
k > 2, dk = 3k 2k, dk-1 = 3 k 1- 2 k 1, and dk-2 = 3k-2k 2k2 It follows that for all integers
k > 2, 5dk-1 6dk-2 = 5 (3 k - 2k 1) - 6 ( 3 k-2 - 2 k-2) 5. 3 k-1 -5 2 k-1- 2* 3 3 k-2±+2. 3 2 k-2

5 3k-1 5 -2 k - 2 -3 k +3 2k-1 = (5 - 2 ) 3 k-1 +(-5+3 ) 2 k-1 = 3 3 k-1 - 2 2 k 12k

3 k- 2k = dk.

16. According to exercise 17 of Section 6.6, for each integer n > 1, C = 4 +2( + 2)

Substituting k - 1 in place of n gives

Ck = 1 _ __ 2(k_- 1) +±2 1 [2k)
4(k -1)+2(k -1)+1) 4k-2 k

Then for each integer k > 2,

= 1 2k) 1 .4k - 2 (2k\ = 4k - 2

k+1 kJ k+l 4k-2 k/ k+1

17. m7 = 2m6 + 1 = 2 63 + 1 = 127, m8 = 2m 7 + 1 = 2 127 + 1 = 255

18. b. a4 = 26 + 1 + 26 + 1 + 26 =80

19. a. b1=1, b 2=1+1+1+1=4, b 3 =4+4+1+4=13

c. Note that it takes just as many moves to move a stack of disks from the middle pole to an
outer pole as from an outer pole to the middle pole: the moves are the same except that their
order and direction are reversed. For all integers k > 2,

bk = ak-1 (moves to transfer the top k - 1 disks from pole A to pole C)

+1 (move to transfer the bottom disk from pole A to pole B)

+bk-1 (moves to transfer the top k -1 disks from pole C to pole B).

= ak-1 + 1 + bk-1-

d. One way to transfer a tower of k disks from pole A to pole B is first to transfer the top
k -1 disks from pole A to pole B [this requires bk-l moves], then transfer the top k - 1 disks
from pole B to pole C this also requires bk-I moves], then transfer the bottom disk from pole
A to pole B [this requires one move], and finally transfer the top k -1 disks from pole C to
pole B [this again requires bk-l moves]. This sequence of steps need not necessarily, however,
result in a minimum number of moves. Therefore, at this point, all we can say for sure is that
for all integers k > 2,

bk < bk-I + bk-I + 1 + bk-1 = 3bk-1 + 1.
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e. Proof 1: In part 1 of the proof, we show that for any integer k > 1, in a tower of Hanoi
with adjacency requirement, when a transfer of k disks from one end pole to the other end
pole is performed, at some point all the disks are piled on the middle pole. In part 2 of the
proof, we use the result of part 1 together with the result of part (c) of the problem to deduce
the equation bk = 3bk-1 + 1 for all integers k > 2.

Part 1 (by mathematical induction): Let the property P(k) be the sentence "In a tower of
Hanoi with adjacency requirement, when a transfer of k disks from one end pole to the other
end pole is performed, at some point all the disks are piled on the middle pole."

Show that the property is true for k = 1: The property is true for k = 1 because when
one disk is transferred from one end pole to the other end pole with an adjacency requirement,
it must first be placed on the middle pole before it can be moved to the pole at the other end.

Show that for all integers k > 1, if the property is true for k = i, then it is true
for k = i + 1: Let i be an integer with i > 1, and suppose that in a tower of Hanoi with
adjacency requirement, when a tower of i disks is transferred from one end pole to the other end
pole, at some point all the disks are piled on the middle pole. [This is the inductive hypothesis.]
We must show that in a tower of Hanoi with adjacency requirement, when a tower of i + 1
disks is transferred from one end pole to the other end pole, at some point all the disks are
piled on the middle pole. So suppose i + 1 disks are piled on one end pole, say pole A. Call the
middle pole B and the third pole C. In order to move the bottom disk from pole A, the top i
disks must previously have been moved to pole C. Because of the adjacency requirement, the
bottom disk must then be moved to the middle pole. Furthermore, to transfer the entire tower
of i + 1 disks to pole C, the bottom disk must be moved to pole C. To achieve this, the top i
disks must be transferred back to pole A. By inductive hypothesis, at some point while making
this transfer, the top i disks will all be piled on the middle pole. But at that time, the bottom
disk will be at the bottom of the middle pole [because if it were back on pole A, transferring
the top i - 1 disks to pole A would simply recreate the initial position of the disks], and so the
entire tower of i + 1 disks will be on the middle pole. [This is what was to be shown.]

Part 2: By part (c) of this exercise, we know that bk = ak-1 + 1 + bk-1. Now ak-1 is the
minimum number of moves needed to transfer a tower of k -1 disks from end pole A to end
pole C. By part 1 of this proof, we know that at some point during the transfer all k -1 disks
will be on the middle pole. But the minimum number of moves needed to put them there
is, by definition, bk- 1 Moreover, from their position on the middle pole, the top k - 1 disks
must be moved to pole C in order to be able to place the bottom disk on the middle pole. By
symmetry, the minimum number of moves needed to transfer the top k - 1 disks from pole B
to pole C is also bk-1. Thus ak-1 = bk-l+bk-1, and so bk = bk-1 +bk- l++bk-1 = 3bk-1+1.

Proof 2 (by mathematical induction): Let the property P(k) be the equation bk = 3bk-1 + 1.

Show that the property is true for k = 2: The property is true for k = 2 because for
k = 2 the left-hand side is 4 (by part (a)) and the right-hand side is 3 * 1 + 1 = 4 also.

Show that for all integers i > 2, if the property is true for k = i then it is true
for k = i + 1: Let i be an integer with i > 2, and suppose that bi = 3bi-1 + 1. [This is the
inductive hypothesis.] We must show that bi+1 = 3bi + 1. But bi+1 = ai + 1 + bi [by part (c)]
= ai + 1 + 3bi- 1 + 1 [by inductive hypothesis] = (3ai- 1 + 2) + 1 + 3bi-1 + 1 [by exercise 18(c)]
= 3ai_1 + 3 + 3bi_1 + 1 = 3(ai-I + I + bi-,) + I = 3bi + 1 [by part (c) of this exercise]. [This
is what was to be shown.]

20. c. Name the poles A, B, C, and D going from left to right. Because disks can be moved from
one pole to any other pole, the number of moves needed to transfer a tower of disks from any
one pole to any other pole is the same for any two poles. One way to transfer a tower of k
disks from pole A to pole D is to first transfer the top k -2 disks from pole A to pole B, then
transfer the second largest disk from pole A to pole C, then transfer the largest disk from pole
A to pole D, then transfer the second largest disk from pole C to pole D, and finally transfer
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the top k - 2 disks from pole B to pole D. This might not result in a minimal number of
moves, however. So for all integers k > 3,

Sk < Sk-2 (moves to transfer the top k - 2 disks from pole A to pole B)

+1 (move to transfer the second largest disk from pole A to pole C)

+1 (move to transfer the largest disk from pole A to pole D)

+1 (move to transfer the second largest disk from pole C to pole D)

+Sk-2 (moves to transfer the top k - 2 disks from pole B to pole D)

< 2 k-2 + 3.

21. a. t1 = 2, t 2 = 2 + 2+2 = 6

c. For all integers k > 2,

tk = tk-1 (moves to transfer the top 2k - 2 disks from pole A to pole B)

+2 (moves to transfer the bottom two disks from pole A to pole C)

+tk-1 (moves to transfer the top 2k -2 disks from pole B to pole C)

= 2 tk-1 + 2.

Note that transferring the stack of 2k disks from pole A to pole C requires at least two transfers
of the top 2(k -1) disks: one to transfer them off the bottom two disks to free the bottom
disks so that they can be moved to pole C and another to transfer the top 2(k -1) disks back
on top of the bottom two disks. Thus at least 2 tk-1 moves are needed to effect these two
transfers. Two more moves are needed to transfer the bottom two disks from pole A to pole
C, and this transfer cannot be effected in fewer than two moves. It follows that the sequence
of moves indicated in the description of the equation above is, in fact, minimal.

22. a. rk = rk-l + 4
rk-2 for all integers k > 3

c. r 7 = r6 +4r5 = 181 +4 65 = 441; r8 = r 7 +4r6  441 +4 181 = 1,165; r9 = rs +4r7 =
1165+4-441 -2,929; rIo = r9 +4r8 = 2929+4 1165 -7,589; r11 = r1 o+4r9 = 7589+4 2929 =

19,305; r1 2 = r1 l + 4r10  19305 + 4. 7589 = 49,661

At the end of the year there will be r1 2 = 49,661 rabbit pairs or 99,322 rabbits.

23. a. Sk = Sk-i + 3
Sk-3 for all integers k > 3

b. so = 1, sI = 1, S2 = 1, S3 =1 + 3 1 = 4, s4 = 4 + 3 1 = 7, s5 = 7 + 3 1 = 10

c. S6 = S5 + 3S3 = 22, 87 S6 + 3S4 = 43, s8 = S7 + 3S5 = 73, 89 = Ss + 3S6 = 139,

slo sg + 3S7 = 268, sI, = sio + 3s9 = 487, S12 = s±, + 3sjo = 904.

24. F1 3  F1 2 + F1 1 = 233 + 144 = 377, F14 = F13 + F12 = 377 + 233 = 610

25. b. Fk+2 = Fk+1 + Fk c. Fk+3 = Fk+2 + Fk+1

28. By definition of the Fibonacci sequence, for any integer k > 1, F 2+ Fk2  F = (Fk2

Fk_1)
2 

-Fk
2  

Fk
2

-_ = Fk
2 + 2FkFk-1 + Fk

2 
1 -Fk

2  
Fk

2 
1= 2FkFk-=.

29. By definition of the Fibonacci sequence, for any integer k > 1, F2+ 1-Fk
2 

= (Fk+±1Fk)(Fk+1+

Fk) = (Fk+l -Fk)Fk+2. But since Fk+j = Fk+Fk-1, then Fk+ -Fk = Fk-1. By substitution,

Fk+1 -Fk= Fk- lFk+2-

30. d. Proof (by mathematical induction): Let the property P(n) be the equationFn+2 Fn - Fn21 =
(- 1)n.
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Show that the property is true for n = 0: The property is true for n = 0 because for
n = 0 the left-hand side is Fo+2 Fo -F 1

2 = 2 1 -12 = 1, and the right-hand side is (-1)o = 1
also.

Show that for all integers k > 0, if the property is true for n = k then it is true for
n = k + 1: Let k be an integer with k > 0 and suppose that Fk+2 -F Fk+ = (-l)k for some
integer k > 0. [This is the inductive hypothesis.] We must show that Fk+3Fk+l -Fk 2 = ( k

But by inductive hypothesis,

Fk+- = Fk+2Fk ( () = Fk+2Fk + (-)k±1 (We call this equation (*).)

Hence,

Fk+3Fk+1 -Fk+2

= (Fk+l + Fk+2)Fk+l- Fk+ 2  by definition of the Fibonacci sequence
= Fk2+1 + Fk+2Fk+l -Fk+2

= Fk+2Fk + (-I)k+l + Fk+2Fk+l- Fk2+2  by substitution from equation (*)
= Fk+2(Fk + Fk+1 -Fk+2) + (-I)k+l by factoring out Fk+2

= Fk+2(Fk+2 -Fk+2) + (-I)k+l by definition of the Fibonacci sequence
= Fk+2 0 + (-1)k +

= (-l)k+l

32. Proof: In part 1 of the proof, we will show that lim 2rn exists and lim 2n > 0. In
n oo F2n+1 n--- F2.+1

part 2 of the proof, we will show that lim 2r+l exists and lim •2+1 < 1. In part 3, we will
n- oo F2 n+ 2  n-oo F2n+2

show that because both lim .2n and lim 2n+l exist and are finite, lim n exists and
n-. F 2 n+l n-oo F2 n+2  n-oo F±+l

equals . In parts 1 and 2, we use the result of exercise 30 that Fml+2Fm .. (-l)
2

for all integers m > 0. Adding Fn+l to both sides of the equation gives that for all integers

m > 0,

Fm+2 Fm = F2+l + (-I)m (We call this equation (1).)

Part 1: Because all values of the Fibonacci sequence are positive, we may apply properties of

inequalities, the definition of the Fibonacci sequence, and equation (1) to obtain the following

sequence of if-and-only-if statements: For any integer n > 0,

F > F F2nF 2n+3 > F2n+lF2 n+2  [by cross-multiplying]
F 2n+l F 2 n+3

X F 2 n(F 2 ,+ 2 + F 2 n+±) > F 2 n+l(F 2 n+l + F2 n)

' F 2nF2n+2 > F 1  = n+ + (-1)2[ > F22 1 /by equation (1) with m = 2n]

= F2I± + 1 > F2n+l [because 2n is even] * 1 > 0, which is true.

Thus, since the original inequality is equivalent to an inequality that is true, the original

inequality is also true. Therefore, F2n > 2n+2 for all integers n > 0, and hence the infinite
F2n + F2n+3

sequence { F2nl n} is strictly decreasing. Because the terms of the sequence are bounded

2n+1 n=n
below by 0, this implies (by a theorem from calculus) that lim 2n exists and is greaterrz-0 o 2n+l
than or equal to 0.

Part 2: As in part 1, because all values of the Fibonacci sequence are positive, we may apply

properties of inequalities, the definition of the Fibonacci sequence, and equation (1) to obtain

the following sequence of if-and-only-if statements: For any integer n > 0O
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F 1< X~ 3 F2n+1F2n+4 < F2m+2 F 2,+ 3  [by cross-multiplyingj
F 2 .+ 2  F 2 .+ 4

X F 2 + 1 (F 2 n+ 3 + F 2 .+ 2 ) < F 2 n+ 2 (F 2 .+ 2 + F 2 n+i) + F 2 n+1F 2 .+ 3 < F22n+ 2

<-* F22n+2 + (-1)2n+l < F22n+2 /by equation (1) with m = 2n + 1]

X' F22n+2 -1 < F22n+1 [because 2n + 1 is odd] -* 1 < 0, which is true.

Thus, since the original inequality is equivalent to an inequality that is true, the original

inequality is also true. Therefore, F2 n+1 < ~2n for all integers n > 0, and hence the infinite
F2n+2  F2 n+4

sequence { F2n+1 } is strictly increasing. Because the terms of the sequence are bounded
F2n+2 nsq

above by 1, this implies (by a theorem from calculus) that lim 2n+I exists and is less than
nenF2n+2

or equal to 1.

Part 3: Let L1 = lim F2n and L 2 = lim F2 n+I Then
neon F2n,+, n-- F2-+2

L lim F2n lim 1 = lim 1 lim 1
n-!o F2n+1 n Boo F2n+I n-oo F2 n + F 2 n-1 n1o1 + F 2 n- 1

F2 . F2 n F2 n
-1 1

1 + lim F2,. 1+L<
n -oo F2,

Multiplying both sides by 1 + L 2 gives that

L 1 + L 1 L 2 = 1. (Call this equation (2).)

Now L2 = lim F2n+1 lim 1 lim 1
n-o.oo F2n.F2 n- oo oF2 . 2  F2 n+, + F2 n

F2n+1 F2n+ 1

li1 1

1I + 1I + li F2 1 + Li
F2.+1 nMoF2n+1

Multiplying both sides by 1 + L 1 gives that

L 2 + L 1 L 2 = 1. (Call this equation (3).)

By substituting from equation (3) into equation (2), we have

L 1 + L1 L 2 = L 2 + L1 L 2

and subtracting L 1L 2 from both sides gives that L 1 = L 2 . Thus both subsequences { 2n },
F2n+1 n=°

and { F2n+1 } have the same limit and this is the limit for the entire sequence.
2 n +2 n O= 0

To discover the value of the limit, substitute L 1 in place of L 2 in equation (2) to obtain

L 1 + L-2 = 1, or equivalently, L?2 + L 1 -1 = 0.

Solving this equation with the quadratic formula and using the fact that L 1 > 0 gives that

LI = - 1 So the limit of the sequence is v2 1
2 2
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33. Let L = limn-O x,. By definition of XOXl, X2, ... and by the continuity of the square root
function,

L= lim xo = lim 2+x 1- /2 lim x 1 = 2+L.
n n-oo n-oo

Hence L2 = 2 + L, and so L - L -2 = 0. Factoring gives (L -2)(L + 1) = 0, and so L = 2
or L = -1. But L > 0 because each xi > 0. Thus L = 2.

35. a. When 3% interest is compounded monthly, the interest rate per month is 0.03/12 = 0.0025.
If Sk is the amount on deposit at the end of month k, then Sk = Sk-l + 0.0025Sk-=
(1 + 0.0025)Sk-I = (1.0025)Sk-1 for each integer k > 1.

b. S12 = (1.0025)S~l

= (1.0025)[(1.0025)Slo] = (1.0025S 1 o = (1.0025)2[(1.0025)Sg] = (1.0025) 3 S9

= (1.0025)3 [(1.0025)S 8 ] = (1.0025)4S8 = (1.0025)4[(1.0025)S7] = (1.0025) 5 S7

= (1.0025) 5 [(1.0025)S 6] = (1.0025) 6 S6 = (1.0025) 6 ((1.0025)S5 ] = (1.0025) 7 S5

= (1.0025)7[(1.0025)S4] = (1.0025)8S4 = (1.0025)"[(1.0025)S3] = (1.0025)9S3

(1.0025)9 [(1.0025)S2 ] = (1.0025)1 0S 2  (1.0025) 1 0[(1.0025)S 1 ] = (1.0025)llSl

(1.0025)1 1[(1.0025)So] = (1.0025)1 2 So (1.0025)12. 10000- 10, 304.16 dollars.

c. The APR = 10304.16 10000 = 0.030416 = 3.0416%.
10000

37. a. length 0: e
length 1: a, b, c
length 2: ab, ac, ba, bb, be, ca, cb, cc
length 3: aba, abb, abc, aca, acb, ace, bab, bac, bba, bbb, bbc, bca, bcb, bcc, cab, cac

cba, ebb, cbc, cca, ccb, ccc

b. By part (a), so = 1, s, = 3, S2 = 8, and s3 = 22

c. Let k be an integer with k > 2. Any string of length k that does not contain the pattern aa
starts with an a, with a b, or with a c. If it starts with an b or a c, this can be followed by any
string of length k -1 that does not contain the pattern aa. There are Sk-1 such strings, and
so there are 2

sk-1 strings that start either with a b or with a c. If the string starts with an a,
then the first two characters must be ab or ac. In either case, the remaining k -2 characters
can be any string of length k -2 that does not contain the pattern aa. There are Sk-2 such
strings, and so there are 2 sk-2 strings that start either ab or ac. It follows that for all integers
k > 2, Sk = 2Sk-1 + 2Sk-2

c. By part (b) 82 = 8 and s3 = 22, and so s 4 = 2s 3 + 2s2 = 44 + 16 = 60.

38. a. Let k be an integer with k > 3. The set of bit strings of length k that do not contain
the pattern 101 can be partitioned into k + 1 subsets: the subset of strings that start with 0
and continue with any bit string of length k - 1 not containing 101 [there are ak-1 of these],
the subset of strings that start with 100 and continue with any bit string of length k- 3
not containing 101 [there are ak-3 of these], the subset of strings that start with 1100 and
continue with any bit string of length k -4 not containing 101 [there are ak-4 of these],
the subset of strings that start with 11100 and continue with any bit string of length k - 5
not containing 101 [there are ak-5 of these], until the following subset of strings is obtained:
{11 ... 1001,11 ... 10001 [there are 2 of these and a, equals 2]. In addition, the three single-

k-3 l's k-3 l's
element sets {11 ... 1001, {11 ... 101, and {11. . . 1 1} are in the partition, and since ao = 1

k-2 l's k-1 1's k-1 l's
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(because the only bit string of length zero that satisfies the condition is ), 3 = ao + 2. Thus
by the addition rule,

ak = ak-1 + ak-3 + ak-4 + + a, + ao + 2.

b. By part (a), if k > 4,

ak = akin + ak-3 + a k -4 + + a, + ao + 2
ak-1 = ak-2 + ak-4 + ak-5 + + a, + ao + 2.

Subtracting the second equation from the first gives

ak -ak-1 = ak-1 + ak-3 - ak-2

=> ak = 2 ak- + ak-3 -ak-2. (Call this equation (*).)

Note that a2 = 4 (because all four bit strings of length 2 satisfy the condition) and a3 = 7
(because all eight bit strings of length 3 satisfy the condition except 101). Thus equation (*)
is also satisfied when k = 3 because in that case the right-hand side of the equation becomes
2a2 + a- a, = 2 4 + 1 - 2 = 7, which equals the left-hand side of the equation.

40. Imagine a tower of height k inches. If the bottom block has height one inch, then the remaining
blocks make up a tower of height k -1 inches. There are tk-1 such towers. If the bottom
block has height two inches, then the remaining blocks make up a tower of height k -2 inches.
There are tk-2 such towers. If the bottom block has height four inches, then the remaining
blocks make up a tower of height k - 4 inches. There are tk-4 such towers. Therefore,
tk = tk-1 + tk-2 + tk-4 for all integers k > 5.

41. b. Let k > 3 and consider a permutation of {1, 2,.. ., k} that does not move any number more
than one place from its "natural" position. Such a permutation either leaves 1 fixed or it
interchanges 1 and 2. If it leaves 1 fixed, then the remaining k - 1 numbers can be permuted in
any way except that they must not be moved more than one place from their natural positions.
There are ak-1 ways to do this. If it interchanges 1 and 2, then the remaining k - 2 numbers
can be permuted in any way except that they must not be moved more than one place from
their natural positions. There are ak-2 ways to do this. Therefore, ak = ak-1 + ak-2 for all
integers k > 2.

42. To get a sense of the problem, we compute S4 directly. If there are four seats in the row, there
can be a single student in any one of the four seats or there can be a pair of students in seats
1&3, 1&4, or 2&4. No other arrangements are possible because with more than two students,
two would have to sit next to each other. Thus S4 = 4 + 3 = 7. In general, if there are k chairs
in a row, then

Sk = Sk-1 (the number of ways a nonempty set of students can sit
in the row with no two students adjacent and chair k empty)

+Sk-2 (the number of ways students can sit in the row with chair k
occupied, chair k- 1 empty, and chairs 1 through
k -2 occupied by a nonempty set of students in such a
way that no two students are adjacent)

+1 (for the seating in which chair k is occupied
and all the other chairs are empty

= Sk-1 + Sk-2 + I for all integers k > 3.
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44. The partitions are

{Xl}{X2 }{X3 }{X4 ,X 5 } {.Xi}{. 2 }{X4 }{X3 ,X5} {Xl}{X3}{X4 }{X2,X5 } {X 2 }{X3}{X4 }{HlX }

{Xl}{X 2}{X5}{X3,X4 } {X1}{X3}{X5}{X2,X4} {.2}{X3}{X5}{X1,X4} {ZX}{X4 }{X 5}{r 2 ,X3 }

{X 2 }{X4 }{3 5 }{fX,X 3 } {X3}{X4 }{X5}{Xl,Z2}

SO S5,4 = 10.

46. By the recurrence relation from Example 8.1.11 and the values computed in Example 8.1.10,
S5 ,3 =S 4 , 2 +3-S 4 ,3 =7+3-6 =25.

47. By the definition and initial conditions for Stirling numbers of the second kind and the results
of exercises 44-46, the total number of partitions of a set with five elements is S5, 1 + S5.2 +
S5 ,3 +S5,4 +S5,5 = 1+15+25+10+1 =52.

49. Proof (by mathematical induction): Let the property P(n) be the equation _k=2 3n-" Sk,2 =

Sn+l1,3

Show that the property is true for n = 2: The property is true for n = 2 because for
n = 2 the left-hand side of the equation is Ek=2 32 kSk,2  32 2 S2,2  1, and the right-hand
side is S2 +1 ,3 = S 3 , 3 = 1 also.

Show that for all integers m > 2, if the property is true for n = m then it is true
for n = m + 1: Let m be an integer with m > 2, and suppose that EkZ=2 3m-kSk, 2 = Sm+1,3
[This is the inductive hypothesis.] We must show that

m+lE 3 (m+ I)-k Sk 2 = Sm+2,3.

k=2

But

S 3 (m +1)-kSk,2  = 3 * 3 m kSk 2 + 30 Sm+1,2
k=2 k=2

3 5 3  k S° k,2 + Sm+1,2
k=2

= Sm+1,2 + 3Sm+1,3 by inductive hypothesis

by the recurrence relation for
- Sin-2,3 Stirling numbers of the second kind.

50. If X is a set with n elements and Y is a set with m elements, then the number of onto functions
from X to Y is m!Sn,m, where Snm is a Stirling number of the second kind. The reason is
that we can construct all possible onto functions from X to Y as follows: For each partition of
X into m subsets, order the subsets of the partition; call them, say, SI, S2 , . . ., S,. Define an
onto function from X to Y by first choosing an element of Y to be the image of all the elements
in SI (there are m ways to do this), then choosing another element of Y to be the image of all
the elements in S2 (there are m - 1 ways to do this), then choosing another element of Y to
be the image of all the elements in S3 (there are m -2 ways to do this), and so forth. Each
of the m! functions constructed in this way is onto because since Y has m elements and there
are m subsets in the partition, eventually every element in Y will be the image of at least one
element in X. Thus for each partition of X into m subsets, there are m! onto functions, and
so the total number of onto functions is the number of partitions, Snm, times m!, or Th!Snm.

51. Proof (by strong mathematical induction): Let the property P(n) be the inequality F,, < 2n
where F, is the nth Fibonacci number.

Show that the property is true for n = I and n = 2: F= 1= < 2 = 21 and F2 = 3 <
4= 22.
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Show that for all integers k > 2, if the property is true for all integers i with
1 < i < k then it is true for k: Let k be an integer with k > 2, and suppose that F, < 2
for all integers i with 0 < i < k. [This is the inductive hypothesis.] We must show that Fk < 2'.
Now by definition of the Fibonacci numbers, Fk = Fk-1 + Fk-2. But by inductive hypothesis
[since k > 2], Fk-i < 2 k 1 and Fk-2 < 2k 2 Hence Fk = Fk-j + Fk-2 < 2 k 1 + 2 k 2

2k-2 (2 + 1) = 3 * k-2 < 4 2k-2 = 2k. Thus Fk < 2/k as was to be shown].
/Since both the basis and inductive steps have been proved, we conclude that F,1 < 2n for all
integers n > 1.]

52. Proof (by mathematical induction): Let the property P(n) be the equation gcd(F,+ 1 , F,) = 1.

Show that the property is true for n 0: To prove the property for n = 0, we must show
that gcd(F 1 , Fo) = 1. But F1 = 1 and F( I and gcd(1,1) = 1.

Show that for all integers k > 0, if the property is true for n = k then it is true
for n = k + 1: Let k be an integer with k > 0, and suppose that gcd(Fk+,,Fk) = 1. [This
is the inductive hypothesis.] We must show that gcd(Fk+ 2 , Fk+,) = 1. But by definition of the
Fibonacci sequence Fk+2 = Fk+, + Fk. It follows from Lemma 3.8.2 that ged(Fk+2 , Fk+,) -

gcd(Fk+,,Fk). But by inductive hypothesis, gcd(Fk+i,Fk) = 1. Hence gcd(Fk+ 2 ,Fk+,) = 1

[as was to be shown].

[Since both the basis and the inductive steps have been proved, we conclude that gcd(Fn+i, F") =
1 for all integers n > 0.]

53. a. 93 = 1, g4 = 1, g5 = 2 (LWLLL and WWLLL)

b. g6 = 4 (WWWLLL, WLWLLL, LWWLLL, LLWLLL)

c. If k > 6, then any sequence of k games must begin with exactly one of the possibilities: W,
LW, or LLW. The number of sequences of k games that begin with W is 9k-1 because the
succeeding k - 1 games can consist of any sequence of wins and losses except that the first
sequence of three consecutive losses occurs at the end. Similarly, the number of sequences of
k games that begin with LW is gk-2 and the number of sequences of k games that begin with
LLW is gk-3. Therefore, 9k = 9k-1 + 9k-2 + gk-3 for all integers k > 6.

54. a. dl = 0, d2 = 1, d 3 = 2 (231 and 312)

b. d4 = 9 (2143, 3412, 4321, 3142, 4123, 241:3, 4312, 2341, 3421)

c. Divide the set of all derangements into two subsets: one subset, S, consists of all derange-
ments in which the number 1 changes places with another number, and the other subset, T,
consists of all derangements in which the number 1 goes to position i t 1 but i does not go
to position 1. Forming a derangement in S can be regarded as a two-step process: step 1 is
to choose a position i and to interchange 1 and i and step 2 is to derange the remaining k- 2
numbers. Now there are k -1 numbers with which 1 can trade places in step 1, and so by the
product rule there are (k -)dk- 2 derangements in S. Forming a derangement in T can also be
regarded as a two-step process: step 1 is to derange the k -1 numbers 2, 3, .. ., k in positions
2,3,. . ., k, and step 2 is to interchange the number 1 in position 1 with any of the numbers
in the derangement. Now there are k - 1 choices of numbers to interchange 1 with in step 2,
and so by the multiplication rule there are dk- (k -1) derangements in T. It follows that the
total number of derangements of the given k numbers is dk = (k - 1)dk-1 + (k - 1)dk-2 for
all integers k > 3.

55. For each integer k = 1,2, . ,n -1, consider the product (x1 X 2 ... xk)(Xk+lXk+2± ... xn). The
factor XIX2 ... xk can be parenthesized in Pk ways, and the factor Xk+lXk+2 ... Xn can be
parenthesized in Pn-k ways. Therefore, the product x 1x 2 X3 ... xn-lxn can be parenthe-
sized in PkPn-k ways if the final multiplication is (X 1 X2 . .. Xk) .(Xk+1Xk+2 ... x.). Now when
x1 X2 x3 . . . xn- 1 rXn is fully parenthesized, the final multiplication can be any one of the following:
(X 1 ) (X22 3 . . . X.), (XI X 2 ) * (X 3 X 4 ... Xn), (XlX2X 3 ) (X 4 X 5 ... Xn), * * * , (X 1X 2 .X.. X-2) -(Xn-ln)
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(x1 x2 ... X,-1) (x"). So the total number of ways to parenthesize the product is the sum of

all the numbers PkPn-k for k = 1, 2, . . ., n - 1. In symbols: P k = = PkPn-k

Section 8.2

1. c. 3+3 2+3 3+ +3 n+n = 3(1+2+3+ ... ± +n)+n = 3( (2 +1)) +n =

3n(n + 1) 2n 3n2±+ 5n
+-=

2 2 2

2. b. 3n-1 + 3n-2 + ÷+ 32+ 3 + 1 = 1 + 3 + 32+ + 3n-2 + 3 n-, )- 1 3 -1
3 -1 2

d. Note that 1 - (-1)n and 1 .()k 1 ()n-k
(-1)n (-1)n -In-

2n 2 1+2n-2 2n-3 + + (-l)n-222 + (-l)n-1 .2 + (-1) T

- ((_1)n 2n+ ( 1)n12fl + 1)n22n_2±+.+±(1)2 22 + (-1)* 2[ + 1)

= ( 1), (1 -2+222+ + (1)n- 12n-1 + (_1)n2n)

(1)n (I 2 1)=(-l)n(l + (-2) + (-2)2 + .+ (-2)n-1 + (-2n

n( (-2) -)
(_~ I - (-2) n+ 1

(- )n + 2n+1

3

bo 1 1
1+bo 1+1 2

1 bo 1 - 1 1

1+b 1 -1+ 2 2±1 3

b I 1 1
b 3 1±b 1±+1 2 3±14

b3 4- 1 1
b4 = I 1 3 = =-4

3

1 1

Guess: bn 1 for all integers n > 0

6. di =2

d 2 =2d+3= 2-2+3=22+3

d3 = 2d 2 + 3 = 2(22+ 3) + 3 = 23±+ 2 3 + 3

d4 =2d3 +3 =2(23+2 3+3)+3=24+22 3+2 3+3
d5 =2d4 +3=2(24+2 2 3+2 3+3)+3=25 +2 3 3+2 2 3+2 3+3
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Guess: dn =2n+2n-2 3+2n-3.3+...+22.3+2.3+3
= 2 n+ 3(2n-2 + 2n-3 + . + 22+ 2 + 1)

(2(n-2)+l _ 1)
= 2n + 3 21 [by Theorem 4.2.3]

= 2n+ 3(2 n- _ 1)

= 2n-1(2 + 3) - 3 =5 2n-1 - 3 for all integers n > 1

eo = 2
e1 =4eo+5=4 2+5
e2 =4e1 +5 =4(4 2+5)+5=42 2+4 5+5

e3 =4e2 +5=4(42 2±4 5+5)+5=43 2+42.5+4 5+5
e4 =4e3 +5 =4(43.2+42-5+4-5+5)+5=44 2+43 5+42.5+4.5+5

Guess: en -4n .2 + 4n-1 5 + 4n-2 5 + .+ 42 5 + 4 5 + 5
= 4n .2 + 5(4n-1 + 4n-2 + .. + 42+ 4 + 1)

4(n-1)+1 -1

= 4n 2 + 5 by Theorem 4.2.3]

= 4 2 + 5 -) 4n(6 ) + 4n6f5 5

11 1
= 4n - (11.- 4n - 5) for all integers n > 1
33 33

8. fi =1

f2 =f±+22= 1+22
f3 =f2+23 =1+ 22 +2 3

f4 =f3+24 =I1+2 2 +2 3 +2 4

f5 = f 4 +2 5 =1 +2 2 ± 23± 2 4 +2 5

Guess: fn 1 + 22+ 23+ ... + 2n

(21 1)2 [by Theorem 4.2.3]

- 2n+± - 3 for all integers n > 1

9 91
91 1

92 = =_=
g9+2 1+2 - 2

1

92 1+9+ 2 - 1 1

92±2 1 -=_ _ _ = =_ _

2 3+1221 +± 1+2(1±+ 2) 1±+ 2±222

1+2+221
93±+2 1 ±2 1 1+2(1±+2±+22) = 12 +22±+23

1 ± 2 ± 22

94 1+2+22+23 1
94+2 1 +2 1+2+22+23+24

(1 + 2 + 22 + 23)
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Guess: gn =
1

1+2+22 + 23 + .. + 2n-

2 1 [by Theorem 4.2.3)] for all integers n > 1

P1

P2

P3
P4
P5

= 2

=P1 + 2 . 32
=P2 + 2. 33
=P3 +2 34
=P4 +2 35

= 2 + 2 . 32
= 2 + 2 . 32 + 2 . 33
=2 + 2 -32 + 2 . 33 + 2 . 34

=2 + 2 . 32 + 2 33 + 2 34 + 2 . 35

Guess: p= 2 + 2 32 + 2 33+ 2 34 + .. + 2 3
2 + 2 32(1 + 3 + 32 + ... + 3n-2)

2 + 18 (33 1 ) [by Theorem 4.2.3/

2 + 18( ) 2 + 9(3 n-1 1)

2 + 32 23n-f1 - 9 3n+1 - 7 for all integers n > 1

to = 0
t1 =to+3 1+1 =3+1
t2 =t+ 3 2+1 =(3+ 1)+3 2+ 1 =3+3 2+2
t3 =t 2 +3 3+1= ((3+3 2)+2)+3 3+1 =3+3 2+3 3+3
t4 =t 3 +3 4+1 =(3+3 2+3 3+3)+3 4+1 =3+3 2+3 3+34+4

Guess: tn = 3+3 2+3 3+3 4+ +3 n+n

=3(1+2±+3+4+ .+n)+n = 3 (n ( ))+n

3n 2 + 3n + 2n 3n 2 + 5n

2 2
for all integers n > 0

Yi
Y2

Y3
Y4

=yi+22 =1+22
=y2+3 2 = (1+2 2 )+3 2 = 1+22+32
=Y3+42 = (1+22+32)+42 = 12+22+32+42

Guess:
yn = V + 22 + 3 2 + . -.- + n2 =n(n + 1)(2n + 1) by exercise 10 of Section 4.2

16. The recurrence relation in exercise 18(c) of Section 8.1 is ak = 3
ak-1 + 2. The initial condition

is a1 = 2.

11.

13.

15.

[by Theorem 4.2.2]
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a, 2
a2  3a±+2=3 2+2
a3  3a 2 +2 =3(3 2+2) + 2=32 2+2 3+2
a4 =3a3 +2 =3(32 2+2 3+2)+2=33 2+32 2+2 3+2

Guess:

a, =2(1+3+32 + .+ 3n-1) =2 (3 1) [by Theorem 4.2.3]

3' - 1 for all integers n > 1

17. The recurrence relation in exercise 21(c) of Section 8.1 is tk = 2 tk-1 + 2. The initial condition
is tj = 2.

t1 = 2
t2 =2t+2 =22+2 =22+2
t3 =2t2 +2 =2(22+2)+2=23+22+2
t4 =2t3 +2=2(23 +2 2 +2)+2 =24+23+22+2
t5 =2t4 +2=2(24 +2 3 +2 2 +2)+2 =25+24+23+22+2

Guess: tn = 2n+21 n-2 + + 22+ 2
= 2(2 + 2 ± + ... + 22 + 2 + 1)

(2(n-l)+l 1) \

= 2 2 1 )= 2(2 _ 1) = 2n+1 - 2 for all integers n > 1

20. Let tn be the runner's target time on day n. Then tk = tk-1 - 3 seconds for all integers
k > 1. Hence to, t 1, t 2 ,.  is an arithmetic sequence with constant adder -3. It follows that
tn = to + n(-3) for all integers n > 0. Now to = 3 minutes, and 3 minutes equals 180 seconds.
Hence the runner's target time on day 14 is t14 = 180 + (-3)14 = 180-42 = 138 seconds = 2
minutes 18 seconds.

21. Proof: Let r be a fixed constant and a0 , a,, a2 , . a sequence that satisfies the recurrence
relation ak = rak-1 for all integers k > 1 and the initial condition ao = a. Let the property
P(n) be the equation a, = ar'.

Show that the property is true for n = 0: For n = 0 the right-hand side of the equation
is aro = a 1 = a, which is also the left-hand side of the equation.

Show that for all integers k > 0, if the property is true for n = k then it is true
for n = k + 1: Let k be an integer with k > 0 and suppose that ak = ark. [This is the
inductive hypothesis.] We must show that ak+1 = ark+l. But

ak+1 = rak by definition of aoa 1 ,a 2 , . .

= r(ark) by substitution from the inductive hypothesis
= ark+l by the laws of exponents.

/This is what was to be shown.]

22. The recurrence relation Pk = (1 + i/m)Pk-1 defines a geometric sequence with constant mul-
tiplier 1 + i/m. Therefore, Pn = Po(l + i/m)' for all integers n > 0.

23. For each integer n > 0, let P, be the population at the end of year n. Then for all integers
k > 1, Pk = Pk-1 + (0.03)Pk-] = (1.03)Pk- . Hence Po, P1, P2 ,.... is a geometric sequence
with constant multiplier 1.03, and so Pn = Po . (1.03)n for all integers n > 0. Since P0 = 50
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million, it follows that the population at the end of 25 years is P25 = 50- (1.03)25 - 104.7
million.

25. For each integer n > 1, let Sn- 1 be the number of operations the algorithm executes when it
is run with an input of size n. Then so = 7 and Sk = 2Sk-1 for each integer k > 1. Therefore,
SO, SI, S2, .. is a geometric sequence with constant multiplier 2, and so s, = so, 2 n = 7-2n for
all integers n > 0. For an input of size 25, the number of operations executed by the algorithm
is s25 -1 = s24 = 7 -224 = 117,440,512.

26. a. For each integer k > 1, the amount in the account at the end of k months equals the
amount in the account at the end of the (k -1)st month plus the interest earned on that
amount during the month plus the $200 monthly addition to the account. Therefore, Ak
Ak-1 + (0.03/12)Ak-1 + 200 = (1.0025)Ak-1 + 200.

b.
AO = 1000
Al = (1.0025)Ao + 200 = 1000(1.0025) + 200
A2  (1.0025)A1 + 200 = (1.0025)[1000(1.0025) + 200] + 200

1000(1.0025)2 + 200(1.0025) + 200
A3  (1.0025)A 2 + 200 = (1.0025)[1000(1.0025)2 + 200(1.0025) + 200] + 200

1000(1.0025)3 + 200(1.0025)2 + 200(1.0025) + 200
A4  (1.0025)A 3 + 200

(1.0025)[1000(1.0025)3 + 200(1.0025)2 + 200(1.0025) + 200] + 200
1000(1.0025)4 + 200(1.0025)3 + 200(1.0025)2 + 200(1.0025) + 200

Guess: A, = 1000(1.0025)- + [200(1.0025)-- + 200(1.0025)n-2 + ...

+200(1.0025)2 + 200(1.0025) + 200]

= 1000(1.0025) + 200[(1.0025)- 1 + (1.0025)n-2 + - + (1.0025)2 + 1.0025 + 1]

= 1000(1.0025)- + 200 ((1.0025)- 1)
2 1002-I

= (1.0025)n(1000) + 200 ((1.0025) - 1)
0.0025

= (1.0025)'(1000) + 80000((1.0025) - 1)

= (1000 + 80000)(1.0025) -80000 = 81000(1.0025) -80000

c. Proof (by mathematical induction): Let Ao, A 1, A2 ,.... be a sequence that satisfies the
recurrence relation Ak = (1.0025)Ak-1 + 200 for all integers k > 1, with initial condition
AO = 1000. and let the property P(n) be the equation An = 81000(1.0025) -80000.

Show that the property is true for n = 0: For n = 0 the right-hand side of the equation
is 81000(1.0025)0 - 80000 = 1000, which equals AO, the left-hand side of the equation

Show that for all integers k > 0, if the property is true for n = k then it is true for
n = k + 1: Let k be an integer with k > 0, and suppose that Ak = 8 10 0 0 (l.002 5 )k -80000.
[This is the inductive hypothesis.] We must show that Ak+1 = 8 1000(1.0025)k+1 - 80000. But

Ak+1 = (1.0025)Ak + 200 by definition of Ao, Al, A2 ,
= (1. 0 0 2 5 )[8 10 0 0 (l. 0 02 5 )k -80000] + 200 by substitution from

the inductive hypothesis
= 8 1000(1.0025)k+1 -80200 + 200
= 8 1000(1.0025)k+1 -80000 by the laws of algebra.

[This is what was to be shown.]
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e. By parts (b) and (c), A, = 81000(1.0025)r- 80000, and so we need to find the value of n
for which

81000(1.0025) -80000 = 10000.

But this equation holds

X• 81000(l.0025)n = 90000

a> (1.0025)n = 80000 - 9

.> loglo(1.0025)n = log1o (9) by property (7.2.5)

.> nlog1 o(I.0025) = log10 (lo ) by exercise 31 of Section 7.2

1og10 (10/9
n = oi(1/)-42.2.

1og 10 (1.0025)

So n - 42.2 months. If interest is only paid at the end of each month, then after about 42.2
months, or about 3 1/2 years, the account will have grown to more than $10, 000.

27. a. Let the original balance in the account be A dollars, and let A, be the amount owed
in month n assuming the balance is not reduced by making payments during the year. The
annual interest rate is 18%, and so the monthly interest rate is (18/12)% = 1.5% = 0.015. The
sequence AO,A 1 ,A 2 , ... satisfies the recurrence relation Ak = Ak-1 +0.015Ak-1 = 1.015Ak-1.
Thus Al = 1.015Ao = 1.015A, A2 = 1.015A = 1.015(1.015A) = (1.015) 2 A, ... , A 12 =
1.015A1 I = 1.015(1.015)11 A = (1.015) 12 A. So the amount owed at the end of the year is

(1.015)12 A. It follows that the APR is (1=015)1 AA AA A((1.015) 1) - (1.015)12 1
A A

19.6%.

Note: Because Ak = 1.015Ak-1 for each integer k > 1, we could have immediately con-
cluded that the sequence is geometric and, therefore, satisfies the equation A, = Ao(1.015)' -
A(1.015)-.

b. Because the person pays $150 per month to pay off the loan, the balance at the end of month
k is Bk = 1.015Bk- -150. We use iteration to find an explicit formula for Bo, B 1, B2 ....

Bo = 3000
B1 = (1.015)Bo -150 = 1.015(3000) -150
B2 = (1.015)B -150 = (1.015)[1.015(3000) - 150] -150

= 3000(1.015)2 _ 150(1.015) - 150
B3 = (1.015)B 2 -150 = (1.015)[3000(1.015)2 -150(1.015) -150] -150

= 3000(1.015)3 - 150(1.015)2 - 150(1.015) - 150
B4 = (1.015)B 3 -150

= (1.015)[3000(1.015)3 - 150(1.015)2 - 150(1.015) - 150] - 150
= 3000(1.015)4 - 150(1.015)3 - 150(1.015)2 - 150(1.015) - 150

Guess: B, = 3000(1.015)- + [150(1.015)- 1- 150(1.015) n-2 + ...

-150(1.015)2 - 150(1.015) - 150]

= 3000(1.015)- - 150[(1.015)--l + (1.015)n 2 + . + (1.015)2 + 1.015 + 1]

= 3000(1.015)- - 150 ( (1.015)- 1)
1.015 -1

150
= (1.015)-(3000) - 1 ((1.015) - 1)

0.015
=(1.015)-(3000) - 10000((1.015)- 1)
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= (1.015)-(3000- 10000) + 10000

= (-7000)(1.015)- + 10000

So it appears that Bn = (-7000)(1.015)- + 10000. We use mathematical induction to confirm
this guess.

Proof (by mathematical induction): Let Bo, B1, B2 , . be a sequence that satisfies the recur-
rence relation Bk = (1.015)Bk-1 -150 for all integers k > 1, with initial condition Bo = 3000,
and let the property P(n) be the equation Bn = (-7000)(1.015)n + 10000.

Show that the property is true for n = 0: For n = 0 the right-hand side of the equation
is (-7000)(1.015)n + 10000 = 3000, which equals Bo, the left-hand side of the equation

Show that for all integers k > 0, if the property is true for n = k then it is true for
n = k + 1: Let k be an integer with k > 0, and suppose that Bk = (- 7 0 0 0 )(1.015)k + 10000.

/This is the inductive hypothesis.] We must show that Bk+1 = (- 7 0 0 0 )(1.015)k+1 + 10000.

But
Bk+1 = (1.015)Bk -150 by definition of Bo, B1, B 2 ...

= (1.015)[(- 7 0 0 0 )(1. 0 15 )k + 10000] -150 by substitution from
the inductive hypothesis

= (- 7 0 0 0 )(1.015)k+± + 10150- 150
= (- 7 0 0 0 )(1.015)k+± + 10000 by the laws of algebra.

/This is what was to be shown.]

c. By part (b), B= (-7000)(1.015)' + 10000, and so we need to find the value of n for which

(-7000)(1.015)n + 10000 = 0.

But this equation holds

7000(1.015)- = 10000

(1015)n =10000 10
~ (.017~ 7000 -7

4> log1 0 (1.015)' = log1 o (1v) by property (7.2.5)

X nlog1 o(1.015) = log1 o ( ) by exercise 31 of Section 7.2

log10 (10/7) 24
logl 0(1,015)

So n 24 months = 2 years. It will require approximately 2 years to pay off the balance,
assuming that payments of $150 are made each month and the balance is not increased by
any additional purchases.

d. Assuming that the person makes no additional purchases and pays $150 each month, the
person will have made 24 payments of $150 each, for a total of $3600 to pay off the initial
balance of $3000.

29. Proof (by mathematical induction): Let bo, b1, b2 , . . be a sequence that satisfies the recur-

rence relation bk = - k-1 for all integers k > 1, with initial condition bo = 1, and let the

property P(n) be the equation bn =
n +1

Show that the property is true for n 0: For n = 0 the right-hand side of the equation

is 0 = 1, which equals bo, the left-hand side of the equation

Show that for all integers k > 0, if the property is true for n = k then it is true

for n = k + 1: Let k be an integer with k > 0 and suppose that bk = k 1 [This
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is the inductive hypothesis.] We must show that bk+1 I r, equivalently, that
_(k ±l)+l1' or qiaenlta

bk±1 =k2Butk + 2

bk+ 1 + bk by definition of bo, b1, b2 ,. . .

1
= ki1 by substitution from the inductive hypothesis

1± 1
k+11

(kI+ 1) + 1

k + 2
[This is what was to be shown.]

31. Proof (by mathematical induction): Let d1 , d2 , d3 ,. ... be a sequence that satisfies the recur-
rence relation dk = 2dk-1 + 3 for all integers k > 2, with initial condition d1 = 2, and let the
property P(n) be the equation dn = 5 2n-1_3.

Show that the property is true for n = 1: For n = 1 the right-hand side of the equation
is 5 .21 1 - 3 = 5- 3 = 2, which equals di, the left-hand side of the equation

Show that for all integers k > 1, if the property is true for n = k then it is true
for n = k + 1: Let k be an integer with k > 1, and suppose that dk = 5 2k- 1- 3. [This is
the inductive hypothesis.] We must show that dk+1 = 5 . 2 (k+1)-l - 3. But

dk+1 = 2dk + 3 by definition of dj, d2 , d3 ,....
= 2(5 . 2 k-1 -3) + 3 by substitution from the inductive hypothesis

=5 2k - 6 + 3
5 2(k+)-l - 3 by the laws of algebra.

[This is what was to be shown.]

32. Proof (by mathematical induction): Let eoel,1 , .... be a sequence that satisfies the recurrence
relation ek = 4ek- 1 + 5 for all integers k > 1, with initial condition eo = 2, and let the property

1
P(n) be the equation en = -(11 . 4f - 5).

3
Show that the property is true for n = 0: For n = 0 the right-hand side of the equation
is 3(11 ( 40 - 5) = (11 - 5) = 2, which equals eo, the left-hand side of the equation.

Show that for all integers k > 0, if the property is true for n k then it is true

for n = k + 1: Let k be an integer with k > 0, and suppose that ek = 3(11. 4k - 5). [This

is the inductive hypothesis.] We must show that ek+1 1(11 . 4 k+1 - 5). But
3

ek+1 = 4 ek + 5 by definition of e, eI, e2 , ....

- 4 -(11 - 4k- 5) + 5 by substitution from the inductive hypothesis
3

4 - 1 1 4k 4 5 + 5
3 3

- . 1 1 . 4k1 + -
3 3 3
1 -1 1 4 k1 5
3 3

= 1(11. 4 k+1 5) by the laws of algebra.
3

[This is what was to be shown.]
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33. Proof (by mathematical induction): Let fl, f2, f3,-- . be a sequence that satisfies the recur-
rence relation fk = fk-1 + 2k for all integers k > 2, with initial condition fi = 1, and let the
property P(n) be the equation fn = 2n+r 3.

Show that the property is true for n = 1: For n = 1 the right-hand side of the equation
is 21'+ - 3 = 4 - 3 = 1, which equals fl, the left-hand side of the equation.

Show that for all integers k > 1, if the property is true for n = k then it is true
for n = k + 1: Let k be an integer with k > 1, and suppose that fk = 2 k+1 -3. [This
is the inductive hypothesis.] We must show that fk+i = 2 (k+1)+l - 3, or, equivalently, that
fk+1 = 2 k+2 - 3. But

fk+l = fk + 2 k+1 by definition of fl, f2, f3,...

= 2 k+- 3 + 2k+1 by substitution from the inductive hypothesis
= 2 2 k+1 3

2k+2 - 3 by the laws of algebra.

[This is what was to be shown.]

34. Proof (by mathematical induction): Let g1, 92,9g3,...be a sequence that satisfies the recur-

rence relation 9k = 9k-1 for all integers k > 2, with initial condition 91 = 1, and let the
9k-1 + 2

property P(n) be the equation g,, =
2n 1

Show that the property is true for n = 1: For n = 1 the right-hand side of the equation

is 1, which equals 91, the left-hand side of the equation.

Show that for all integers k > 1, if the property is true for n = k then it is true
1

for n = k + 1: Let k be an integer with k > 1, and suppose that Ak = 2 k [ [This is the

inductive hypothesis.] We must show that 9k+1 = 2k+1 But

9k1 k +2 by definition of 91, 92, 93,...

1

-- 1 by substitution from the inductive hypothesis
1

2 k - ±2

I + 2 ( 2 k- 1)

1+ 2 k+1 -2

2 k+1 -1 by the laws of algebra.

[This is what was to be shown.]

35. Proof by mathematical induction: Let ho, hi, h2 , . be a sequence that satisfies the recurrence
relation hk = 2 k- hk 1 for all integers k > 1, with initial condition ho = 1, and let the property

2 n~1 ( i-lntl
P(n) be the equation h, - -

Show that the property is true for n = 0: For n = 0 the right-hand side of the equation

is 20±1 - (-1)o±1 - 2 1) 1, which equals ho, the left-hand side of the equation.
3 3

Show that for all integers k > 0, if the property is true for n = k then it is true
for n = k + 1: Let k be an integer with k > 0, and suppose that

2k+1 _ (_I)k+l

hk [ [This is the inductive hypothesis.]hk 3
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We must show that

2 (k±1)±1 - 1-)(k+1)+1
hk+1 = 2

3

or, equivalently, that

2 k+2 - (_I)k+2
hk+1-=

But

hk+1 = 2 k+- hk by definition of ho, h1 , h2 ,..

k 2k+I - (-I)k+l

= 2  k+1 by substitution from the inductive hypothesis

33* 2'kl - 2 k±1 + (-l)k+1

3
2 2k. - ( 1 )k+2

3
2k+2 - (- ) k+2
= 3 by the laws of algebra.

[This is what was to be shown.]

36. Proof by mathematical induction: Let P1, P2,P3, be a sequence that satisfies the recurrence
relation Pk = Pk-1 + 2 . 3k for all integers k > 2, with initial condition P1 - 2, and let the
property P(n) be the equation Pn = 3+± -7-

Show that the property is true for n = 1: For n = 1 the right-hand side of the equation
is 31+1 - 7 = 32 - 7 = 9 - 7 = 2, which equals pl, the left-hand side of the equation.

Show that for all integers k > 1, if the property is true for n = k then it is true
for n = k + 1: Let k be an integer with k > 1, and suppose that Pk = 3 k+1 - 7. [This is the
inductive hypothesis.] We must show that Pk+I = 3 (k+1)+1 - 7 = 3 k+2 - 7. But

Pk+1 = Pk + 2-3k+ by definition of P1 ,P2 ,P 3 ,...
= (3k+I - 7) + 2 . 3k+1 by substitution from the inductive hypothesis
= 3 k+1(j + 2) - 7

3 3 k+1 7
= 3 k+2 - 7 by the laws of algebra.

[This is what was to be shown.]

37. Proof by mathematical induction: Let so, si, 82. be a sequence that satisfies the recurrence
relation Sk = Sk-1 +2k for all integers k > 1, with initial condition so = 3, and let the property
P(n) be the equation s, = 3 + n(n + 1).

Show that the property is true for n = 0: For n = 0 the right-hand side of the equation
is 3 + 0(0 + 1) = 3, which equals so

Show that for all integers k > 0, if the property is true for n = k then it is true
for n = k + 1: Let k be an integer with k > 0, and suppose that Sk = 3 + k(k + 1). [This is
the inductive hypothesis.] We must show that Sk+1 = 3 + (k + 1)((k + 1) + 1), or, equivalently,
that Sk+1 = 3 + (k + 1)(k + 2). But

Sk+1 = Sk + 2(k + 1) by definition of 0 ,S1 ,S 2 ....
= (3 + k(k + 1)) + 2(k + 1) by substitution from the inductive hypothesis
= 3+k 2 +3k+2

= 3 + (k + 1)(k + 2) by the laws of algebra.

[This is what was to be shown.]
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38. Proof by mathematical induction: Let to, t1, t2 , .... be a sequence that satisfies the recurrence
relation tk = tk-1 + 3k + 1 for all integers k > 1, with initial condition to = 0, and let the

property P(n) be the equation tn = 2

Show that the property is true for n = 0: For n = 0 the right-hand side of the equation

is 3.0 + 50° = 0, which equals to.
2

Show that for all integers k > 0, if the property is true for n = k then it is true
3k 2 + 5k 1

for n = k + 1: Let k be an integer with k > 0, and suppose that tk = 2 [This is

the inductive hypothesis.! We must show that tk+1 - 3(k+ 1) +5(k±1) But the left-hand
2

side of this equation is

tk+l = tk + 3(k + 1) + I by definition of to? t1, t2...

= 2 + 3(k + 1) + 1 by substitution from the inductive hypothesis

3k2 + 5k + 6k + 6 + 2
2

3k2 + ilk + 8
= 2 by the laws of algebra.

And the right-hand side of the equation is

3(k+1)2 +5(k+1) 3(k 2 +2k+1)+5k+5 _ 3k 2 +Ilk+8

2 2 2 also. Thus, both sides of
the equation are equal to the same quantity, and so they are equal to each other [as was to be
shown].

40. Proof by mathematical induction: Let yi, Y2, Y3, . be a sequence that satisfies the recurrence
relation Yk = Yk-I +k2 for all integers k > 2, with initial condition Yi = 1, and let the property

P(n) be the equation Yn 6 n(n + 1)(2n + 1)

Show that the property is true for n = 1: For n = 1 the right-hand side of the equation
is1 (1 + 1) (2.1 1) = 1, which equals Yi*

6

Show that for all integers k > 1, if the property is true for n = k then it is true
for n = k + 1: Let k be an integer with k > 1, and suppose that

k(k + 1)(2k + 1) for some integer k > 1.
Yk 6

[This is the inductive hypothesis.]

We must show that

(k + 1)((k + 1) + 1)(2(k + 1) + 1)
yk+1= 6

or, equivalently, that Yk+i = (k + 1)(k + 2)(2k + 3) But
6
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Yk+I Yk + (k + 1)2  by definition of Y1,Y2 ,Y3,...

k(k ( 1)(2k + 1) + (k + 1)2 by substitution from the inductive hypothesis
6

k(k + 1)(2k + 1) + 6(k + 1)2

6
(k + 1)[k(2k + 1) + 6(k + 1)]

6
(k + 1)(2k 2 + 7k + 6)

6

(k + 1)(k + 2)(2k 6 3) by the laws of algebra.
6

[This is what was to be shown.]

41. Proof by mathematical induction: Let ai, a2, a,3, .... be a sequence that satisfies the recurrence
relation ak = 3

ak- 1 +2 for all integers k > 2, with initial condition a, = 2, and let the property
P(n) be the equation an = 3n _ 1.

Show that the property is true for n = 1: For n = 1 the right-hand side of the equation
is 31 - 1 = 2, which equals a,.

Show that for all integers k > 1, if the property is true for n = k then it is true
for n = k + 1: Let k be an integer with k > 1, and suppose that ak = 3 k - 1 for some integer
k > 1. [This is the inductive hypothesis.] We must show that ak+1 = 3 k+1 - 1. But

ak+1 = 3 ak + 2 by definition of al,a 2 ,a 3 ,....

= 3 (3 k _ 1) + 2 by substitution from the inductive hypothesis
= 3 k+1 - 3 + 2
= 3 k+1 - 1 by the laws of algebra.

/This is what was to be shown.]

42. Proof by mathematical induction: Let t 1, t2 , t3 , . be a sequence that satisfies the recurrence
relation tk = 2 tk-1 + 2 for all integers k > 2, with initial condition t1 = 2, and let the property
P(n) be the equation t, = 2n+- 2.

Show that the property is true for n = 1 For n = 1 the right-hand side of the equation
is tj = 22 - 2 = 2, which is true.

Show that for all integers k > 1, if the property is true for n = k then it is true
for n = k + 1 : Let k be an integer with k > 1, and suppose that tk = 2 k+1 - 2. /This is the
inductive hypothesis.] We must show that tk+1 = 2 (k+l)+ -2, or, equivalently, tk+ = 2 k+2- 2.
But

tk+1 = 2 tk + 2 by definition of t1 ,t 2 ,t3 ,...
= 2(2k+l- 2) + 2 by inductive hypothesis
= 2 k+2 - 4 + 2
= 2 k+2 - 2

[This is what was to be shown.]

44. a.
b1 = 1

b2 = 2
2 2

b3  b 22 1

b2 2
b4 =- 2
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2 2
b5 =b = 2 =1

2 2
b5  1

2 2
b7 =b 6  2 1

Guess: b, 1 if n is odd{ 2 if n is even

b. Proof by strong mathematical induction: Let bl,b 2 ,b 3 ,... be a sequence that satisfies the
2

recurrence relation bk = for all integers k > 3, with initial conditions b1 = 1 and b2 = 2,
bk-1

and let the property P(n) be the equation

b, 1 if n is odd
bn 2 if n is even

Show that the property is true for n = 1 and n =2: For n = 1 and n = 2 the
right-hand sides of the equation are 1 and 2, which equal b1 and b2 respectively.

Show that for all integers k > 2, if the property is true for all i with 1 < i < k
then it is true for k: Let k be an integer with k > 2 and suppose

{1 if iis odd
bi = . .ifiise for all integers i with 1 < i < k.

2 if i is even

/This is the inductive hypothesis.] We must show that

bk { 1 if k is odd
2 if k is even.

But

bk 2 by definition of b1 ,b2 ,b3 ,...
bk-1

2 1if k- I is odd
I liod by substitution from the inductive hypothesis

2 if k is even{ 2 if k is even because k has opposite parity from k-1.
1Iif kis odd

/This is what was to be shown.]

46. a.
so 1

s, =2
S2 =2so = 2
83 =2s1 = 22 = 22
S4 =2s2 = 22 = 22
S5 -2S3 = 222 = 23
86 =2s4 = 22 2 = 23
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87 = 2s5 = 2 23 = 24

s8 = 286 = 2 23 = 24

Guess:

or, equivalently,

S2m+1 =

S2m =

for all integers m > 0
for all integers m > 1

{ 2(n+1)/2

Sn = 2 n/2
if n is odd

if n is even |
2 n/21 for all integers n > 0.

b. Proof by strong mathematical induction: Let So, si, S2,... be a sequence that satisfies the
recurrence relation Sk = 2

8k-2 for all integers k > 2, with initial conditions so = 1 and s, = 2,
and let the property P(n) be the equation

Sn =- 2f-/21 2(n+1)/2 if n is odd
- F 2n/2 if n is even

Show that the property is true for n = 0 and n = 1: For n = 0 and n = 1 the right-
hand sides of the equation are 20/2 = 20 = 1 and 2(1+1)/2 21 = 2, which equal so and s1
respectively.

Show that for all integers k > 1, if the property is true for all i with 0 < i < k
then it is true for k: Let k be an integer with k > 1 and suppose

Si 2 (i+1) /2 if i is odd
st= 2i/2 if is even for all integers i with 1 < i < k.

[This is the inductive hypothesis.] We must show that

( 2(k+l)/2 if k is odd
Sk 2 k/2 if k is even.

But

Sk = 2Sk-2{ 2 . 2 ((k-2)+1)/2 if k - 2 is odd
- 2 2 (k-2)/2 if k-2 is even{ 2 (k-l)/2+1 if k is odd
= 2 (k-2)/2+1 if k is even

= 2 (k+l)/2 if k is odd
- 2 k/2 if k is even.

by definition of so, si,2, 82 ..

by substitution from the inductive hypothesis

because k - 2 and k have the same parity

= 1 -to= 1 -0= 1
= 2 - t1 = 2 - 1= 1
= 3 - t2 = 3 - 1 = 2
=4 -t 3 = 4-2 = 2
= 5 - t4 = 5-2 = 3
= 6 - t 5 = 6 - 3 = 3

[This is what was to be shown.]

47. a.
to = 0
tl

t2

t3
t4

t5
t 6

2m+ 1

2"
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Guess: t, = [n/2] for all integers n > 0

b. Proof (by strong mathematical induction): Let to, t1 , t2 .  be a sequence that satisfies the
recurrence relation tk = k - tk-1 for all integers k > 1, with initial condition to = 0. and let
the property P(n) be the equation t, = [n/2].

Show that the property is true for n = 0 : For n = 0 the right-hand side of the equation
is [0/2] = 0, which equals to.

Show that for all integers k > 0, if the property is true for all i with 0 < i < k
then it is true for k: Let k be an integer with k > 0 and suppose t= [i/2] for all integers
i with 1 < i < k. /This is the inductive hypothesis.] We must show that tk = fk/2]. But

tk k -tk-1 by definition of to, t1, t2 ,

= -[(k- 1)/2] by substitution from the inductive hypothesis
k k-k/2 if k is even

k +-(k-1)/2 if k is odd

k/2 if k is even by the laws of algebra
(k+ 1)/2 if k is odd

- [k/2] by definition of ceiling.

/This is what was to be shown.]

48. a.
W1 =1
W2 = 2
w3 = w± + 3 = 1 + 3
w 4 = w 2 +4 = 2 + 4
w 5 =w 3 +5=1+3+5
w6 =w 4 +6=2+4+6
W7 = w 5 +7= 1+3+5+7

1+3+5+ +n if nisodd
Guess: W,, - 2+4+6+- +n if niseven

I __ if n is odd
if is o by exercise 5 of Section 4.2

2(1+2+3+ + 2) if n is even

( 12 if n is odd

= 1by Theorem 4.2.2j 2(2(22) J if n is even

| (n+1) ifn is odd
( 4 2 by the laws of algebra.

rn4 if n is even

b. Proof by strong mathematical induction: Let w 1, w2 , w3 ,. ... be a sequence that satisfies
the recurrence relation Wk = Wk-2 + k for all integers k > 3, with initial conditions WI = 1
and w 2 = 2, and let the property P(n) be the equation
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(n + 1)2 if n is odd
Wn = n4 +2

n(n2) ifnis even
4

for all integers n > 1.

Show that the property is true for n = 1 and n = 2: For n = 1 and n = 2 the
right-hand sides of the equation are (1 + 1)2/4 = 1 and 2(2 + 2)/4 = 2, which equal w1 and
w2 respectively.

Show that for all integers k > 2, if the property is true for all i with 1 < i < k
then it is true for k: Let k be an integer with k > 2 and suppose

(i +1)2 if iis odd

wi = 4i
it + 2) f i is even

for all integers i with 1 < i < k.

/This is the inductive hypothesis.J

We must show that

( (+ 1) 2 if k is odd
Wk =

kkk kS+2) ifkiseven.
4

-2 +k
((k -2)+1) 2 k ifk

4
(k-2)((k -2) + 2) + k if k

4
(k 1)2 + 4k if k is odd

(k 2) k 4k
4 + i if k is even

k2 - + 4
- 2k1±4kif k is odd

k2 +4-2k±4k if k is even
4

k 2 + 2k + 1 if k is odd
4

k 2k. if k is even
4

(k± 1)2 if k is odd
4k(k + 2) if k is even
4

by definition of W 1 , W2 , W 3 , ...

2 is odd
by substitution from the in-

2 is even ductive hypothesis

because k -2 and k have the
same parity

by the laws of algebra.

vas to be shown.]

49.

ulo = 2
'u, = 2
U2 =uo.u2l =2.2= 2 1+1 = 2
Ul3 = Ul tlU2 = 2 22 =2 1+2 =2 23
tl4 = tl2 13 = 22.23 = 22+3 = 25

15 = -U3 tU4 = 23 25 = 23+5 = 28

tl6 = tl4 - U5 = 2 5 28 = 25+8 = 2 13

But

Wk = wk

[This is what I
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Guess: u, = 2 F-, where Fn is the nth Fibonacci number, for all integers n > 0.

b. Proof by strong mathematical induction: Let uO, u1 , U2 .. be a sequence that satisfies the
recurrence relation Uk = Uk-2 Uk-1 for all integers k > 2, with initial conditions u0 = 2 and
ul = 2, and let the property P(n) be the equation un = 2 Fn, where Fn is the nth Fibonacci
number.

Show that the property is true for n = 0 and n = 1: For n = 0 and n = 1, Fo = 1
and F1 = 1, and so the left-hand sides of the equation are 21 = 2 and 21 = 2, which equal u0
and ul respectively.

Show that for all integers k > 1, if the property is true for all integers i with
0 < i < k then it is true for k: Let k be an integer with k > 1 and suppose ui = 2F4,
where Fi is the ith Fibonacci number, for all integers i with 1 < i < k. [This is the inductive
hypothesis.] We must show that Uk = 2Fk, where Fk is the kth Fibonacci number. But

Uk = Uk-2 Uk-1 by definition of uo, uu 2 , ....
= 2 Fk 2 .F- by substitution from the inductive hypothesis
= 2 Fk-2+Fk-1 by the laws of exponents
= 2 Fk by definition of the Fibonacci sequence.

[This is what was to be shown.]

51. The sequence does not satisfy the formula. By definition of a,, a2 , a3 ,..., a, = 0, a2 = (a, + 1)2
= 12 = 1, a3 = (a 2 + 1) 2 = (1 + 1)2 = 4, a4 = (a3 + 1)2 = (4+ 1)2 = 25. But according to the
formula a4 = (4 - 1)2 =9 9 25.

52. a. Suppose there are k -1 lines already drawn in the plane in such a way that they divide
the plane into a maximum number Pk-, of regions. If addition of a new line is to create a
maximum number of regions, it must cross all the k - 1 lines that are already drawn. But if
all k - 1 lines are crossed by the new line, then one can imagine traveling along the new line
from a point before it reaches the first line it crosses to a point after it reaches the last line it
crosses. One sees that for each integer i = 1, 2,.. . , k - 1, the region just before the ith line is
reached is divided in half. This creates k -1 new regions. But the final region after the last
line is passed is also divided in half. This creates one additional new region, which brings the
total number of new regions to k. Therefore, Pk = Pk-l + k for all integers k > 1.

b.
P1 = 2
P2 = Pi + 2 = 2 + 2
P3 =P 2 +3 =2+2+3
P4 =P 3 +4=2+2+3+4=
P 5 =P 4 +5 =2+2+3+4+5

Guess: P, =2+2+3+4+ +n=1+1+2+3+4+ +n

= n(n + ) [by Theorem 4.2.2]
2

2 n 2 + n n 2 + n +2
2 n 2  2 for all integers n > 1
2 2 2
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53.

[1 1 2 - [ 2 1 ]

[ 1 1 ]3 = [ 3 2 ]

[1 1 ]4 [ 5 3 ]

I 1 0 ] 53 2

G u 1e 5 F [a i >
Guess: For all integers n > 1,

= [
=[

= [
= [

F 2

F1

F3
F2

F4

F3

F5
F4

F1

Fo

F2

F1

F3

F2

F4
F3

I
I
I
I

[ 1 1 ] [ Fn- Fe- ]

Proof by mathematical induction: Let A2 , A3 , A4 ,. be a sequence of 2 x 2 matrices that
satisfies the recurrence relation

Ak-=[~ 1 ]k - [ [i ik- 1= ~~ Ak-1
A [1 1 0 1 1 0 1 1 0 1 1 0

for all integers k > 3, with initial condition A2 = [ 2 1 ], and let the property P(n) be the

equation

An - Fn F,- 1
n - Fn-I Fn-2

where Fm is the mth Fibonacci number for m > 0.

Show that the property is true for n = 2 : For n = 2, the property states that

A2 = [ F2 F]

But A2 = [ 1 ] and the first calculation above shows that [ 2 1 ] = [ F2Fi ]
So the property is true for n = 2.

Show that for all integers k > 2, if the property is true for n = k then it is true
for n = k + 1 : Suppose that for some integer k > 2,

Ak - [1 0 ] = Fk Fk2j [This is the inductive hypothesis.]

Then

Ak+1 [ 1 A

[ 1 1 ] [ Fk Fk-I ]

L1 0 LFk-1 Fk-2

Fk+Fk-1 Fk-1+Fk-2

Fk Fkl- 1

- Fk+j Fk 1
- Fk Fk-l

[This is what was to be shown.]

by definition of A2 , A 3 , A4 , ....

by inductive hypothesis

by definition of matrix multiplication

by definition of the Fibonacci sequence.
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54. a.

Y = E+ c+ mYO

Y2 = E+c+mY1 =E+c+m(E+c+mYO) = (E+c) +m(E+c) +m2Yo

Y3 = E+c+mY2 = E+c+m((E+c)+m(E+c)+n2YO) =(E+c)+m(E+c)±m2(E+c)+m3 YO

Y 4 E+c+mY = E+c+m((Ec)+m(E+c)±m2 (E+c) +m3 Yo)

(E + c) + m(E+ c) + m 2 (E + c) + m3 (E + c) + m4 Y0

Guess: Y, = (E+c) +m(E+c) +m 2 (E+c) +. +mn- (E+c) +mnYo

= (E+c)[1 +m+m
2 

+ _. ±mn-] +mnyO

= (E + c) (M 7) + m'Yo, for all integers n > 1.

b. Suppose 0 < m < 1. Then

lim Yn = lim (E +cjm -1)\ +M
n boo n oo m -1

= (E + c) (Iimn -com 1) + lim MnY
ml- 1 ) noo

= (E + c) 0( 1 ) )+ 0 Yo because when 0 < m < 1,

then limr_,O mn = 0

E+c
1 -m.

Section 8.3

C 20 +D = C+D = fD -C
C21 +D=2C+D =2 f # 20C+(-C)

C 22 + D = 2 22 + (-2) = 6

C 03" + D(-2)0
C .31 + D(-2)1

C .32 + D(-2)2

C+D=3 f 2C+2D= 6
3C-2D=4 J l 3C-2D=4

2. 32 + 1. (-2)2 =18+4 =22

2 } { -2 }

} { C-23-2
1 }

6. Proof: Given that bn = C. 3nl + D(-2)11, then for any choice of C and D and integer k > 2,
bk = C . 3k + D(-2)k, bt-, = C . 3 k 

1 + D(-2)k 1 , and bk-2 = C . 3k-2 + D(- 2 )k 2, Hence,
b1 + 6bk (C 3 k- + D(- 2 )k-1) + 6 (C . 3 k-2 + D(-2)k 2) = C (3 k + 6 3 ) +

D (( 2 )k- + 6( 2 )k-2) = C 3 k-2(3+6) +D(-2)k-2(- 2+6) = C3k2 .3 2 + D(- 2 )k 22 =
C . 3k + D(-2)k = bk.

2. b and f

3. b.

{ aO

I al =

a 2 =

4. b.
bo =

l bi =

b2 =

2 � '#:� t C'
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7.

{ C+D =

2)

2 ) 1 2 1}
|,D /-5 =I + V-- 2

2 2D*VHD= 2

D = -(I1- v/)

-(1 - v)C0+ =v 1 I I -(1 - V5)
2V4

2v/±+(1 - -) 1+ v
2CV= 2 v'

9. a. If for all integers k > 2, tk = 7tk-1 - lOtk-2 and t 7# 0, then t2 = 7t
t2 - 7t + 10 = 0. But t2 - 7t + 10 = (t -2)(t-5). Thus t = 2 or t = 5.

10 and so

b. It follows from part (a) and the distinct roots theorem that for some constants C and D,
bo, b1, b2 , . . . satisfies the equation bn = C 2" + D . 5n for all integers n > 0. Since bo = 2
and b1 = 2, then

bo =C 2°+D5° =C+D=-2{ bl=C 21 +D-5 1 =2C+5D-2 J
D=2-C{
C = C8/3

8 nThus b, -- 2"
3

,# D=2-C

2C + 5(2 - C){ D = 2 - (8/3)
C =8/3

2 5" for all integers n > 0.
3

10. a. If for all integers k > 2, tk = tk-1 + 6tk-2 and t # 0, then t2 = t + 6 and so t2 - t-6 = 0.
Butt 2 - t -6=(t -3)(t+2). Thust =3ort =-2.

b. It follows from part (a) and the distinct roots theorem that for some constants C and D,
cO,c 1 ,c2 , . . satisfies the equation cn = C . 3" + D(-2)" for all integers n > 0. Since co = 0
and c1 = 3, then{ c= C3° 30 +D(-2)0 = C+D =0 I f D =

c1 =0C.3 1 +D(-2) 1 =3C-2D =3 f { 3C
-C J D= -3/5 1
2(-C) = 3 C = 3/5 f

Thus cn = 3 - 3" -- (-2)" for all integers n > 0.
5 5

12. The characteristic equation is t2 
_ 9 = 0. Since t2 

_ 9 = (t - 3)(t + 3), the roots are t = 3 and
t = -3. By the distinct roots theorem, for some constants C and D, en = C . 3n + D(-3)n for
all integers n > 0. Since eo = 0 and e1 = 2, then

eo = C * 30 +D(-3)1 = C3+D = O 2 D =-C 1 4 D =-1/3 '

\ el = C -3 +D(-3) -= 3C-3D = 2 {3C -3(-C) = 2 C = 1/3 J

Thus e, = -3 n-3(-3)n =3 3-+(-3)- =3 _n11(1)n-l
Tu a3 ig 0
for all integers n > 0.

if n is odd
if n is even

1 J

D ( +
2

C +D = 1 }
I

2 }

-(2/3) }
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14. The characteristic equation is t2 + 4t + 4 = 0. Since t2 + 4t + 4 = (t + 2)2, there is only one
root, t =-2. By the single root theorem, for some constants C and D,

s, = C(-2)± + D * n(-2)' for all integers n > 0.

Since so = 0 and si =-1, then

-so = C(-2) 1 +D 0f-2)1 =20 = DC
so = C(-2)1 + D 1(-2) =-2C- 2D =-1 X0-2D -1 D =1/2 }

Thus Sn= O( 2)n + 2 n(-2)- n 2 1 for all integers n > 0.
2

15. The characteristic equation is t
2 - 6t + 9 = 0. Since t

2 - 6t + 9 = (t - 3)2, there is only one
root, t = 3. By the single root theorem, for some constants C and D, t, = C - 3n + D n .3n
for all integers n > 0. Since to - 1 and tj = 3, then{ to = C 30 + D 0 30 = C 1 C =1 if C =

t 1 =C 3±+D 1 3' =3C+3D=3 C+D=1 f\ D=O f
Thus tn = 1 3 n + 0 n -3n = 3n for all integers n > 0.

16. Given the set-up of exercise 37 from Section 8.1, Sk = 2 Sk-1 + 2 sk-2 for all integers k > 2.
Thus the characteristic equation is t2 -2t-2 = 0. By the quadratic formula, the roots are

t = 4±8 VI2 =1 . By the distinct roots theorem, for some constants C
2 2

and D, Sn - 0(1 + v'n + D(1 - 3)n for all integers n > 0. Since so = 1 and si = 3, then

so = C(1 + v)° + D(1- v/)0 = C + D I
, s= C(I + -)1 + D(I l-3)'= 3J

D= I1-2+ C /D _I-

{ 1 2 v/3 V2}v_
C /3 + 2

Thus Sn = C(1 + -- 3)" + D(1 - 3 3) = +/g (1 + - 2 ((1 - V) for all integers
Thuv/3(1V2 +D( v'3"2V

n > 0.

17. Given the set-up of exercise 39 from Section 8.1, cl 1 and C2 = 2 and Ck = Ck-1 + Ck-2 for

all integers k > 3. Define co = 1. Then c2 = co + c1 and so the recurrence relation holds for all
integers k > 2. The characteristic equation is, therefore, t2 

- t-1 ,= O which is the same as
the characteristic equation for the Fibonacci sequence. In addition, the first two terms of this
sequence are the same as the Fibonacci sequence. Hence CO, cl, C2, .  satisfies the same ex-

i,-\) n+1 / /5) +

plicit formula as the Fibonacci sequence, namely, Cn = I (

(equation (8.3.8)).

An alternative solution is to substitute the roots of the characteristic equation into the formula

I= (12x/5 ) ±D (12_/ ) for n = I and n = 2 and solve for C and D from the

resulting set of simultaneous equations.

18. Proof: Suppose that 8 o, S,82, 2. and to, t 1 , t 2 ,.  are sequences such that Sk = 5sk- -
4

Sk-2 and tk = 5tk-1 - 4
tk-2 for all integers k > 2. Then for all integers k > 2, 5(2sk-1 +

3 tk-1) - 4(2 Sk-2 + 3 tk-2) = (5 2sk-1 - 4 2
Sk-2) + (5 3

tk-1 - 4 3
tk-2) = 2 (5 5k-1 -

4Sk-2)+3(5tk-1 - 4
tk-2) = 2 Sk + 3

tk. [This is what was to be shown.]
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20. Proof: Suppose that r is a nonzero real number, k and m are distinct integers, and ak and am
are any real numbers. Consider the system of equations

Crk + kDrk = ak

Cri + mDrm = am.

Without loss of generality, we may assume that k > m. Multiply the bottom equation by
rk-m to obtain the equivalent system

Crk + kDrk = ak

Crmi rk-m + mDrm * rk-m = Crk + mDrk = a, . rk-m.

Subtracting the bottom equation from the top one gives (k -m)Drk = ak -a * rkm, or

D = (k m am ) k since k -m 5 0 and r # 0. Substituting into the top equation gives Crk +

k (akamr km) rk = ak, and solving for C gives C = (a- k (ak ( k n m ) )-
(k- M)rk r (k -m)

These calculations show that the given system of equations has the unique solutions C and D
that are shown.

Alternatively, the determinant of the given system of two linear equations in the two unknowns
C and D is rk.m rm-r' - ri-k rk = rk+(m -k). This is nonzero because m 7& k and r # 0,
and therefore the given system has a unique solution.

21. Let ao, al, a 2 ,.... be any sequence that satisfies the recurrence relation ak = Aak-1 + Bak-2
for some real numbers A and B with B 7$ 0 and for all integers k > 2. Furthermore, suppose
that the equation t2 - At - B = 0 has a single real root r. First note that r 7 0 because
otherwise we would have 02 - A *0 -B = 0, which would imply that B = 0 and contradict the
hypothesis. Second, note that the following system of equations with unknowns C and D has
a unique solution.

aO = Cr° +±0 Dr° = 1 C+0. D

a1 = Cr1 + 1 Dr' = C r + D - r

One way to reach this conclusion is to observe that the determinant of the system is 1 . r-r r =
r 7& 0. Another way to reach the conclusion is to write the system as

aO = C

a1 = Cr +Dr

and let C = ao and D = (a -Cr)/r. It is clear by substitution that these values of C and D
satisfy the system. Conversely, if any numbers C and D satisfy the system, then C = ao and
substituting C into the second equation and solving for D yields D = (a1 -Cr)/r.

Proof of the exercise statement by strong mathematical induction: Let ao, a,, a 2 , . ... be any
sequence that satisfies the recurrence relation ak = Aak-l+Bak-2 for some real numbers A and
B with B 54 0 and for all integers k > 2. Furthermore, suppose that the equation t 2 At -B = 0
has a single real root r. Let the property P(n) be the equation a, = Cr' + nDrn where C
and D are the unique real numbers such that aO = Cr° + 0 Dr0 and a1 = Cr1 + 1 - Dr1 .

Show that the property is true for n = 0 and n = 1: The fact that the property is
true for n = 0 and n = 1 is automatic because C and D are exactly those numbers for which
aO = Cr0 + 0 * Dr' and a1 = Cr1 + 1 Dr1 .
Show that for all integers k > 1, if the property is true for n = k then it is true
for n = k + 1: Let k be an integer with k > 1 and suppose ai = Cr' +iDr', for all integers i
with 1 < i < k. [This is the inductive hypothesis.] We must show that ak = Crk + kDrk. Now
by the inductive hypothesis, ak-1 = Crk-1 + (k -1)Drk- 1 and ak-2 = Crk-2 + (k -2)Drk-2.
So
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ak - Aak-l + Bak-2  by definition of ao, al, a2 ,.**

A(Crk-1 + (k -)Drk-l) + B(Crk-2 + (k- 2)Drk-2 )
by substitution from the inductive hypothesis

= C(Ark-1 + Brk-2) + D(A(k -)rk-l + B(k -2)rk-2)

by algebra
= Crk + Dkrk by Lemma 8.3.4.

[This is what was to be shown.]

23. The characteristic equation is t2 - 2t + 5 = 0. By the quadratic formula the roots of this
2±,4 20 I 1+2i

equation are t = 2 1- + 2i By the distinct roots theorem, for some constants

C and D, b, = C(1 + 2i)n + D(1 -2i)' for all integers n > 0. Since bo = 1 and b 1  1, then{b = C(1 + 2i)° + D(1 -2i)- = C + D = 1 f (1 -2i)C + (1 -2i)D = 1-2i
bi = C(1 + 2i)l + D(1 -2i) =1 1 (I + 2i)C + (1 -2i)D = 1

{ [(1 + 2i) -(1- 2i)]C = 1 -(1 -2i) = 2i C = 2i/4i-1/2{ D = 1-1/2 = 1/2
C= 1/2

Thus b= (1/2)(1 + 2i)' + (1/2)(1 - 2i)' for all integers n > 0.

' 1
24. a. If - = then '('- 1) = 1, or, equivalently, '2 _ X-1 0= and so ' satisfies the

equation t2  t-1 = 0.

b. By the quadratic formula, the solutions to t 2 - t-1 = 0 are t = 1 1±4 (1 + v)/2
2 (I - v/-5)/2

Let p1 = (1 + v/5)/2 and 2 = (1- v")/2.

c- In = o >nl n+l 7= 1($n+J _ on+l)1 1n1 -~5 12

This equation is an alternative way to write equation (8.3.8).

1 5
25. The given recurrence relation can be rewritten in the form -Pk = Pk-1 - Pk -2, or Pk -6 6

6 Pk-1-5Pk-2 Thus the characteristic equation is t2 6t+5 = 0. Since t2 -6t+5 = (t-1)(t-5),
this equation has roots t = 1 and t = 5. By the distinct roots theorem, for some constants C
and D, P" = C In + D 5n = C + D * 5' for all integers n > 0. Since PO l and P'300 -0,
then { Po=C±D*5°=C±Dl 1 f C±D=1lPo = C + D * 530 = C + 50 D = + | >\(-3D = I

P3| C + D =5- 3 0 0  C 53 0 0 |D=0 f (1 530 0)D

{C 1-° D 1 D =15300
1- 53 5300 3 5300

1= -5300 1 D- 1  50
/ 5300 N 1 1 'I 5300300

Thus Fn = 1-5300) + K 1553 ( 5300 - 1 for all integers n > 0.

5300 520 1
P20 = ts0 - 1 =1

26. a. Let k be an integer with k > 3, call the k distinct sectors of the disk 1,2,3,... ,k, and
suppose that the values of SI, S2 , .. , Sk- 1 are known. Note that S, = 4 and S2 = 4 3 = 12.

Case 1, Sectors 1 and 3 are painted the same color: In this case k > 3 because otherwise
sectors 1 and 3 would be both adjacent and painted the same color which is not allowed.
Imagine sectors 1 through 3 made into a single unit painted the color of sectors 1 and 3. Then
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the disk would contain a total of k -2 sectors: 1 - 3,4, 5, . . ., k, and the number of ways to
paint the disk would be Sk-2. Each of these ways corresponds to exactly three ways to paint
the disk when sectors 1-3 are not united, for that is the number of choices of colors to paint
sector 2 to contrast with sectors 1 and 3. Hence there are 3 Sk-2 ways to paint the disk in this
case.

Case 2, Sectors 1 and 3 are painted different colors: In this case, imagine shrinking sector 2 to
nothing. Then there would be Sk-1 ways to paint the resulting disk. Now imagine expanding
sector 2 back to its original size and giving it a color. Since there are two ways that sector 2
could be colored that would contrast with the colors of both sectors 1 and 3, each way to paint
the disk leaving sector 2 out corresponds to exactly two ways to paint the disk when sector 2
is present. Hence there are 2 Sk-1 ways to paint the disk in this case.

If k = 3, then case 1 does not occur, and so S3 = 2S2 = 24. If k > 4, then the total
number of ways to paint the disk is the sum of the ways counted in cases 1 and 2. Therefore,
Sk = 2Sk-1 + 3 Sk-2 for all integers k > 4.

b. Let To, T1 T2 ,.. . be the sequence defined by Tn = Sn+2 for all integers n > 0. Then
for all integers k > 2, Tk = 2Tk-1 + 3Tk-2 and To = 12 and T1 = 24. The characteristic
equation of the relation is t2 - 2t -3 = 0. Since t2 - 2t -3 = (t -3)(t + 1), the roots of this
equation are t = 3 and t = -1. By the distinct roots theorem, for some constants C and D,
Tn = C. 3' + D(-1)' for all integers n > 0. Since To = 12 and T1 = 24, then{ To= C 30 + D(-1)O = C + D = 12 { 4C = 36 D ( C = 9 }

Ti TC 31 +D(-I)' =3C - D=24 J + +D =12 I D=3J

Thus Tn = 9 .3n + 3(-1)" = 3(3 . 3n + (-I)') = 3(3n+1 + (-I)') for all integers n > 0, and
hence Sn= Tn-2 = 3(3(n-2)+1 + (-l)n-2) = 3(3n-1 + (-1)n) for all integers n > 2.

Section 8.4

1. b. (1) p, q, r, and s are Boolean expressions by I.

(2) (p V q) and - s are Boolean expressions by (1), II(b), and 11(c)

(3) (pA s) is a Boolean expression by (1), (2), and 11(a)

(4) ((pA - s) A r) is a Boolean expression by (1), (3), and II(a)

(5) ((pA s) A r) is a Boolean expression by (4) and II(c)

(6) (p V q)V - ((pA - s) A r) is a Boolean expression by (2), (5) and II(b)

2. b. (1) e E E* by I.

(2) b = eb E E* by (1) and II(b).

(3) bb c E* by (2) and II(b)

3. b. (1) MI is in the MIU-system by I.

(2) MII is in the MIU-system by (1) and II(b).

(3) MIIII is in the MIU-system by (2) and II(b).

(4) MIIIIIIII is in the MIU-system by (3) and 11(b).

(5) MUIIIII is in the MIU-system by (4) and II(c).

(6) MUIIU is in the MIU-system by (5) and II(c).

4. The string MU is not in the system because the number of I's in MU is 0, which is divisible
by 3, and for all strings in the MIU-system, the number of I's in the string is not divisible by
3.

Proof (by structural induction): Let the property be the following sentence: The number of
I's in the string is not divisible by 3.
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Show that each object in the BASE for the MIU-system satisfies the property: The
only object in the base is MI, which has one I, and the number 1 is not divisible by 3.

Show that for each rule in the RECURSION for the MIU-system , if the rule is
applied to objects in the system that satisfy the property, then the objects defined
by the rule also satisfy the property: The recursion for the MIU-system consists of four
rules, denoted II(a)-(d). Let s be a string, let n be the number of I's in s, and suppose 3Fn.
Consider the effect of acting upon s by each recursion rule in turn.

In case rule II(a) is applied to s, s has the form xI, where x is a string. The result is the string
xIU. This string has the same number of I's as xI, namely n, and n is not divisible by 3.

In case rule II(b) is applied to s, s has the form Mx, where x is a string. The result is the
string Mxx. This string has twice the number of I's as Mx. Because n is the number of I's
in Mx and 3In, we have n = 3k + 1 or n = 3k + 2 for some integer k. In case n = 3k + 1, the
number of I's in Mxx is 2(3k + 1) = 3(2k) + 2, which is not divisible by 3. In case n = 3k + 2,
the number of I's in Mxx is 2(3k + 2) = 6k + 4 = 3(2k + 1) + 1, which is not divisible by 3
either.

In case rule II(c) is applied to s, s has the form xIIIy, where x and y are strings. The result
is the string xUy. This string has three fewer I's than the number of I's in s. Because n is
the number of I's in xIIIy and 3In, we have that 3I(n -3) either [for if 3 1 (n -3) then
n -3 = 3k, for some integer k. Hence n = 3k + 3 = 3(k + 1), and so n would be divisible by
3, which it is notl. Thus the number of I's in xUy is not divisible by 3.

In case rule II(d) is applied to s, s has the form xUUy, where x and y are strings. The result
is the string xUy. This string has the same number of I's as xUUy, namely n, and n is not
divisible by 3.

By the restriction for the MIU-system, no strings other than those derived from the base and
the recursion are in the system. Therefore, for all strings in the MIU-system, the number of
I's in the string is not divisible by 3.

5. b. (1) ( ) is in P by I.

(2) (( )) is in P by (1) and II(a).

(3) (( ))(( )) is in P by (2) and II(b).

6. b. Even though the number of its left parentheses equals the number of its right parentheses,
this structure is not in P either. Roughly speaking, the reason is that given any parenthesis
structure derived from the base structure by repeated application of the rules of the recursion,
as you move from left to right along the structure, the total of right parentheses you encounter
will never be larger than the number of left parentheses you have already passed by. But if
you move along (( )( )))(( ) from left to right, you encounter an extra right parenthesis in the
seventh position.

More formally: Let A be the set of all finite sequences of integers and define a function
9: P -* A as follows: for each parenthesis structure S in P, let g[S] = (ai,a 2 ,. . . ,a,,) where
ai is the number of left parentheses in S minus the number of right parentheses in S counting
from left to right through position i. For instance, if S = (( )( )), then g[S] = (1,2,1,2,1,0).
By the same argument as in part (a), the final component in g[S] will always be 0. We claim
that for all parenthesis structures S in P, each component of g[S] is nonnegative. It follows
from the claim that if (( )( )))(( ) were in P, then all components of g[(( )( )))(( )] would be
nonnegative. But g[(( )( )))(( )] (1,2,1,2,1,0,-1,0,1,O), and one of these components is
negative. Consequently, (( )( )))(( ) is not in P.

Proof of the claim (by structural induction): Let the property be the following sentence: Each
component of g(S] is nonnegative, with the final component being 0.
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Show that each object in the BASE for P satisfies the property: The only object in
the base is ( ), and g[( )] = (1,0). Both components of g[( )] are nonnegative,and the final
component is 0.

Show that for each rule in the RECURSION for P , if the rule is applied to
objects in P that satisfy the property, then the objects defined by the rule also
satisfy the property: The recursion for P consists of two rules, denoted II(a) and II(b). Let
S and T be parenthesis structures in P with the property that all components of g[S] and g[T]
are nonnegative, with the final components of both S and T being 0. Consider the effect of
applying rules 11(a) and II(b).

In case rule 11(a) is applied to S, the result is (S). Observe that that the first component in
g[(S)] is 1 [because (S) starts with a left parenthesis], every subsequent component of g[(S)]
except the last is one more than a corresponding (nonnegative) component of g[S]. Thus the
next-to-last component of (S) is 1 (because the final component of S is 0), and the final right-
parenthesis of (S) reduces the final component of g[(S)] to 0 also. So each component of g[(S)]
is nonnegative, and the final component is 0.

In case rule II(b) is applied to S and T, the result is ST. We must show that each component
of g[ST] is nonnegative, with the final component being 0. For concreteness, suppose g[S] has
m components and g[T] has n components. The first through the mth components of g[ST]
are the same as the first through the mth components of S, which are all nonnegative, with
the mth component being 0. Thus the (m + 1)st through the (m + n)th components of g[ST]
are the same as the first through the nth components of T, which are all nonnegative, with
the final component being 0. Because the final component of g[ST] is the same as the final
component of T, all components of g[ST] are nonnegative, with the final component being 0.

By the restriction condition, there are no other elements of P besides those obtainable from the
base and recursion conditions. Hence, for all S in P, all components of g[S] are nonnegative,
with final component 0.

7. b (1) 9, 6.1, 2, 4, 7, and 6 are arithmetic expressions by I.

(2) (6.1 + 2) and (4-7) are arithmetic expressions by (1), 11(c), and II(d)

(3) (9. (6.1 + 2)) and ((4 - 7) . 6) are arithmetic expressions by (1), (2), and II(e)

(4) ((9(6.14 +2)) is an arithmetic expression by (3) and 11(f)

9. Proof (by structural induction): Let the property be the following sentence: The string begins
with an a.

Show that each object in the BASE for S satisfies the property: The only object in
the base is a, and the string a begins with an a.

Show that for each rule in the RECURSION for S, if the rule is applied to objects
in S that satisfy the property, then the objects defined by the rule also satisfy the
property: The recursion for S consists of two rules, denoted II(a) and 11(b). In case rule II(a)
is applied to a string s in S that begins with a a, the result is the string sa, which begins with
the same character as s, namely a. Similarly, in case rule II(b) is applied to a string s that
begins with a a, the result is the string sb, which also begins with an a. Thus, when each rule
in the RECURSION is applied to strings in S that begin with an a, the results are also strings
that begin with an a. Because no objects other than those obtained through the BASE and
RECURSION conditions are contained in S, every string in S begins with an a.

11. Proof (by structural induction): Let the property be the following sentence: The string does
not have a leading zero.

Show that each object in the BASE for S satisfies the property: The objects in the
base are 1, 2, 3, 4, 5, 6, 7, 8, and 9. None of these strings has a leading zero.
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Show that for each rule in the RECURSION for S, if the rule is applied to objects
in S that satisfy the property, then the objects defined by the rule also satisfy the
property:

The recursion for S consists of two rules, denoted 11(a) and 11(b). In case rule 11(a) is applied
to a string s in S that does not have a leading zero, the result is the string s0, which does not
have a leading zero because it begins with the same character as s. In case rule 11(b) is applied
to string s and t in S that do not have leading zeros, the result is the string st, which also does
have a leading zero because it begins with the same character as s. Thus when each rule in the
RECURSION is applied to strings in S that do not have a leading zero, the results are also
strings that do not have a leading zero. Because no objects other than those obtained through
the BASE and RECURSION conditions are contained in S, no string in S has a leading zero.

12. Proof (by structural induction): Let the property be the following sentence: The string repre-
sents an odd integer.

Show that each object in the BASE for S satisfies the property: The objects in the
base are 1, 3, 5, 7, and 9. All of these strings represent odd integers.

Show that for each rule in the RECURSION for S, if the rule is applied to objects
in S that satisfy the property, then the objects defined by the rule also satisfy the
property: The recursion for S consists of five rules, denoted 11(a) II(e). Suppose s and t are
strings in S that represent odd integers. Then the right-most character for each of s and t is
1, 3, 5, 7, or 9. In case rule 11(a) is applied to s and t, the result is the string st, which has
the same right-most character as t. So st represents an odd integer. In case rules 11(b)-Il(e)
are applied to s, the results are 2s, 4s, 6s, or 8s. All of these strings have the same right-most
character as s, and, therefore, they all represent odd integers. Thus when each rule in the
RECURSION is applied to strings in S that represent odd integers, the result is also a string
that represents an odd integer. Because no objects other than those obtained through the
BASE and RECURSION conditions are contained in S, all the strings in S represent odd
integers.

13. Proof (by structural induction): Let the property be the following sentence: The integer is
divisible by 5.

Show that each object in the BASE for S satisfies the property: The objects in the
base are 0 and 5. Both of these integers are divisible by 5.

Show that for each rule in the RECURSION for S, if the rule is applied to objects
in S that satisfy the property, then the objects defined by the rule also satisfy the
property: The recursion for S consists of two rules, denoted II(a) and 11(b). Suppose s and t
are integers in S that are divisible by 5. By exercises 15 and 16 from Section 3.3, both s+t and
s -t are also divisible by 5. Thus when each rule in the RECURSION is applied to integers in
S that are divisible by 5 the result is an integer that is also divisible by 5. Because no objects
other than those obtained through the BASE and RECURSION conditions are contained in
S, all the integers in S are divisible by 5.

14. Proof (by structural induction): Let the property be the following sentence: The integer is
divisible by 3.

Show that each object in the BASE for S satisfies the property: The only object in
the base is 0, and 0 is divisible by 3.

Show that for each rule in the RECURSION for S, if the rule is applied to objects
in S that satisfy the property, then the objects defined by the rule also satisfy the
property: The recursion for S consists of two rules denoted 11(a) and 11(b). Suppose s is an
integer in S that is divisible by 3. By exercises 15 and 16 from Section 3.3, both s + 3 and s - 3
are also divisible by 3. Thus when each rule in the RECURSION is applied to an integer in
S that is divisible by 3, the result is also an integer that is divisible by 3. Because no objects
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other than those obtained through the BASE and RECURSION conditions are contained in
S, all the integers in S are divisible by 3.

16. Let S be the set of all strings of 0's and 1's in which all the 0's precede all the 1's. The
following is a recursive definition of S.

I. BASE: e E S, where e is the null string

II. RECURSION: If s c S, then

a. Os C S b. sl G S

III. RESTRICTION: There are no elements of S other than those obtained from I and II.

18. Let S be the set of all strings of a's and b's that contain exactly one a. The following is a
recursive definition of S.

I. BASE: a c S

II. RECURSION: If s C S, then

a. bs ES b. sb GS

III. RESTRICTION: There are no elements of S other than those obtained from I and II.

20. Proof (by mathematical induction): Let the property be the sentence "If a,, a 2 ,... ,a and
bl, b2 ,. .. , bn are any real numbers, then rl' 1 (aibi) = (H' 1 aj) (rF 12 bi) "

Show that the property is true for n = 1: Let a, and b, be any real numbers. By the
recursive definition of product, Hi- 1(ajbj) a1 bl, Hr 1 ai = a1 , and H i bi = b1. Therefore,

fIi=1(ajbj) = (rig=1 a1) (fli1 bi), and so the property is true for n 1.

Show that for all integers k > 1, if the property is true for n = k then it is true for
n = k + 1: Let k be an integer such that k > 1. Suppose that if a,, a 2 ,... ,ak and bl, b2,... ,bbk

are any real numbers, then H$k=1(ajbj) = (Hk=1 a1) (H 1 bi). [This is the inductive hypoth-

esis.] We must show that if a,, a 2 .... ,ak+l and b1, b2 ,... ,bk+l are any real numbers, then

Hk=l (aibi) = (H 1 ai) (H=+lb1 ) * So suppose a,, a2 , . ak+l and b1, b2 ,... ,bk+l are any
real numbers. Then

k+1(a b)

(= 1.(aibi)) (ak+lbk+l) by the recursive definition of product

= ((k (rkl by substitution from the inductive((H=1 a1) b" 1iJJ (ak+lbk±1) hypothesis

((/lk ( (rzk by the associative and commutative
((Hf1 a1) ak±1) ((i=1 bi) bk+1) laws of algebra

(nk+l ai) (rHk1l bi) by the recursive definition of product.

[This is what was to be shown.]

21. Proof (by mathematical induction): Let the property be the sentence "If a 1,a 2 ,... ,an and c
are any real numbers, then fH7 1 (caj) = cn (Hl 1 a,) "

Show that the property is true for n = 1: Let c and a, be any real numbers. By the
recursive definition of product, both H~l 1 (ca,) and c' rH- 1 ai equal ca,, and so the property
is true for n = 1.

Show that for all integers k > 1, if the property is true for n = k then it is true
for n = k + 1: Let k be an integer such that k > 1. Suppose that if c and a1,a 2 ,. . . ,ak are

any real numbers, then Hlk 1 (ca,) = ck (Fjz=1 ai). [This is the inductive hypothesis.] We must

show that if c and a1 ,a 2 ,.. .,ak+l are any real numbers, then Hrk+1(ca,) = Ck+1 (Ht~k+1 a1 ).

Let c and a,, a2 ,... , ak+I be any real numbers. Then
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H k+1 (C )

2k+l) by the recursive definition of product

(cak+1) by substitution from the inductive hypothesis

) ak+1) by the associative and commutative laws of algebra

by the laws of exponents and the recursive

definition of product.

/This is what was to be shown.]

22. Proof (by mathematical induction): Let the property be the sentence "If al, a2, . . , a, are any
real numbers, then Z 1 aiI < z 1 I ai J
Show that the property is true for n = 1: Let a, be any real number. By the recursive

definition of summation, both 1 ai I and ai I equal 1. Hence the property is true

for n = 1.

Show that for all integers k > 1, if the property is true for n = k then it is true
for n = k + 1: Let k be an integer such that k > 1. Suppose that if al,a2, ... ,ak are any

real numbers, then Zk 1ai < | ai 1. [This is the inductive hypothesis.] We must

show that if al, a2, . . ,ak+1 are any real numbers, then kl ai| < il ai . So suppose

a,,a2 ,. . . ,ak+l are any real numbers. Then

ZIk+ a 1 a1) ± ak+1 | by the recursive definition of summation

X k a+ | 1 a1) < | aI by the triangle inequality for absolute vable

il ail < =l I ai I + I ak+1 by substitution from the inductive hypothesis

|i. l ai |1 l I ai I by the recursive definition of summation.

[This is what was to be shown.]

24. Proof (by mathematical induction): Let the property be the sentence "If A and B1,B 2,. .. ,B
are any sets, then A U (nl 1 Bi) = n 1 (A U Bi)."

Show that the property is true for n = 1: Let A and B1 be any sets. By the recursive
definition of intersection, both A U (nif- Bi) and nil- (A U Bj) equal A U B1 . Hence the
property is true for n = 1.

Show that for all integers k > 1, if the property is true for n = k then it is true
for n = k + 1: Let k be an integer such that k > 1. Suppose that if A and B1 , B 2 , ... , Bk

are any sets then A U (nlk= Bi) =l. 1(A U Bi). [This is the inductive hypothesis.] We must

show that if A and B1 , B2 ,. . . Bk+1 are any sets then A U (nli'+1
1 Bi) = f 1

1(A U Bi). Let A
and B1 , B 2 , .., Bk+ be any sets. Then

A u(n k+ Bi) =A U((nlk Bi) n Bk+l by the recursive definitionAu(lii 1 )= of intersection.

A k \ by the distributive laws for sets
(A u yfl1 1 Bi,)) n~(A U Bk+l) (Theorem 5.2.2(3))

= k 1(A U Bi) n (A U Bk+l) by inductive hypothesis

= nk+ (A U B1 ) by the recursive definition
i=1 iof intersection.

[This is what was to be shown.]
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25. Proof (by mathematical induction): Let the property be the sentence "If Al, A2 ,..., A, are
any sets, then (nfi 1

1 Ai)C = U 1 Ai'."

Show that the property is true for n = 1: Let Al be any set. By the recursive definitions
of intersection and union, both (ni1f Ai)c and U' 1 AiC equal Alc. Hence the property is true
for n = 1.

Show that for all integers k > 1, if the property is true for n = k then it is true
for n = k + 1: Let k be an integer with k > 1. Suppose that if A1 ,A 2 ,. . . ,Ak are any
sets then (nf=l Ai)' 1= Aic. [This is the inductive hypothesis.] We must show that if
AIA2 ... Ak+1 are any sets then (nFk+1 A)C = Uk+1 AC. So suppose A 1 ,A 2 ,... , Ak+ are
any sets. Then

(n 'i Ai)c = ((nlk Ai) n Ak+1)c by the recursive definition of intersection
= (f= A,)c U Ac+1  by De Morgan's law for sets (Theorem 5.2.2(9))
= k Aic) U Ac 1  by inductive hypothesis

Uk+1 A c by the recursive definition of union.
[This is what was to be shown.]

26. M(91) = M(M(102)) = M(92) = M(M(103)) = M(93) = M(M(104)) = M(94)

= M(M(105)) = M(95) = M(M(106)) = M(96) = M(M(107)) = M(97) = M(M(108))

= M(98) = M(M(109)) = M(99) = M(M(110)) = M(100) = M(M(111)) = M(101) = 91

27. Proof 1 (by a variation of strong mathematical induction): Consider the property "M(n) = 91."

Show that the property is true for all integers n with 91 < n < 101: This statement
is proved above in the solution to exercise 26.

Show that for all integers k, if 1 < k < 91 and the property is true for all i
with k < i < 101, then it is true for k: Let k be an integer such that 1 < k < 91
and suppose M(i) = 91 for all i with k < i < 101. [This is the inductive hypothesis.] Then
M(k) = M(M(k + 11)) by definition of M and 12 < k + 11 < 102. Thus k < k + 11 < 101,
and so by inductive hypothesis M(k + 11) = 91. It follows that M(k) = M(91), which equals
91 by the basis step above. Hence M(k) = 91 /as was to be shown].

[Since the basis and inductive steps have been proved, it follows that M(n) = 91 for all integers
1 < n < 101.]
Proof 2 (by contradiction): Suppose not. That is, suppose there is at least one positive integer
k < 101 with M(k) # 91. Let q be the largest such integer. Then 1 < q < 101 and M(q) $& 91.
Now by the solution to exercise 26, for each integer n with 91 < n < 101, M(n) = 91. Thus
q < 90 and so q + 11 < 90 + 11 = 101. Note, therefore, that q + 11 is a larger positive integer
than q and is also less than 101. Hence, because q is the largest positive integer less than or
equal to 101 with M(q) $& 91, we must have that M(q + 11) = 91. But, by definition of M,
M(q) = M(M(q + 11)). So M(q) = M(M(q + 11)) = M(91) = 91 (by the solution to exercise
26). Therefore, M(q) $ 91 and M(q) = 91, which is a contradiction. We conclude that the
supposition is false and M(n) = 91 for all positive integers k < 101.

28. b. A(2, 1) = A(1, A(2, 0)) = A(1, A(1, 1)) = A(1, 3) /by part (a)] = A(0, A(1, 2)) = A(0, 4) /by
Example 8.4.9] = 4 + 1 = 5

29. b. Proof (by mathematical induction): Consider the property "A(2, n) = 3 + 2n."

Show that the property is true for n = 0: When n = 0, A(2, n) = A(2,0) = A(1,1) [by
8.4.2] = 3 [by exercise 28]. But also 3 = 3 + 2 * 0 = 3 + 2n. So the property is true for n = 0.
Show that for all integers k > 0, if the property is true for n = k then it is true
for n = k + 1: Let k be an integer with k > 0 and suppose A(2, k) 3 + 2k. [This is the
inductive hypothesis.] We must show that A(2, k + 1) = 3 + 2(k + 1). But
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A(2, k + 1) = A(1, A(2, k)) by (8.4.3)
= A(1, 3 + 2k) by inductive hypothesis
= (3+2k)+2 by part (a)
= 3 + 2(k + 1) by the laws of algebra.

[This is what was to be shown.]

c. Proof (by mathematical induction): Consider the property "A(3, n) = 8 . 2- 3 I"

Show that the property is true for n = 0: When n = 0, A(3, n) = A(3, 0) = A(2, 1) [by
8.4.2] = 5 [by exercise 28]. But also 5 = 8 20 -3 = 8 . 2t -3. So the property is true for
n = 0.

Show that for all integers k > 0, if the property is true for n = k then it is true
for n = k + 1: Let k be an integer with k > 0 and suppose A(3, k) = 8 2 2 k - /This is the
inductive hypothesis.] We must show that A(3, k + 1) = 8 2 k+1 - 3. But

A(3, k + 1) = A(2, A(3, k)) by (8.4.3)
= A(2, 8 2k - 3) by inductive hypothesis
= 3 + 2 ( 8 2k-3) by part b

= 3 + 8 2 k+1 -6

= 8 . 2 k+1 - 3 by the laws of algebra.

[This is what was to be shown.]

30. (1) T(2) = T(1) = 1

(2) T(3) = T(10) = T(5) = T(16) = T(8) = T(4) T(2) = 1

(3) T(4) = 1 by (2)

(4) T(5) = 1 by (2)

(5) T(6) = T(3) = 1 by (2)

(6) T(7) = T(22) = T(11) = T(34) = T(17) = T(52) = T(26) = T(13) = T(40) =T(20) -
T(10) = 1 by (2)

32. G is not well-defined. For each odd integer n > 1, 3n -2 is odd and 3n-2 > n. Thus the
values of G for odd integers greater than 1 can never be found because each is defined in terms
of values of G for even larger odd integers.
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Chapter 9: The Efficiency of Algorithms

The focus of Chapter 9 is the analysis of algorithm efficiency in Sections 9.3 and 9.5. The chapter
opens with a brief review of the properties of function graphs that are especially important for
understanding 0-, Q-, and <-notations, which are introduced in Section 9.2. For simplicity, the
examples in Section 9.2 are restricted to polynomial and rational functions. Section 9.3 introduces
the analysis of algorithm efficiency with examples that include sequential search, insertion sort,
selection sort (in the exercises), and polynomial evaluation (in the exercises). Section 9.4 discusses
the properties of logarithms that are particularly important in the analysis of algorithms and other
areas of computer science, and Section 9.5 applies the properties to analyze algorithms whose orders
involve logarithmic functions. Examples in Section 9.5 include binary search and merge sort.

The exercises in this chapter are designed to give you considerable latitude as to how thoroughly
to cover both asymptotic notations and algorithm analysis. The exercise sets for Sections 9.2 and
9.4 contain a particularly wide range of difficulty levels of problems. If you want to move rapidly
through the chapter, just avoid those that are especially demanding. Section 9.5 is not particularly
difficult and shows how a number of topics studied previously (recursive thinking, solving recurrence
relations, strong mathematical induction, logarithms, and asymptotic notations) all combine to give
useful information about interesting and practical algorithms.

Comments on Exercises:

Section 9.1: #20: This exercise is needed for various of the more theoretical exercises in Sections
9.2 and 9.4. #26 and #27 are warm-up exercises for the definitions of asymptotic notations.
Section 9.2: Exercises #1-9 give practice in interpreting the meanings of the definitions of the
asymptotic notations, and exercises #16-24 and #28-33 require students to establish orders for
functions directly from the definitions. Exercises #34-47 apply the theorem on polynomial orders.
Section 9.3: Exercises #6-19 introduce the analysis of algorithms through small algorithm seg-
ments. Exercises #20-27 concern insertion sort, #28-35 deal with selection sort, and #36-43
explore the relation between term-by-term polynomial evaluation and Horner's rule.
Section 9.4: Exercises #3-17 review properties of logarithmic functions, especially in combination
with floor and ceiling functions. The emphasis in the rest of the exercise set is on orders that involve
logarithmic and exponential functions.
Section 9.5: Exercises #8-15 take students through the steps for finding logarithmic orders for
relatively simple algorithm segments. Exercise #26 introduces the fast multiplication algorithm.

Section 9.1

3.

25

20

15

10

0 1 2 3 4

When 0 < x < 1, x3 > X4. (For instance, (1/2)3 = 1/8 > 1/16 = (1/2)4.) When x > 1,
4 >3

p(X) 4 / /

i /1,,,/// I
,,, X / ,,//p(X)= I
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12.

k(n)= LI/1
n
U

I
1

2 3
2 2

2
2
2
3
3 lI
3 -2

. . .. ..

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

15. Proof: Suppose that x1 and x2 are particular but arbitrarily chosen real numbers such that
X1 < X2. /We must show that g(X1) > 9(22).] Multiplying the inequality xi < x2 by -1/3
gives (-1/3)x1 > (-1/3)x2. Adding 1 to both sides gives (-1/3)x1 + 1 > (-1/3)x2 + 1. So
by definition of g, g(Xi) > 9(22) /as was to be shown].

16. b. Let h: R -* R be the function defined by the formula h(x) = X2. We will show that h
is increasing on the set of all real numbers greater than zero. Suppose xi and x2 are real
numbers greater than zero and such that xi < x2. Multiply both sides of x1 < x2 by x1
to obtain x12 < x1x2, and multiply both sides of x1 < x2 by x2 to obtain X1X2 < x22. By
transitivity of order [Appendix A, T17i, xi2 < X22, and so by definition of h, h(xi) < h(X2 ).

17. b. When x < 0, k is increasing.

Proof: Suppose x1 < x2 < 0. Multiplying both sides of this inequality by -1 gives -xi > -x2,

and adding X1X2 to both sides gives X£X2 - X1 > x1x2 -x2. Thus 1X2 - > X 2 2
X1X2 X1X2

because since x1 and x2 are both negative X£X2 is positive. Simplifying the two fractions gives

£2 1 , and so k(x 1 ) < k(x 2 ).
£2 £1

19. Proof: Suppose x1 and x2 are any real numbers in D and X1 < X2. We must show that
(f+g)(X£) < (f+g)(X2 ). Since f andg arebothincreasing, f(xj) < f(X2) andg(xi) < g(X2).

Adding the two inequalities gives f(xi) +g(x£) < f(X2) +9(X2), and so by definition of f +g,
(f + g)(X 1) < (f + 9)(X2). Consequently, f + g is increasing.

20. b. Proof: Let x1 and x2 be real numbers with 0 < x1 < x2. By part (a), xim < X2 m. Now
suppose that g(X£) > g(X2), or, equivalently, x1" > X2 11. Then, since these are nonnegative
real numbers, we again use part (a) to obtain (x1 n ) > (X2 n )f, By the laws of exponents,
this implies that xi m " =£lm > X2m = X2 n ". But this contradicts the fact that x£m < X2m.
Hence the supposition is false, and thus g(X£) < g(X2). So g is increasing.

n
0
1
2
3
4
S
6
7
8
9
I0
15

I
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22.

3

2

\4 3 2 1

-2

-3

-4

gh h

1 2 3 4 5

24. Proof: Suppose that f is a real-valued function of a real variable, f is increasing on a set S, and
M is any negative real number. [We must show that M- f is decreasing on S. In other words,
we must show that for all xl and x2 in the set S, if xI < £2 then (M * f)(xi) > (M * f)(X2).|
Suppose x1 and x2 are in S and xl < x2. Since f is increasing on S, f(xi) < f(X2). Since
M is negative, Mf(x1 ) > Mf(x 2 ) [because when both sides of an inequality are multiplied by
a negative number, the direction of the inequality is reversed]. It follows by definition of M . f
that (Mf)(xI) > (Mf)(x 2 ) /as was to be shown].

25. Proof: Suppose that f is a real-valued function of a real variable, f is decreasing on a set S, and
M is any negative real number. [We must show that M- f is increasing on S. In other words,
we must show that for all xl and X2 in the set S, if Xi < X2 then (M - f)(xi) < (M - MX2)

Suppose x1 and x2 are in S and x1 < x2. Since f is decreasing on S, f(xl) > f(X2). Since
M is negative, Mf(XI) < Mf(X2 ) [because when both sides of an inequality are multiplied by
a negative number, the direction of the inequality is reversed]. It follows by definition of Mf
that (Mf)(Xl) < (Mf)(X2 ) [as was to be shown].

27.
10000

8000

6000

4000

2000

The zoom and trace features of a graphing calculator or computer indicate that when x > 33.2
(approximately), then f(x) < 2g(x).

Alternatively, to find the answer algebraically, solve the equation 2(3x2) = 2x2 + 125x + 254.
Subtracting 2x2 + 125x + 254 from both sides gives 4X2 - 125x -254 = 0. By the quadratic

I 11 I I
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formula,
125 i 1252 + 4064 125 ± 19689 125 ± 140.3175

x
8 8 8

and so x- 33.165 or x -- 1.915. Since f and g are defined only for positive values of x, the
only place where the two graphs cross is at x- 33.165. Thus if xO = 33.2, then for all x > xO,
f(x) < 2g(x).

Section 9.2

2. a. Formal version of negation: f(x) is not O(g(x)) if, and only if, V positive real numbers b
and B, 3 a real number x > b such that f(x)I > B lg(x)l.

b. Informal version of negation: f(x) is not O(g(x)) if, and only if, no matter what positive
real numbers b and B might be chosen, it is possible to find a real number x greater than b
with the property that If(x)l > B 1g(x)j.

3. a. Formal version of negation: f(x) is not E)(g(x)) if, and only if, V positive real numbers k,
A, and B, B a real number x > k such that either If(x)l < A Ig(x)l or If(x)l > B Ig(x)j.

b. Informal version of negation: f(x) is not 0(g(x)) if, and only if, no matter what positive
real numbers k, A, and B might be chosen, it is possible to find a real number x greater than
k with the property that either If(x)l < A lg(x)I or If(x)l > B lg(x)l.

7. Let B = 9 and b = 1. Then by substitution, 13x6 + 5x4 -x 3 1 < BIx6 I for all x > b, and hence
by definition of O-notation, 3x6 + 5x4 -x 3 is O(x 6 ).

8. Let A = 1/2 and a = 101. Then by substitution, AIx 4
1 < JX4 - 50x3 + 1J for all x > a, and

hence by definition of Q-notation, x4 - 50x 3 + 1 is Qf(x4 ).

9. Let A = 1/2, B = 3, and k = 25. Then by substitution, AIx2
1 < 13X2-80x + 71 <BIX2

1 for
all x > k, and hence by definition of e9-notation, 3x2 - 80x + 7 is E)(x 2 ).

11. Proof: Suppose f: R -* R is a function, f(x) is 0(g(x)), and c is any nonzero real number.
Since f(x) is O(g(x)), there exist real numbers B and b such that If(x)I < Blg(x)l for all
x > b. Let B' = Icl B. Then B = B'/ Icl, and so

B'
if(x)I < - lg(x)I for all x > b.

or, equivalently,
IcIjf(x)I = lcf(x)l < B'|g(x)| for all x > b.

Thus lcf(x)I < B'lg(x)l for all x > b, and so, by definition of O-notation, cf(x) is O(g(x)).

1
13. Proof: Suppose f: R -* R is a function. We know that - < 1 < 2 and If(x)l > 0 for all

2

real numbers x > 0. Multiplying all parts of the inequality by If(x)I gives 2 If( )I < If(x)l <
2

2If(x)I for all real numbers x > 0. Let k = 0, A = - and B = 2. Then, by definition of
_~2'

e-notation, f(x) is E) (f(x)).

14. Note: For all nonnegative real numbers a, b, c, and d, if a < b and c < d then ac < bd. This
follows from properties T17 and T19 in Appendix A. To see why, use T19 to multiply both
sides of a < b by the nonnegative number c to obtain ac < bc, and multiply both sides of c < d
by b to obtain bc < bd. Then by T17 (the transitive law for order), ac < bd.

Proof: Suppose f, g, h, and k are real-valued functions of a real variable that are defined on
the same set D of nonnegative real numbers, and suppose f(x) is 0(h(x)) and g(x) is O(k(x)).
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By definition of O-notation, there exist positive real numbers bl, b2 , Bl, and B2 such that
If (x)l < Bilh(x)l for all real numbers x > bland lg(x)l < B2 1k(x)I for all real numbers x > b2.
Let B = B1 B2 and let b = max(bl, b2) . It follows by the note above that for all real numbers
x > b,

If(x)g(x)l = f(X)I lg(x)l < Bilh(x)lB 2Ik(x)l = Blh(x)k(x)l.

Thus, by definition of O-notation, f (x)g(x) is 0(h(x)k(x))

15. a. Proof (by mathematical induction): Let the property P(n) be the sentence "If x is any real
number with x > 1, then xn > 1.

Show that the property is true for n = 1: We must show that if x is any real number
with x > 1, then xi > 1. But x > 1 by hypothesis, and xi = x. So the property is true for
n = 1.

Show that for all integers k > 1, if the property is true for n = k then it is true
for n = k + 1: Let k be an integer with k > 1, and suppose that if x is any real number with
x > 1, then xk > 1. [This is the inductive hypothesis.! We must show that if x is any real
number with x > 1, then xk+l > 1. So suppose x is any real number with x > 1. By inductive
hypothesis, xk > 1, and multiplying both sides by the positive number x gives x -k > x 1,
or, equivalently, xk+1 > x. But x > 1, and so, by transitivity of order, xk+l > 1 [as was to be
shown].

b. Proof: Suppose x is any real number with x > 1 and m and n are integers with m < n.
Then n -m is an integer with n -m > 1, and so, by part (a), Xn-m > 1. Multiplying both
sides by xm gives Xm . Xn-m > xm - 1, and so, by the laws of exponents, Xn > £m [as was to
be shown].

17. a. For all real numbers x > 1, 0 < 22x9 + 8x2 + 4x because all terms are nonnegative. Adding
x to both sides gives x4 < 23x4 + 8x2 + 4x. Because all terms on both sides are nonnegative,
we may add absolute value signs to both sides to obtain the result that for all real numbers
x > 1, Ix 4 1< 123X4 + 8x2 + 4xj.

b. For all real numbers x > 1,

123X4 + 8x3 + 4x| = 23x4 + 8x3 + 4x because 23x4, 8x3, and 4x are
all positive since x > 1

= 1234 + 8x3 + 4x| < 23x4 + 8x4 + 4x4 because X3 < x4 and x < x4 for x > 1

1 2394 + 8x3 + 4x| < 35x4 by combining like terms

= 1234 + 8x3 + 4x1 < 3519141 because x4 is positive.

c. Let A = 1 and a = 1. Then by substitution, A1x 4 < 123X4 + 8x2 + 4x-l for all x > a, and
hence by definition of Q-notation, 23x + 8x2 + 4x is Q(x4 ).

Let B = 35 and b = 1. Then by substitution, 12394 + 8x3 + 4x1 < Blx 4l for all x > b, and
hence by definition of O-notation, 23x + 8x3 + 4x is O(X4).

d. Solution 1: Let A = 1, B = 35, and k = 1. By the results of parts (a) and (b), for all real
numbers x > k, A Ix41 < 12394 + 8x2 + 4x| < Blx4 1, and hence by definition of 1-notation,
23x4 + 8x2 + 4x is E((x4).
Solution 2: By part (c) and Theorem 9.2.1(1), we can immediately conclude that 23x4+8x3+4x
is (x 4 ).

19. First consider the fact that for all real numbers x > 1, 0 < bOx + 88 because all terms are
nonnegative. Adding x2 to both sides gives x2 < x2 lOOx + 88. And because all terms on
both sides are nonnegative, we may add absolute value signs to both sides to obtain the result
that for all real numbers x > 1, 9x21 < 9X2 + lOOx + 881.

Next consider the following argument: For all real numbers x > 1,
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±x2 lOOx + 88[ = x2 + 100x + 88 because x2, lOOx, and 88 are
all positive since x > 1

X2 + 1lOOx + 881 < I 2 + +10X2 + 88X2 because x < x2 and I < x2 for x > 1

I 1x2 + lOOx + 881 < 18992 by combining like terms

=X2 + lO0x + 881 < 189|z2 because x2 is positive.

Finally, let A = 1, B = 189, and k = 1. Then for all real numbers x > k, A 9x2 <
Ix2 + lOOx + 88| < B X21, and hence by definition of /-notation, x2 + lOOx + 88 is /3(x2).

21. a. For any real number x > 1,

I V/iI I = L[/xj because since x > 1 > 0, then [/ij > 0

I Lo/xi I < a because Lri < r for all real numbers r

I LVoll I |a IVxIbecause Va/ > 0.
b. Suppose x is any real number with x > 1. By definition of floor, [L/xj < V+ < LVTxJ + 1.
Now
[exj + 1 < 2 LK e

> 1 < L+/j by subtracting [I/xJ from both sides
44 1 < V/ by definition of floor

I} 1 < x by squaring both sides (okay because xis positive),

and the last inequality is true because we are assuming that x > 1. Thus, +/E < L[/xJ + 1 and
L[/`J + 1 < 2 LV+/J, and so, by the transitive law of order (Appendix A, T17), V+/ < 2 [fi] .
Dividing both sides by 2 gives 2 +/ < [L/Vj . Finally, because all quantities are positive, we
conclude that 1 I v/lV < I Lo I.
c. Let A = and a = 1. Then by substitution, A/I Y < LVrIl for all x > a, and hence by
definition of Q-notation, L+/Tj is Q(\/Y).
Let B = 1 and b = 1. Then I L[vlj I < BI I|I for all real numbers x > b, and so by definition
of O-notation, LV/iJ is 0(v/x).

d. By part (c) and Theorem 9.2.1(1), we can immediately conclude that LVII is e(3/x).

23. a. For all real numbers x > 1,

|9 2-42x -81 < I 1x21 + 142x1 + 181 by the triangle inequality

= 5 | 1n2 -42x -81 < 52+ 42x + 8 because 59, x, and 8 are positive

5 - 42x-81 < 5• + 42 + 8x2  because x and 1 <xfor x > 1
2 - 42x -81 < 519 because 1 + 42 + 8 < 51

5 - 42x-81 < 51191 because xis positive.
b. Let B = 51 and b = 1. Then by substitution, 11x2-42x-81 < BIX21 for all x > b. Hence
by definition of O-notation, X2 -42x_8 is 0(x ).

24. a. For all real numbers x > 1,
-x5  509 + 3x + 121 < I|x51 + 15091 + 3xI + 1121 by the triangle inequality

|x 5  50x 3 + 3x + 12 < x5 + 5 + 3x + 12 because x5, 50x3, 3x,
and 12 are positive

4P - 509 + 3x + 121 < 4 + 50 + 3 + 12x5 because x< x5, x K
and 1 < x5for x > 1

4 - 5 + 3x + 121 < 66x because 1 + 50 + 3 + 12 < 66
X -5 509 + 3x + 121 < 66191 because xis positive.
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b. Let B = 66 and b = 1. Then by substitution, I Lx 5 - 50x3 + 3x + 121 < BIx 2 for all x > b.
Hence by definition of O-notation, 4X5 - 50x3 + 3x + 12 is O(x2 ).

25. Proof (by contradiction): Suppose not. That is, suppose that X5 is 0(X2). [We must show that
this supposition leads to a contradiction.! By definition of O-notation, there exist a positive
real number B and a nonnegative real number b so that ix51 < BIx2

1 (*) for all real numbers
x > b. Let x be any real number that satisfies both of the following inequalities: x > b and
x > BA. Raising each side of the second inequality to the third power gives x3 > B, and
multiplying both sides of this inequality by x2 yields X5 > Bx2 . Because x and B are positive,
we may write XI51 > BIx 2

1, which contradicts (*). Hence the supposition is false, and so X
5 

is

not 0(x2).

27. Proof: Suppose ao, a,, a2 ,. .. ,a, are real numbers and an # 0; and let

d 2 (ao I + I a I + I a2l + + I a, - 1

Let a be greater than or equal to the maximum of d and 1. Then if x > a

x > 2 (a0l + ja1l + ±a2I + -+ a3 + la.l-I)

2 anlx > laol+lall+la2l+. i+a-ll

22 by multiplying both sides by 2|n

(1 ) lajx > laol. I + Jail. n2 + la 2 l - I + * * + an-21 - + lan| 1 1.1
2 £ - £W~ n3X

because by exercise 15, when x > 1 and m > 1,
then xm > 1, and so 1 > x4_

I- an X Ian 2 x > laoI+lal|x+la21X 2
+ *+ Ian-21 Xn + lan-, I x1

2
by multiplying both sides by Xn-1.

Subtracting all terms on the right-hand side from both sides and adding the second term on
the left-hand side to both sides gives

lan| X - Ian-11 Xn - Ian-21 Xn -2 1a2 X _ la, I x - laol > 2alx.

Now -Irl < r < Irl for all real numbers r. Thus, when x > 1, ai I xi < aix' < [ail xi for
each integer i with 0 < i < n -1, and so

lan| Xn - la,-,I Xn- - |an-21 Xn-2 - a2| X2 l a, I X - lao|
I- anX + an- Xn + an-2Xn-2 + + a2X2 + a2 +

< lan + an- 1X + an-2X-2 + +a 2 X2 + ax + aol

Hence
Ia Ini < n 1 Xn-2 2
2 Ianxn + an-lXn + an-2£ +± .+a 2 X +al x+aol

Let A= Ial and let a be as defined above. Then
2

X< Xn Xni1 Xn2 2A n Ianxn + an- + an -2 + .+a 2x +a 1 x+a0 | for all real numbers x > a.

It follows by definition of Q-notation that anXn + an- 1 xn-l + an-2 Xn - 2 +. + a2x 2 + a1 x + ao
is Q(Xn).
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29. Let a = 2 (4258) = 500, and let A = () () = 'J. If x > 500, then

x > 2 ( 421/5)

1 1 4
.- X> 42±+8 by multiplying both sides by 2 5

(1- 1) 5X > 42+8 * because 1- 1 = 1 and since x > 500 > 1

then 1 > +and so 8 > 8 * 1
s IX -2 11X2 > x12 _ 42x + 8 by multiplying both sides byx

= X2 - 42x-8

X -x2-42x - 81

2 5

> 10

by subtracting 42x + 8 from and
adding 2 5X2 to both sides
because both sides are nonnegative.

Thus for all real numbers x > a, IX2 -42x-81 > A jX2|. Hence, by definition of Q-notation,
we conclude that IX2 - 42x-8 is Q(x2).

30. Let a = 2 (50 +3+ 12) =eta-b 1/4 /

1 1

2 4

(1 4

=A> I X5- -X
4 2 4

1 5
4

4

520, and let A = 2 4- I. If x > 520, then

> 2 (50 + 3 + 12)
I - k\ 1/4

lx > 50+3+12

by multiplying both sides by 2

1 1 + 12
*x > 50 +3 -+12

*x 3
because 1 = I Iand, since x > 520 > 1,
then 1 > 1,1 > and 1 > XI,

c5 > 50x3 + 3x + 12

50x 3-3x -12 > I . 1x5

50x3 + 3x + 12

X -lx5-5X 3 +3x+12
4

Thus for all real numbers x > a,

1 5
> .-15

-2 4

1 5
8

by multiplying both sides by X4

by subtracting 50x3 + 3x + 12 from and
adding 2 1X5 to both sides

because 3x + 12 > -3x -12 since x > 0

because both sides are nonnegative.

Ix5 - 50X3 + 3x + 12 > A 5x5| .Hence, by definition of

2-notation, we conclude that x5-50x3 + 3x + 12 is Q(x5 ).

32. By exercise 23, 12 - 42x -8 is 0(12) and, by exercise 30, 2 - 42x -8 is Q(12) Thus, by
Theorem 9.2.1(1), 5X2 - 42x -8 is E((x2 ).

33. By exercise 24 1x5 -50x3 + 3x + 12 is O(X5) and, by exercise 31, 1X5 -50x3 + 3x + 12 is' 44
Q(x5 ). Thus, by Theorem 9.2.1(1), X5 - 50x3 + 3x + 12 is E(X5

).

35. 1) = _ -X is O(x3) by the theorem on polynomial orders.
3 3 3

36. 2( -1 + 31 =2-x+2X =I2 + 5XiS eq(X2) by the theorem on polynomial orders.
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n~n+ 2 2(2+ n +1) 1 4 13 12 4
38. (n(n+l)") n(n+2n+1) = -n 4 + -n 3 + - n2 is 03(n4 ) by the theorem on polynomial

\ 2} 4 4 2 4
orders.

39. 2(n- 1)+n(n+l) +4 (n(n5 1)) 2n- 2+ n + 2 +2(n 2 -n) = 5n 2 + 'n-2 is 0(n2 ) by the

theorem on polynomial orders.

41. By exercise 11 of Section 4.2, 13 + 23 +33 +.. + n3  2(n( 1)) , and by exercise 38 above

this is 0(n 4). Hence 13 + 23 + 33 + .. + n3 is O(n4 ).

43. Byfactoringouta5,5+10+15+20+25+-- +5n=5(1+2+3+- .. +n) = 5 ( n(n 1))

[by Theorem 4.2.2] = 5n
2 

+ 2n, which is 03(n2 ) by the theorem on polynomial orders.

222

45. E (k + 3) = , k + E 3 [by Theorem 4.1. 1] 1 21 + (3 + 3 + -+ 3) [by Theorem 4.2.2J
k=l k=l k=l

n terms

n2 + 1n + 3n [because multiplication is repeated addition] = 
1n2 + in, which is 0(n 2) by

the theorem on polynomial orders.

46. j i(i + 1) [n(n±)(n±2) [by exercise 13, Section 4.21 = 1n3  3 n2 + 3n which is 0(n3 ) by
I I

the theorem on polynomial orders.

n nn I nnI(nI nnl

7 E (k 2 - 2k) = E k k - 2 k [by Theorem 4.11 - n(nl)_(2n+1) 2 ) [by exercise
k=l k=l k=l

10, Section 4.2 and Theorem 4.2.2] = 2n +3n 2 +n + n2 +n= In3 + 3n2 + 7 n which is /(n3 )
by the theorem on polynomial orders.

48. a. Proof: Suppose ao, a,, a2,... ,an are real numbers and an 7$ 0. Then

lim anx +al Xn-l+ + +a 2 x 2 +aix+aao
100aa 1 an I

=a n-, I + a- - + a 2  1+ aa IIl + a 1 I

lim 1+ -+- n lim +...+ -+ lim -+
Z Boox an | X an x- 0oo Xn-2 + lim Xn-1 - n | -OXn

because lim = 0 for all integers k > 1.
X oo) Xk

b. Proof: Suppose ao, a,, a2 ,...,a, are real numbers and an 7, 0. By part (a) and the
definition of limit, we can make the following statement: For all positive real numbers E, there
exists a real number M (which we may take to be positive) such that

1E <ax + an X 1  ++a 2 X
2 +alx+ao < 1 + E for all real numbers x > M.

I a~n In

Let E = 1/2. Then there exists a real number Mo such that

1-I < Ianx'+a, Xn1 + a 2 X2  ax+ao < 1+2 for all real numbers x > Mo.

Equivalently, for all real numbers x > Mo,

Ilanl ixn| <janx¼ + a n-lx i + + 2 3a.1 Ix'j.
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Let A= lanI, B = 2 IanI, and k = Mo. Then
2 l

A lx I < lanx + an -x- +- ± * + a2 X2 + aix + aol < B IxAl for all real numbers x > k,

and so, by definition of e-notation, anzx + a,- x'n- + + a2 X2 + alx + ao is E)(x').

49. c. See the solution to exercise 11.

d. It follows from property (9.2.1) that for all real numbers x > 1, x 2 K< X
5 and 1 = x0 < X 5 .

Clearly also x5 < x5. So for all real numbers x > 1, 1X51 < I 1X
5
1, IX21 < 1 1x51, and

Il l 1 ' IX51. Hence by definition of O-notation, x5 is O(x 5 ), X2 is O(X5 ), and 1 is O(X5 ).
By part (c), then, 12x5 is O(X5 ), -34X2 is O(X5 ), and 7 = 7* 1 is 0(x5 ). So by part (a),
12x5 + (-34)X2 + 7 = 12x 5 - 34X2 + 7 is O(x5 ).

e. Let a nonnegative integer n be given. It follows from property (9.2.1) that for all real
numbers x > 1 and for all integers k with 0 < k < n, xk < X,. So since all expressions are
positive, if B = 1 and b = 1, then for all real numbers x with x > b, IXkI < BIx'j. Thus by
definition of O-notation, xk is O(x"). Hence, by part (c), akXk is O(xn) for all real numbers
a, a,) a2, ... ., an. So by repeated application of part (a), aX'n +an- X n- 1  +a 2 X2+alx+ao
is O(xn).

50. a. Proof 1 (by mathematical induction): Let the property P(n) be the sentence "If 0 < x K 1
then x" < L"

Show that the property is true for n = 1: We must show that if 0 < x < 1, then x1 < 1.
But x < 1 by assumption and x1 = x. So the property is true for n = 1.

Show that for all integers k > 1, if the property is true for n = k then it is true
for n = k + 1: Let k be an integer with k > 1, and suppose that if 0 < x < 1, then xk < 1.
[This is the inductive hypothesis.] We must show that if 0 < x < 1, then Xk+l < 1. So let
x be any number with 0 < x < 1. By inductive hypothesis, xk < 1, and multiplying both
sides of this inequality by the nonnegative number x gives x xk < x* 1. Thus, by the laws
of exponents, xk+i < x. Then Xk+1 < x and x < 1, and hence, by the transitive property of
order (T17 in Appendix B), xk+l < 1.

Proof 2: By exercise 20(a) of Section 9.1, for any positive integer n, the function f defined
by f(x) = x is increasing on the set of nonnegative real numbers. Hence if 0 < x < 1, then
xK < 1= 1.

b. Part (a) showed that for any positive real number x and for all integers n > 1, if x < 1
then xn < 1. The logically equivalent contrapositive for this statement is the following: For
any positive real number x and for all integers n > 1, if Xn > 1 then x > 1.

c. Substitute x1l" in place of x in the result of part (b) to obtain: For any positive real
number x and for all integers n > 1, if (xl/n)n > 1 then 1z/n > 1. But (xl/n)n = x because x
is positive. So for any positive real number x and for all integers n > 1, if x > 1 then xl/n > 1.

d. Proof 1: Let p, q, r, and s be integers with q and s nonzero and - > -, and let x be any
q s

real number with x > 1. Since P > .r, then qP- ' > 0, or, equivalently, Psgr > 0. Thus eitherq s q 8 qs
both ps - qr and qs are positive, or both are negative.

Case 1 (both ps- qr and qs are positive): By part (c) since x > 1, Xl/qs > 1. Also, because
ps - qr > 0 and because ps - qr is an integer, then ps - qr > 1. So by exercise 15b (with

PS - qr and m =1), (l/qs)pq-rs > (Xz/qs)- Xllqs > 1. But (1/qs)p = X -

- . SO-r > 1, or, equivalently, xq > xs.

Case 2 (both ps - qr and qs are negative): Let p' = -p and q' = -q. Then E -P = P, and

so > > . But also p's - q'r and q's are both positive. So by case 1, xig > xz, and hence
q, S

P I
Xq > Xs .
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Proof 2: Let p, q, r, and s be integers with q and s nonzero and 2 > r, and let x be any real
q

number with x > 1. Since P > r, then 2 r > 0, or, equivalently, pagr > 0. Let f be the
q s' q S qs

function defined by the formula f(x) = x Pq . By the result of exercise 20 in Section 9.1, f

is increasing. Hence if x > 1, then x"P qs > 1 q = 1. But (xl/qs)Pq-rs = PqSr P-= -
P i

So > 1, or, equivalently, x. > x£
xr X2

52. Note that \/x(38x5 + 9) = 38x'1/2 + 9x1/2. By part (d) of exercise 50 (or property (9.2.1)),
for all x > 1, x1/2 < xll/2. Hence, by definition of O-notation (with B = 1 and b = 1), x1/2 is
O(xll/2). Also by exercise 13, xll/2 is O(xll/2). Thus, by exercise 49c, 38x'1/2 is O(x1 L/2) and
9x1/2 is O(X11/2), and therefore, by exercise 49a, 38x11/2 + 9x1/2 is O(xl1/2).

53. Proof (by contradiction): Suppose not. That is, suppose there exist rational numbers r and
s where r > s and x' is O(x8). Then there exist a positive real number B and a nonnegative
real number b such that xrl < B jx<j for all real numbers x > b. Let x be any real number
that is greater than B1 (r Q 1, and b.

Case 1(B > 1): In this case, we have that x > Bl/(r-s), and so, by exercise 15 (or property

(9.2.1)), xr-S > (Bl/(r-8))r-S = B. But xr-S = and so xr > B. Multiplying both sides

by £8 gives xr > Bx8 , and because x is positive, we have I r1 > B I x. This contradicts the
result that IXrI < B xsj|

Case 2(B < 1): In this case, we have that jxrj < £x8!, or, because x is positive xr < £8. But
this contradicts the result of exercise 50d (or property (9.2.1)) because r > s.

Hence, in either case, we have deduced a contradiction, which implies that the supposition is
false and the statement to be proved is true.

(2x7/2 + 1)(x -1) 2x9/2 - 2x7/2 + X -1
f (x) =Xl/2 + 1)(x + 1) x3/2 + X + xl/2 + 1 .The numerator of f(x) is a sum of rational

power functions with highest power 9/2, and the denominator is a sum of rational power
functions with highest power 3/2. Because 9/2 -3/2 = 6/2 = 3, Theorem 9.2.4 implies that
f(x) is E(x 3 ).

(5X2 + 1)(Vj- 1) 5X5/ 2 - 5X2 + X1/2 - 1
56. f(x) = 43/2 -2x 4x3/2 -2 . The numerator of f(x) is a sum of

rational power functions with highest power 5/2, and the denominator is a sum of rational
power functions with highest power 3/2. Because 5/2 -3/2 = 2/2 = 1, Theorem 9.2.4 implies
that f(x) is (3(x).

57. b. Proof (by mathematical induction): Let the property P(n) be the inequality

I n3/2 < vT + v + X + + X

Show that the property is true for n = 1: We must show that - 13/2 < VI. But the
2-

left-hand side of the inequality is 1/2 and the right-hand side is 1, and 1/2 < 1. So the property
is true for n = 1.

Show that for all integers k > 1, if the property is true for n = k then it is true
for n = k + 1: Let k be an integer with k > 1, and suppose that

1 k3 /2 < V1 + vd + vX ± + + Vk7. [This is the inductive hypothesis.]
2

We must show that

1 1)3/2 < k±+ + / + d1.
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By adding Vk +1 to both sides of the inductive hypothesis, we have

k3/2 + k + < +/i + VI/ + ' / + + k .+
2

Thus, by the transitivity of order, it suffices to show that

1 (k 1)3/2 < 1 k3/2

Now when k > 1, k2 > k2  1 = (k- 1)(k + 1). Divide both sides by k(k - 1) to obtain

k 1> k IBut k > 1, and any number greater than or equal to 1 is greater than
k 1 1 k k -,

k >k-i k± j _1 _ -k±1lHec
or equal to its own square root. Thus > Hence kk >

k-i1 k - k V
(k -1) k+ = (k + -2) k+I= (k + 1)3/ 2 - 2 k±.Multiplying both sides by 1/2 gives

1 k3/2 > 1 (k + 1)3/2 -k+ 1, or, equivalently, 2 (k + 1)3/2 < 2 k3
/

2 
+ .k ±1. [This is what

was to be shown].

58. a. Proof (by mathematical induction): Let the property P(n) be the inequality 11/3 + 21/3 +
... + nl/

3 < n4 /3.

Show that the property is true for n = 1: We must show that 11/3 < 14/3. But this
inequality is true because both sides equal 1.

Show that for all integers k > 1, if the property is true for n = k then it is true
for n = k + 1: Let k be an integer with k > 1, and suppose that

11/3 + 21/3 +... + k1 / 3 < k4/ 3 . [This is the inductive hypothesis.]

We must show that
11/3 + 2 1/3 + * * * + (k + I)I/3 < (k + 1)4/3.

But by inductive hypothesis, 11/3 + 21/3 + + k1 /3 < k 4 /
3 , and so

i1/3 + 21 /3+ + k' /3 + (k + 1)1/3 < k4/3 + (k + 1)1/3

11/3 + 21/3 + + k/3 + (k + 1)/3 <K k 1 3 k + (k + I)/ 3  by factoring out k

X / 3 + 21/3 + + k1 /3 + (k + 1)1/3 < (k + 1)1 /3 k + (k + 1)1 /3 because
k1/3 < (k + 1)1/3

11/3 + 21/3 + + k1 /3 + (k + I)1 /3 < (k + 1)
1/ 3 (k + 1) by factoring out

(k + 1)1/3

= 11/ 3 + 21/ 3 + + k 1/3 + (k + 1) 1 /3  < (k + 1) 4/3  by the laws of expo-
nents.

b. Proof (by mathematical induction): Let the property P(n) be the inequality In4/3 <

11/3 + 21/3 + . + n1
/3.

Show that the property is true for n = 1: We must show that 2 14  
< 1-/3. But this

2
inequality is true because the left-hand side equals 1/2 and the right-hand side equals 1.

Show that for all integers k > 1, if the property is true for n = k then it is true
for n = k + 1: Let k be an integer with k > 1, and suppose that

Ik4/3 < 11/3 + 21/3 +... + k 1 /3 . [This is the inductive hypothesis.]

We must show that
I (k + 1)4/3 < 11/3 + 21/3 + + (k ± 1)1/3.
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By adding (k + 1)1/3 to both sides of the inductive hypothesis, we have

Ik4/3 + (k + 1)1/3 < 11/3 + 21/3 +** + k/3 + (k + 1)1/3.
2

Thus, by the transitivity of order, it suffices to show that

1 (k+1)4/3 < 1 k4/3 + k+1)1/3,

22

Now when k > 1, k2 > k2 
- 1 = (k- 1)(k + 1). Divide both sides by k(k -1) to obtain

k k±+1 k±1
k > But > 1, and any number greater than or equal to 1 is greater than
k -I k k -

k >k±1I Ok-+I _ k -k+I ecor equal to its own cube root. Thus > Hence k a >
k- 1 k - k k

(k -1) -k+ = (k + 1-2) 3 k 1= (k + 1)4/3-2 .Multiplying both sides by 1/2 gives

k 1 (k + 1) -k + 1, or, equivalently, 2 (k 3 1)4/3 < 
1 k4

/
3 

+ Vk -+1. /This is what
2 2 2
was to be shown].

c. Let A = 1/2, B = 1, and k = 1. By parts (a) and (b) and because all quantities are positive,

A ln4 /3 1 < 11/ 3 + 21/ 3 + ... n/ 3  
< B n4 /3| for all n > k.

Thus by definition of O-notation, 11/3 + 21/3 + + n1/3 is 0(n 4
/

3
).

60. Proof: Suppose f(x) and g(x) are o(h(x) and a and b are any real numbers. Then by properties
of limits,

af (x) +bg(x) ai ~ )
a lim f(x) + b lim 9(x) = a 0 + b 0 = 0.

X 00 h(x) x- oo h(x) v-oa h(x)

So af(x) + bg(x) is o(h(x)).

61. Proof: Suppose a and b are any positive real numbers such that a < b. Then b - a > 0, and
1

so since - -c 0 for any positive number c,

lim b = lim b-a 0.

So Xa is o(xb).

Section 9.3

1. b. 0.2 microseconds or 0.0000002 seconds c. 1.53 microseconds or 0.00000153 seconds f.
5.09 x 1043 years

3. a. When the input size is increased from m to 2m, the number of operations increases from
cm3 to c(2m) 3 = 8cm3 .

b. By part (a), the number of operations increases by a factor of 3 = 8.
CM3

c. When the input size is increased by a factor of 10 (from m to 10m), the number of operations
C(10,M3 ) 1000cmn3

increases by a factor of cm 3 ) =cm3  1000.
cm3 cm3

I
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5. a. By the theorem on polynomial orders, algorithm A has order n2 and algorithm B has order
n3 . So algorithm A has order n2 and algorithm B has order n3 .

b. Algorithm A is more efficient than algorithm B for values of n with 10 6 n2 < n3. Dividing
both sides by n2 shows that algorithm A is more efficient than algorithm B when n > 106

1,000,000.

c. Algorithm B is 100 times more efficient than algorithm A for values of n with 100(n 3) <

106rn2. Dividing both sides by 100n2 shows that algorithm B is more efficient than algorithm
A when n < 104 = 10, 000.

7. a. For each iteration of the loop there is one comparison. The number of iterations of the
loop is n -2 + 1 = n -1. Therefore, the total number of elementary operations that must be
performed when the algorithm is executed is n -1.

b. By the theorem on polynomial orders, n -1 is (8(n), and so the algorithm segment has
order n.

10. a. For each iteration of the inner loop there is one subtraction. There are 3n iterations of the
inner loop for each iteration of the outer loop, and there are n -2 + 1 = n -1 iterations of
the outer loop. Therefore, the number of iterations of the inner loop is 3n(n -1) = 3n2 - 3n.
It follows that the total number of elementary operations that must be performed when the
algorithm is executed is 3n2 - 3n.

b. By the theorem on polynomial orders, 3n2 - 3n is 19(n 2 ), and so the algorithm segment has
order n2 .

12. a. For each iteration of the inner loop there is one comparison. The number of iterations of
the inner loop can be deduced from the following table, which shows the values of k and i for
which the inner loop is executed.

kIlI I I 1 2 | | | |... I n-2| ni-l1
i 2 3 n | 3 4 n | n-i1 n n

n-1 n-2 2 1

Therefore, by Theorem 4.2.2, the number of iterations of the inner loop is (n - 1) + (n -2) +
** + 2 + 1 =n(n-1). It follows that the total number of elementary operations that must be
performed when the algorithm is executed is 1- (n(1)) = in 2 - n.

By the theorem on polynomial orders, 1 n2 -n is E), and so the algorithm segment has
order n2 .

13. a. For each iteration of the inner loop there is one comparison. The number of iterations of
the inner loop can be deduced from the following table, which shows the values of i and j for
which the inner loop is executed.

Ji |1| I 1 2 | ... n -2 | n- I
j 2 3| n 3 | 4 n n I n n

n-1 n-2 2 1

Therefore, by Theorem 4.2.2, the number of iterations of the inner loop is (n -1) + (n -2) +
+ 2 + 1 n(n2 1) It follows that the total number of elementary operations that must be

performed when the algorithm is executed is 1 (n(n-1)) =n 2 _'n
2 2 2

By the theorem on polynomial orders, In -2n is E3(n 2 ), and so the algorithm segment has

order n2 .
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15. a. There are three multiplications for each iteration of the inner loop, and there is one ad-
ditional addition for each iteration of the outer loop. The number of iterations of the inner
loop can be deduced from the following table, which shows the values of i and j for which the
inner loop is executed.

|i = 1 1 2 || || |n-2 |]n-1 nl
|j 23.. n 34 3 n | I n n n

n-1 n-2 2 1

Hence, by Theorem 4.2.2, the total number of iterations of the inner loop is (n -1) + (n - 2) +

+ 2 + = (2 ) Because three multiplications are performed for each iteration of the

inner loop, the number of operations that are performed when the inner loop is executed is

3. (2 ) (n2-n) = 23n 2 - n. Now an additional operation is performed each time the
outer loop is executed, and because the outer loop is executed n times, this gives an additional
n operations. Therefore, the total number of operations is ( n -32n) + 3 i = 2n -n.

b. By the theorem on polynomial orders, 3n -n is E(n2), and so the algorithm segment
has order n2 .

16. a. There are two additions, one subtraction, and one multiplication, for a total of four elemen-
tary operations, for each iteration of the inner loop, and there is one additional multiplication
for each iteration of the outer loop. The number of iterations of the inner loop can be deduced
from the following table, which shows the values of i and j for which the inner loop is executed.

|i 1 1 2 3 3 4 | | .. n Il I n 1
I ij I I I 2 | 1| 2 | 3 | 1| 2 | -n 1 |

1 2 3 n-I

Hence, by Theorem 4.2.2, the total number of iterations of the inner loop is 1 + 2 + 3 + +
(n - 1) = n(n 1)- Because four elementary operations are performed for each iteration of the
inner loop, the number of operations that are performed when the inner loop is executed is
4.n(n21) = 2n(n -1) = 2n2 - 2n. Now an additional operation is performed each time the
outer loop is executed, and because the outer loop is executed n times, this gives an additional
n operations. Therefore, the total number of operations is 2n 2 - 2n + n = 2n2 - n.

b. By the theorem on polynomial orders, 2n2 
_ n is e9(n 2 ), and so the algorithm segment has

order n2 .

18. a. There are n iterations of the inner loop for each iteration of the middle loop; there are 2n
iterations of the middle loop for each iteration of the outer loop; and there are n iterations of
the outer loop. Therefore, by the multiplication rule, there are n. 2n n = 2n3 iterations of the
inner loop. Because there are two multiplications for each iteration of the inner loop. the total
number of elementary operations that must be performed when the algorithm is executed is
2 (2n3 ) = 4n3.

b. By the theorem on polynomial orders, 4n3 is O(n 3), and so the algorithm segment has order
n3 .

19. a. By the method of Example 6.5.4, the number of iterations of the inner loop is n(n + 1)(n + 2)
6

Because there are two elementary operations (multiplications) for each iteration of the inner
loop, the total number of elementary operations that must be performed when the algorithm

nn + 1)(n + 2) n(n + 1)(n + 2) 1 3 2 2
is executed is 2 ( 6 = _ = _n + n + -n.

63 3 3

b. By the theorem on polynomial orders, 1 n3 + n2 
+ 2n is 9(n3 ), and so the algorithm segment

has order n 3 .
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21.

a[1] a[2] a[3] a[4] a[5]
initial order 7 3 6 9 5

result of step I 3 7 6 9 5
result of step 2 3 6 7 9 5
result of step 3 3 6 7 9 5
result of step 4 3 5 6 7 9

23.

n 5
a[1] 7 3 1
a[2] 3 7 6 -5
a[3] 6 7 5 6
a[4] 9 5 7
a[5] 5 9 =
k 2 3 4 5
x 3 6 9 5
) 10213432

25. Solution 1: The answer is 8, the same as the number of distinct nonzero values of j.

Solution 2: There is one such comparison in step 1, 2 in step 2, 1 in step 3, and 4 in step 4,
for a total of 8.

26. One such array is a[1] = 5, a[2] = 4, a[3] = 3, a[4] = 2, a[5] = 1.

27. a.

El

E2

E3
E4

E5

0

E1+2+1 = 3
E2+3+1 = 3+4
E3+4+1 = 3+4+5
E4+5+1 = 3+4+5+6

Guess: En = 3+4+5+."+(n+1)=[1+2+3+4+5+...+(n+1)]
(n+1)(n+2) n2 +3n+2 6 n 2 +3n- 4

= - -3 = =
2 2 2

(1 + 2)

b. Proof by mathematical induction: Let El, E2, E3,... be a sequence that satisfies the
recurrence relation Ek = Ek-l + k + 1 for all integers k > 2, with initial condition El = 0,

n2 +3n -4
and let the property P(n) be the equation En - 2

Show that the property is true for n = 1: For n = 1 the equation is El = 12+31 4
2

0, which is true.

Show that for all integers k > 1, if the property is true for n = k then it is true
k2 + 3k -4

for n = k + 1: Let k be an integer with k > 1, and suppose that Ek [ 2 /This
(k +1) 2 +3(k±+1) -4

is the inductive hypothesis./ We must show that Ek+1 = 2 But the

left-hand side of this equation equals
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Ek+1 = Ek + (k + 1) + 1 by definition of E1 , E2 , E3, ...

= 2 + (k + 1) + 1 by inductive hypothesis

k2 +3k - 4 + 2k + 4

k 2 + 2k2+ 5k
2

And the right-hand side of the equation equals

(k+1) 2 +3(k+1) -4 k 2 +2k+1+3k+3-4 k 2 +5k

2 2 2
also.

[This is what was to be shown.]

29. The top row of the table below shows the initial values of the array, and the bottom row shows
the final values. The result of each interchange is shown in a separate row.

a[l] a[2] a[3] a[4] a[5]
6 4 5 8 1
4 6 5 8 1
1 6 5 8 4
1 5 6 8 4
1 4 6 8 5
1 4 5 8 6
1 4 5 6 8

31.

n 5
a[l] 6 4 1 --

a [2] 4 6 5 4
a[3] m 6 5
a [4] 8 -6

a[5] 1 4 5 6 8
k 1 2 2 3 4

i 2 3 4 5 3 4 5 4 5 5
temp 6 = 4 6 5 6 8

33. There is one comparison for each combination of values of k and i in the trace table for exercise
31. This gives a total of 10.

34. There are 3 comparisons of a[l] with a[2], a[3], and a[4], 2 comparisons of a[2] with a[3], and
a[4], and 1 comparison of a[3] with a[4]. This gives a total of 6 comparisons.

35. a. n 1

c. n-(k+1)+ 1=n-k

d. When a[l] is compared to a[2],a[3],..., a[n], there are n - 1 comparisons. When a[2] is
compared to a[3],a[4],. . . ,a[n], there are n - 2 comparisons. And so forth. In the second-to-
last step, there are two comparisons: a[n - 2] is compared to a[n- 1] and a[n]. And in the final
step, there is just one comparison: a[n -1] is compared to a[n]. Therefore, the total number
of comparisons is

(n-l)+(n-2)+...+2+1 =
(n- 1)[(n- 1) + 1] by Theorem 4.2.2

2
n(n -1)

2
1 2 1

= n2 + n.
2 2
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1 2 1 2 2But 2n + 2 is e9(n ) by the theorem on polynomial orders. So selection sort has order in .

72 2
a[0] 5
a[1] -1
a[2] 2
£ 3

polyval 5 2 -20

1 2

termr -1 -3 2 6 18

_ 1 1 2

39. By the result of exercise 38, Sn

orders.

In + 3n, which is E)(n 2 ) by the theorem on polynomial

41.

n
a[0]
a[1]
a[2]

polyval
i

2
5
-1
2
3
2
1

5
2

20

42. There are two operations (one addition and one multiplication) per iteration of the loop, and
there are n iterations of the loop. Therefore, tam = 2n.

43. By the result of exercise 42, tn = 2n. So, by the theorem on polynomial orders, the order of
Algorithm 9.3.4 (Horner's rule) is ((n). By the result of exercise 39, the order of Algorithm
9.3.3 (term-by-term polynomial evaluation) is e(n 2 ). Thus Horner's rule is more efficient than
term-by-term polynomial evaluation.

Section 9.4

2.

x

0
1
2
-1

-2

g(x) = (1/3)

I
1/3
1/9
3
9

37.
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4.

x k(x) = log (x)

1 0
2 1
4 2
8 3
1/2 1
1/4 -2

6.

4

x 3

2

0

-2

1

-2

K(x) = xlog,0x

0
-. 6
-1.43
-2.4
-1/J0
-1/50
-3/1000

Y =log2X

-) I I I I I I .- i- I4

- 1 2 3 4 5 6 7 8 9 10 I 1 12 13 14 15 16

10. a. Solution 1: Let b be any positive real number not equal to 1. By definition of logarithm
with base b, for any real number x, logb(bx) is the exponent to which b must be raised to obtain
bV. But this exponent is x. So logb(bx) = x.

Solution 2: Let logb(bx) = y. By definition of logarithm, b = bV. It follows from property
(7.2.5) that y = x. So logb(bx) = x.

c. Let f: R - R+ be the exponential function with base b: f (x) = expb(x) = b for all real
numbers x. Let g: R+-* R be the logarithmic function with base b 7/ 1: g(x) = logb(x) for
all positive real numbers x. Then for all x C R, (g o f)(x) = g(f (x)) = g(bx) = logb(bx) = x

3

2

1 <x<2
2< s<4
4< s<8

1/2< x <
1/4< <1L
1/8< x<1

I8
14

8.

x
I
2
3
4

1/10
1/100

1/1000

k(x) = log2(x)

2 . 4 5 . 7

0o

2

A
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by part (a), and for all x E R+, (f a g)(x) = f(g(x)) = f(logb(X)) = bl
1

gbX = x by part (b).
So f o g = iR+ and g o f = iR, and hence g = logb and f - expb are inverse functions.

11. a. Suppose (u, v) lies on the graph of the logarithmic function with base b. Then by definition,
v = logb u. But by definition of logarithm, this equation is equivalent to bv = u. So (v, u) lies
on the graph of the exponential function with base b.

C.

15

05

05

1.5

-1.5 -1 -0.5 0 0.5 1 1 5 2

The graphs of y = 2' and y = log2 x are symmetric about the line y = x. That is, if the two
graphs are drawn on a piece of paper using the same scale on both axes and if the paper is
folded along the line y = x, then the two graphs will coincide exactly.

12. When < X < 1, thenx-1 < 1092 2 < O

When 4< x < 1, then -2 < log2 x < -1.

When 18< x <-4, then-3 < log2 x < -2.
And so forth.

13. If 10 m < x < 10 m+1, where m is an integer, then m = log10 XJ.
Proof: Suppose that m is an integer and x is a real number with 10m < x < 10 m-+. Because
the logarithmic function with base 10 is increasing, this inequality implies that

1ogl,(lOm
) < log1 0 x < logiO(lOmtl).

// ogx
2
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But by definition of logarithm, log 10 (10 m ) = m and logi 0 (10m'l) = m + 1. Hence

m < log10x < m+1.

It follows by definition of floor that m = [log10 Xj.

14. a. Proof: Suppose n is a positive integer, k is a nonnegative integer, and 2 k-1 < n < 2 k
[We must show that [log2 n] = k.] Since the logarithm with base 2 is an increasing function,
taking the logarithm with base 2 of all parts of this inequality preserves the directions of
the inequality signs. Thus log2 (2k-1) < log2 (n) < log2 (2k). But by definition of logarithm,
log2 (2k-1) = k -1 and 10g 2(2k) = k. Hence k -1 < log2 (n) < k. Since k - 1 is an integer, by
definition of ceiling, [log2 n] = k [as was to be shown].

b. If x is a positive number that lies between two consecutive integer powers of 2, the ceiling
of the logarithm with base 2 of x is the exponent of the higher power of 2.

16. If n is an odd integer and n > 1, then [log2 n] = [log2 (n + 1)1.
Proof: Suppose n is an odd integer and n > 1. Since n is odd, n is not an integer power of 2
and so n lies strictly between two successive integer powers of 2. In other words, there is an
integer k such that 2 k < n < 2 k+1. Consequently, 2 k < n + 1 < 2 k+1. By exercise 14, then,
Flog2 na = k + 1 and [log2(n + 1)I = k + 1 also. Hence 1log 2 n1j = [log2(n + 1)1.

17. No. Counterexample: Let n = 3. Then [log2 (n + 1)] = [log2 (4)j = 2 whereas 1log 2 nj -
[log 2 3] = 1.

19. Llog2 (5, 067, 329)] + 1 = [22.272 ... ± + 1 = 23

20. No. If log2 n is not an integer, then the two formulas give identical answers. But if lg 2 n is
an integer, then [log2 nj + 1 = 1og 2 n + 1 > 1og 2 n = [log2 nl. Consider n = 4 for instance.
Since 410 = 1002, three binary digits are needed to represent n. This agrees with the answer
obtained from the formula [log2 n + ± = [1log 2 4] + 1 = 2 + 1 - 3. On the other hand,
[10g 2 n] = [10g 2 41 = [21 = 2, which is too small.

22. a.
bl= 1
b2 = bF2/2 + 1 = b1 + 1 = 1 + 1 = 2

b3  bF3/ 2 1 +1=b 2 +1= 2+1=3
b4 = br4/2 1 + 1 = b2 + 1 = 2 + 1 = 3

b5 bF5/ 21 +1 =b3+1=3+1= 4
b6 = b6/21 + 1 = b3 + 1 = 3 + 1 = 4
b7  = bF7/2] +1 =b 4 +1=3 1-4 (
b8 = b[8/2] + 1 = b4 + 1 = 3 + 1 =4

bg = b 9 2 1  = b5 + 1 = 4 + 1 5 1
b16 = b[ 1 6/2 1 +1=b8+I1= 4+1-5 J
b17  = br17/21 +1 =bg+1=5+1=6 I
b32 = bF32/2] + 1 = b16 + ± = 5 + I = 6
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Guess: b, = log2 nl + 1

b. Proof (by strong mathematical induction): Let bl, b2 , b3 ,.  be a sequence that satisfies
the recurrence relation bk = bfk/21 + 1 for all integers k > 2, with initial condition b, = 1, and
let the property P(n) be the equation bn = [log2 n] + 1.

Show that the property is true for n = 1: For n = 1 the right-hand side of the equation
is [log2 1 + 1 = 0 + 1 = 1, which equals bi.

Show that for all integers k > 1, if the property is true for all i with 1 < i < k then
it is true for k: Let k be an integer with k > 1 and suppose bi = [lg 2 il + 1 for all integers
i with 1 < i < k. [This is the inductive hypothesis.] We must show that bk = 1log 2 k] + 1. But

bk = b[k/ 2 1 + 1 by definition of bl, b2, b3 ,....
= (log2 ([k/2])1+1)+1

| log2 (k/2)] + 2
- log2 ((k + 1)/2)] + 2
[log2 k - log2 21 + 2

l [log2 (k + 1) - log2 21
0log2 k - 1] + 2
log2 (k + 1) - 1] + 2

-log2 k] - 1 + 2
l [log2 (k+1)]-1+2

[log2 kl + 1 if
F [log2 (k + 1)] + 1 if

= 1g 2 k] + 1

if k is even
if k is odd

if k is even
+2 if k is odd

if k is even
if k is odd
if k is even
if k is odd

k is even
k is odd

by inductive hypothesis
by definition of ceiling and
exercise 21 in Section 3.5

by exercise 29 in Section 7.2

because log2 2 = 1

by exercise 19 in Section 3.5
(with x -in place of x)

by exercise 16.

[This is what was to be shown.]

23. Proof (by strong mathematical induction): Let cl, C2, C3, .  be a sequence that satisfies the
recurrence relation ck = 2 cLk/2j + k for all integers k > 2, with initial condition c1 = 0, and
let the property P(n) be the inequality cn < n2 .

Show that the property is true for n = 1: For n = 1 the inequality states that cl < 12,

which is true because c1 = 0.

Show that for all integers k > 1, if the property is true for all i with 1 < i < k then
it is true for k: Let k be an integer with k > 1 and suppose ci < i2 for all integers i with
1 < i < k. [This is the inductive hypothesis.] We must show that ck < k2. First note that

because k is an integer with k > 1, 2 < k. Thus I < 2 < 2 + 2 - k, and so I < l• k < k.
_2 2 22

Also note that Lk/2i < k/2 by definition of floor. Then

Ck = 
2

c~k/2j + k by definition of c1 ,c2 ,c3 ,....

=* Ck < 2([k/2j 2 ) + k

=X> ck < 2(k/2)2 + k

X Ck < k 2 /2 + k 2 /2

=z Ck < k
2

by inductive hypothesis

because Lk/21 < k/2 and so [k/2j 2 < (k/2)2

because 2(k/2)2 = k2 /2, and since
k > 2, then V2 > 2kand so k2 /2 > k
by algebra.

[This is what was to be shown.]

24. Proof (by strong mathematical induction): Let c1 , c2 , c3 ,... be a sequence that satisfies the
recurrence relation ck = 2cLk/2j + k for all integers k > 2, with initial condition c1 = 0, and
let the property P(n) be the inequality c, < n lg 2 n.

Show that the property is true for n = 1 : For n = 1 the inequality states that c1 <
1 log 2 1 = 1 0 = O, which is true because c1 = 0.
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Show that for all integers k > 1, if the property is true for all i with 1 < i < k
then it is true for k: Let k be an integer with k > 1 and suppose ci < i log2 i for all
integers i with 1 < i < k. /This is the inductive hypothesis.! We must show that Ck < k log2 k.

First note that because k is an integer with k > 1, 2 < k. Thus 1 < k < k + - = k, and so
2 2 2

1 <L < k. Also note that [k/2j < k/2 by definition of floor. Then

Ck = 2c[k/2j + k by definition of C1 , C2 , C3,...

•t Ck < 2( [k/2j) log2 Lk/2i) + k by inductive hypothesis

=> Ck < 2[k log 2 (k/2)] + k because (1) Lk/2J < k, and (2) since 1 < [k/2J < k/2,
we have by property (9.4.1) that log2 Lk/2 < log2 (k/2)

•t ck < k(log2 k -1og 2 2) + k by algebra and exercise 29 in Section 7.2

C ck < k(log2 k - 1) + k because 1og 2 2 = 1

= Ck < k log2 k by algebra,

fas was to be shown].

26. With some computer graphing programs (but not most graphing calculators) it is possible to
find an approximate value for the point of intersection of y = 2' and y = x" by making the
viewing window include very large values of y. However, because the values of 2x and of x50 are
so large in the region where the two are equal, probably the easiest way to solve this problem
is to use logarithms. Note that because the logarithmic function with base 2 is increasing,
2x > x50 4> log2 (2x) > log2 (x 5 0

) = x> o5010g2 X. By computing values of x and of 5010g2 x
for various values of x or by using a graphing calculator or computer graphing program to
graph y = x and y = 50 lg 2 X, one finds that the given inequality holds for values of x greater
than approximately 438.884. So one answer would be x = 440.

Another approach would involve numerical exploration using properties of exponents. For
instance, if x = 29, then 2- = 2(29) = 2512 whereas X50 = (29)50 = 2450 So x = 29 = 512
would be another possible answer.

28. The values of x for which x = 1.0001x are approximately 1.00010001 and 116677.5257. Further-

more, x > 1.0001x on the approximate interval 1.0001001 < x < 116677.5257 and x < 1.0001x

on the approximate intervals 1.0001 > x and x > 116677.53.

31. It is clear from the graphs of y = log 2 x and y = x that log2 x < x for all x > 0. Multiply

both sides of log2 x < x by 5x to obtain 5x 1g 2 X < 5x £ = 5£2. Add x2 to both sides to
obtain x2 + 5x log2 X < x2 + 5X2 = 6X2. If x > 1, then all quantities are positive. and so

X2 2+ 5 1og 2 XI < 6 IX2 1. Also, when x > 1, then log2 x > 0, and so 5£ log2 x > 0. Adding £2 to

both sides gives x2 + 5x 1og 2 X > X2, and, because all quantities are positive, £X2 + 5x 1og 2 XI >

Ix21. Let A = 1, B = 6, and k - 1. Then A |X21 < IX2 + 5x log 2 xI < BIX
2

1 for all x > k, and

hence, by definition of e-notation, x2 + 5x 1og2 X is 1 (X2).

33. For all integers n > 0, 2n < 2n+1 < 2 .2'. Thus, let A = 1, B = 2, and k = 0. Then
A 2n < 2n+1 < B 2n for all integers n > k, and so, by definition of 9-notation, 2U+1 is @(2n).

34. Proof (by contradiction): Suppose 4n is 0(2n). Then there exist a positive real number B and
a nonnegative real number b such that j4n I < B. 12n for all integers n > b. Because 4" and 2"

are positive, we have 4fn < B 2n for all integers n > b. Divide both sides by 2' and simplify to

obtain 4r = (24) = 2n < B. Because the logarithmic function with base 2 is increasing, this

inequality implies that log2 (2") < log 2 (B), or, equivalently, n < log2 (B) (because log2 (2n) is

the exponent to which 2 must be raised to obtain 2", and this is n). So let n be any integer

with n > log2 (B). Because the exponential function with base 2 is increasing, this inequality
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implies that 2' > 2 1og 2 (B) = B (because log2 (B) is the exponent to which 2 must be raised to
obtain B, and so if 2 is raised to this exponent, the result is B). Thus 2' < B and 2' > B,
which is a contradiction. Therefore the supposition is false, and 4f is not 0(2-).

36. By factoring out a 4 and using the formula for the sum of a geometric sequence (Theorem
4.2.3), we have that for all integers n > 1,

4 + 42+ 43+ + 4n= 4(1 + 4 + 42+ ... + 4n 1)

4(4 1) = 4(4n- 1) =4- .4n _ 4 < .4n

Moreover, because 4 + 42+ 43 + + 4n-1 > 0,

4n < 4 + 42±+ 43+ + 4n-1 + 4n

So let A = 1, B = 4/3, and k = 1. Then, because all quantities are positive, A- 14 n <

14 + 42 + 43 ... + 4nl < B 14 n for all integers n > k, and so, by definition of e-notation,
4 + 4

2
+ 4

3 
+ + 4nis E(4n).

37. By factoring out a 2, applying a law of exponents, and using the formula for the sum of a
geometric sequence (Theorem 4.2.3), we have that for all integers n > 1,

2 + 2 * 3 + 2 34±+ -+ 2. 32n = 2(1 + 32+ 322 + .. + 32n)

= 2[1 + 32+ (32)2+.±+ (32) ]= 2(1 + 9 + 92 +... + 9n)

2 (9n+1-1) 2(9n+1 1) 1. 9gn - 1 < 9 gn =9(3) = 32n

Moreover, because 2 + 2 .32 + 2 .34 + + 2 .3 2 (n- 1 ) > 0,

2 32n < 2 + 2. 32+ 2. 34 + ... + 2. 3

So let A = 2, B = 9/4, and k = 1. Then, because all quantities are positive, A |32n| <
12 + 2. 32 + 2 * 34+ ... + 2 32n < B 1 32n for all integers n > k, and so, by definition of
E3-notation, 2 + 2 -3 2+ 2 * 34+ .+ 232n is 9(3 2n ).

38. By factoring out 1/5 and using the formula for the sum of a geometric sequence (Theorem
4.2.3), we have that for all integers n > 1,

1(t(45)f+ 1) 1(t1 (45)fl+1

1 <1 5

Moreover, because *4 + + Ž0, then <,+ +

So let A - 1/5, B = 1, and k = 1. Then, because all quantities are positive, A-. 111 <
5 + 542 + +i5+ < B.111 for all integers n > k, and so, by definition of e3-notation,

+ ((54n+l 5)+(1).

40. By factoring out an n and using the formula for the sum of a geometric sequence (Theorem
4.2.3), we have that for all integers n > 1,

2n 2n 1 2() 2n (1 1JH1\ 2L (1-? 1n\ n 3 -1

3 3- 3~~ T V\ 1- J 3) ) \3

= ( 3"n) = n(1 - n) K n

Moreover, because 4 + .+ 4 > 0, then 3< + 4 + + 2n
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So let A = 2/3, B = 1, and k = 1. Then, because all quantities are positive, A Ini <
± 3+ 2 + I < B In| for all integers n > k, and so, by definition of e-notation, 2± +

32+ '' + 6niS<3n).

41. Let k1 and k2 be any positive integers. If n > 2, then 1 < log2 n because the logarithmic
function with base 2 is increasing and log2 2 = 1. Multiplying both sides of 1 < log2 n
by kin (which is positive) gives kIn < kinlog2 n. Adding k2nlog2 n to both sides gives
kin + k2 n1og2 n < kinlog2 n + k2 nlog2 n = (k1 + k2 )nlog2 n. When n > 2, all quantities
are positive and we have Ikin + k2 nlog2 n[ < (ki + k2 )Inlog 2 n[. Then, because k, and k2
are positive and n > 2, k2n log2 n < kin + k2n log2 n. Furthermore, because all quantities
are positive, k2 lnlog 2 nj < Ikin + k2 nlog 2 nl. Let A = k2 , B = k1 + k2 and k = 2. Then
Alnlog 2 nn < Ik1n + k2 nlog2 nl < Bln1og 2 nj for all n > k, and thus, by definition of 6-
notation, k n + k2 n log2 n is O(n log2 n).

1 3 1 1 11 1 1 1 50 25 1 1 1 1 137
42. 1+--- 1+-++ + = , 1+ + +42. 1+2 2-' 2 +3= 6 v 2+ 3 424 12' 2 3 4 5 60

44. By Example 9.4.7(c), Inn < 1 + 2 + 1 + + 1 < 2Inn for all integers n > 3. But by prop-

erty (7.2.7), log2 n = logn2 - , or, equivalently, Inn = (In2)(1og 2 n). Substituting for Inn in

the above inequality gives (In2)(Iog2n) < 1 + + + + + . < 2(1n2)(10g2 n), and, because
all quantities are positive, In 2 1log 2 nI K 1 3 2 ± 3 + + < < 2 In 2 1log 2 n Let A = in 2,
B = 21n2, and k = 3. Then

A 1log 2 nI < 1 + I + + + < B log2 nI for all integers n > k.
2 3 n

So by definition of 6enotation, 1 + 2 + 3 + + 1 is (9(1092 n).

Note: The result for this exercise could be deduced from part (d) of Example 9.4.7 as follows:
By Example 9.4.7(d), 1 + ' + ' + + 1 is 19(ln n). So by definition of 4-notation, there exist
positive real numbers A and B and a nonzero constant k such that

Ajlnnj < 1+ I + I +-± * +-| < B lnnj forallintegersn>k.
2 3 n

By property (7.2.7), log2 n "ogn 2 - n2, or, equivalently, inn = (In 2)(1og 2 n). Thus, by
substitution,

A (ln2)(1og2 n)j < 1 + 2 + 3 + + < Bj(ln2)(1og 2 n)I for all integers n > k,
2 3 n

or, equivalently,

Aln2 log2 ni 1 + + 2 + < Bln2jlog2 nI for all integers n > k,
2 3 n

Let A' = A In 2 and B' = B In 2. Then both A' and B' are positive, and

A'1log 2nI < 1+1 + + + < B'log2 nI forallintegersn> k.
2 3 n

Hence, by definition of e-notation, 1 + 1 + + + + 1 is e(10g 2 n).

45. a. Proof: If n is any positive integer, then log2 n is defined and by definition of floor, [log2 nj <
log2 n < [log2 nj + 1. If, in addition, n is greater than 2, then since the logarithmic function
with base 2 is increasing log2 n > log2 2 = 1. Thus, by definition of floor, 1 < [log 2 nj. Adding
[log 2 nj to both sides of this inequality gives [log2 nj + 1 < 2 [log2 nj. Hence, by the transitive

A
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property of order (T17 in Appendix B), log2 n < 2 [log2 nJ , and dividing both sides by 2 gives
Ilog 2 n < [log2 nj. Let A = 1/2, B = 1, and k = 2. Then Alog2 n < [log2 nj < Blog 2n
for all integers n > k, and, because log2 n is positive for n > 2, we may write A 1log 2 nI <
I [log2 nj I < B 1log 2 nI for all integers n > k. Therefore, by definition of (3-notation, [log2 nj is

0(log2 n).

b. Proof: If n is any positive real number, then log2 n is defined and by definition of floor,
[log 2 nj < og2 n. If, in addition, n is greater than 2, then, as in part (a), log2 n < [log2 nj + 1
and [log2 nJ + 1 < 2 log2 n. Hence, because log2 n is positive for n > 2, we may write 1log 2 n| <
1[log2nj +11 < 21log2 nn. Let A = 1, B = 2 and k = 2. Then A1log 2nj <K [log2nj +11 <
B 1log 2 nI for all integers n > k. Therefore, by definition of e-notation, log2 nj +1 is (e(log2 n).

47. Proof by mathematical induction: Let the property P(n) be the inequality lg 2 n < n.

Show that the property is true for n = 1: For n 1 the property is true because the
left-hand side of the inequality is log2 1 = 0 and the right-hand side equals 1.

Show that for all integers k > 1, if the property is true for n = k then it is
true for n = k + 1 : Let k be an integer with k > 1, and suppose that log2 k < k. /This
is the inductive hypothesis.] We must show that log2 (k + 1) < k + 1. But when 1 < k,
we can add k to both sides to obtain k + 1 < 2k. Then, because the logarithmic function
with base 2 is increasing, when we apply log2 to both sides of the inequality, we obtain
log2 (k + 1) < log2 (2k) = log2 2 + 1og 2 k [by exercise 30, Section 7.2] = 1 + log2 k [because
lg 2 2 = 1j. But, by inductive hypothesis, lg 2 k < k, and so, 1 + 1og 2 k < 1 + k = k + 1. Hence,
by the transitive property of order (T17 in Appendix B), log2 (k + 1) < k + 1 [as was to be
shown].

48. Proof: Suppose n is a variable that takes positive integer values. Then whenever n > 2,

2n = 2-2.222 2.. 2 < 2-2.3-45 ... n < 2n!.

n factors n factors

Let B = 2 and b = 2. Since 2n and n! are positive for all n, 12'I < BIn!I for all integers n > b.
Hence by definition of 0-notation 2' is O(n!).

49. b. By part (a), for all integers n > 1, n! < nn. Because the logarithmic function with base 2
is increasing, we have log2 (n!) < log2 (nn) = nlog2 (n). Let B = 1 and b = 1. Then, because
all quantities are positive, 1log 2 (n!)l < Binlog2 (n)I for all n > b, and so by definition of
0-notation log2(n!) is 0(n log2 n).

c. Proof: Suppose n is any nonnegative integer. Then for any integer r with 1 < r < n - r
is positive. So we can multiply both sides of r > 1 by n - r to obtain r(n -r) > n - r, or,
equivalently, rn - r2 > n - r. Adding r to both sides gives rn - r2 + r > n, or, equivalently,

n n n

r(n-r + 1) > n. It follows that rl r(n-r + 1)> r n = nn. But l r(n -r +1)
r=1 r=1 r=1

(HrI r) (fii(n-r+1)) = (1*2 3 ... (n -1) .n)(n- (n- 1) ... 3 2 1) = (n!)(n!) = (n!)2 .
r=1 r=1

Hence, by the transitive property of order (T-17 in Appendix B), (n!)2 > nn.

d. Proof: By part (c), for any integer n > 1, (n!)2 > nO. Because the logarithmic function
with base 2 is increasing, we have log2 ((n!)2 ) > log2(n'), and so, by exercise 31 from Section
7.2, 21og2 ((n!)) > n1og2 (n). Dividing both sides by 2 gives log2(n!) > 1nlog 2 (n). Let A = 12 2
and a = 1. Then for all integers n > a, log2(n!) > Anlog2(n), and thus, because both sides of
the inequality are positive, 1log 2 (n!)I > A Inlog2 (n)L . Therefore, by definition of Q-notation,
log2 (n!) is Q(nlog 2 (n)).

e. It follows immediately from parts (b) and (d) and Theorem 9.2.1(1) that log2 (n!) is
39(n 9g2(n)).
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51. a. Let n be any positive integer. Then for any real number x /because u < 2 ' for all real
numbers u], x/n < 2x/n = x < n2x/' =~ X < (n2x/n) = nn 2x.

So xn < nn2x.

b. Let x be any positive real number and let n be any positive integer. Then .n = Ixn and
nfl2x 2x InnI, and thus the result of part (a) may be written as IxnI < 22 Inn . Let B = 2x
and b = 0. Then Ixfl < B In n for all integers n > b, and so by definition of 0-notation a' is
O(n n)

53. Let n be any positive integer and X a real number with x > (2n)2 n. By exercise 52, log2 x <
X /n for all positive integers n. But if n > 2, then X/1n < X1/2 (by property (9.2.1)). So, in
particular,

log2 X < xl/2

But since x > (2n)2 n, then by properties of inequalities and exercise 20 of Section 9.1,

x~2  111 1~'>.§ xx/2.
x > n2 X:~ +/i > n = / -/ > 1G => -A/E > 1/EX- -x > xl2

n n n

Putting the inequalities log2 x < xl/2 and x1/2 < l x together gives
1

log 2 x < -x.
n

Applying the exponential function with base 2 to both sides results in

202 X2 < 2 . =~> x < (2x)/ ==> Xn < 2x.

55. a. Let b be a real number with b > 1, and let n be any integer with n > 1. By L'H6pital's
rule,

nx 1

lim 1og X= lim ln b - lim xunb
X D Xn XC 1/ n z 0 1 n1/n -1

n

lim - lim 1 ==
In bx-~oo (X fln) 1 I lbx--oXl/n Inb 0

b. By the result of part (a) and the definition of limit, given any real number E, say E = 1,
there exists a real number N so that

log x _ 0 <E=1 forallx>N.
p 1/n

It follows that
I logb xI < Ix1 /nj for all x > N.

Let B = 1 and b' = N. Then

Ilogb xl < Blx1/1l for all x > b',

and so by definition of O-notation, logb x is O(X1/n).
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Section 9.5

2. b. If m = 2 k, where k is a positive integer, then the algorithm requires c[log2 (2k)j = cL kj = ck
operations. If the input size is increased to mi1 = (2k)10 = 210k, then the number of operations
required is c[log2 (21 0 k)] = cL10k] = c. l0k = 10. ck. So the number of operations increases
by a factor of 10.

c. When the input size is increased from 27 to 228, the factor by which the number of operations

increases is C1log2 (22 ) J 2 = 4-
C 10g 2 (27 )j 7c

4. To answer this question, we need to find where the graph of y = [n 2/10J crosses the graph
of y = Lnlog 2 nj. A little numerical exploration reveals that when n = 20, [n 2 /10j = 40
whereas Ln log 2 nj = 86, and so for n = 20 Ln2 /10j < [n log2 nj. However, for n = 100,
Ln 2/10j = 1000 whereas [n log2 nJ = 664, and so for n = 100 [n2

/10j > [n log 2 nj. So to
find the crossing point of the two graphs, we can use an initial window going from n = 20 to
n = 100 and from y = 40 to y = 1000. Zooming in shows that the crossing point occurs at
approximately n = 58. Indeed, for n = 58, [n2/10j = 336 < 339 = [nlog2 nj, and for n = 59,
tn 2 /10i = 348 > 347 = [n log2 nj. So if n < 58, an algorithm that requires [n 2

/10j operations
is more efficient than an algorithm that requires [n log2 nJ operations.

6. a.

index 0
bot 1 1 1 1
top 10 4 1 0
mid 5 2 1

b.

index 0 8
bot 1 6
top 10
mid 5 8

7. c. Suppose there is an even number of elements in the array a[bot], a[bot + 1],. .. , a[top]. Then
top -bot+ lis an even number, and so top -bot+ I1 = 2k for some integer k. Solving for top gives
top = 2k +bot- 1, and hence bot+top = bot+(2k +bot- 1) = 2 bot+ 2k -2 + I = 2(bot+ k -1)+1,
which is odd because bot + k - 1 is an integer.

12.

I n 1 424 | 141 | 47 | 15 | 5 | 1 0

13. For each integer k > 3, n div 3 = [k/3j. Thus when the algorithm segment is run for a
particular k and the while loop has iterated one time, the input to the next iteration is [k/3j.
It follows that the number of iterations of the loop for k is one more than the number of
iterations for [k/3J. That is, bk = 1 + bLk/ 3 ] for all k > 3. Also b1 = 1 and b2 = 1 because
[1/3] = 0 and [2/3j = 0, and so when k equals 1 or 2, the while loop iterates just one time.
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14.
bi = 1

b2 = 1

b3  = 1 + bL3/3 ] = 1 + b = 11 = 2
b4  = 1+bL4 /3 ==1+b=1+1=2
b5  = 1+bL5/ 3 = 1+b 1 =1+1=2
b6  = 1 + bL6/3 ] = 1 + b2 = 1 + 1 = 2

b8  = ±+b8/3] =I+b 2 =1+I=2

b -= I + bL9/ 3 = 1 + b3  1 + 2 = 3

b26  = 1+bL2 6 /3 = 1+b8 =-1+2 =3

b27 = I + bL27 /3J I + bg I + 3 = 4

Guess: If n satisfies the inequality 3' < n < 3r+1 for some integer r > 0, then b, = 1 + r. In
this case r < log3 n < r + 1, and so r = [log3 nj and the formula is bn 1 + [log3 nj for all
integers n > 1.

b. Proof: Suppose k is an integer and x is any real number with 3k < x < 3 k+1 Because the log-
arithmic function with base 3 is increasing, it follows that log3 (3k) < log3 (r) < log3 (3k'l).But,
by definition of logarithm, log3(3k) = k and log 3 (3k+l) = k + 1. Thus k < log3 (x) < k + 1,
and so, by definition of floor, [log3 (X)J = k.

c. Proof: Suppose m is an integer with m > 1. For some integer a > 1, 3a < 3m < 3a+1* So
since 3 a+1 = 3 3 a > 3 a + 3 whenever a > 1,

3a < 3m < 3m+1 < 3m+2 < 3a+1

Applying the logarithmic function with base 3 to all parts of these inequalities and using the
fact that the logarithmic function with base 3 is increasing gives

lOg3 (3a) < log3 (3m) < log3 (3m + 1) < log3(3m + 2) < 1093(3a+1).

Since lOg3 (3a) = a and 10g3 (3a+l) = a + 1,

a < log3 (3m) < log3(3m+1) < log3(3m+2) < a+1.

So by definition of floor, [log3 (3m)j = [log3 (3m + 1)j = [log3 (3m + 2)j.

d. Proof (by strong mathematical induction): Let b1 , b2 , b3 .... be a sequence that satisfies
the recurrence relation bk = 1 + bLk/31 for all integers k > 2, with initial conditions b1 = 1 and
b2 = 1, and let the property P(n) be the equation bn = I + [log3 nj.

Show that the property is true for n = 1 and n = 2: For n = 1 the equation states
that bi 1 + [log 3 1j 1 ±+ = 1, which is true. For n = 2 the equation states that
b2 = 1 + [log3 2j 1 + 0 1, which is also true because 0 < log3 2 < 1.

Show that for all integers k > 2, if the property is true for all i with 1 < i < k
then it is true for k: Let k be an integer with k > 2 and suppose bi 1 + [log3 ij
for all integers i with 1 < i < k. [This is the inductive hypothesis.] We must show that
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bk = 1 + [log3 kj. But by the quotient-remainder theorem with d = 3, k = 3q + r, where q
and r are integers and 0 < r < 3. Note that Lk/3j = [(3q + r)/3] = Lq + r/3j = q [since
0 < r < 3] and that q > 1 [since k is positive]. Thus 1 < q = Lk/3] < k/3 < k. It follows
that

1 + bLk/ 3 j

1 + bq
1 + (1 + [log3 qj)
1 + ( [1 + 10g3 q])
1 + ([log 3 3 + log3 qj)
1 + ([log3 3qj)
1 + ( [log 3 kj )

by part (a)
because q = [k/3j
by inductive hypothesis (since q < k)
by Theorem 3.5.1.
because log3 3 = 1
by the result of exercise 30 in Section 7.2
by part (c) (because k = 3q + r where
q and r are integers and 0 < r < 3.

[This is what was to be shown.]

15. If n > 3, then, by definition of floor, [log 3 nj < log3 n < [log3 nj + 1. Thus bn = 1 +
[log 3 nj < 1 + 1og3 n [by definition of floor] < 1og 3 n + 1og 3 n [because if n > 3 then 1og 3 n > 1]
= 2 1og3 n. Furthermore, because log3 n > 0 for n > 2, we may write jlog3 nI < Ilog3 nj + II <
2 log3 nj. Let A = 1, B = 2, and k = 2. Then all quantities are positive, and so A 1log 3 nj <
I [log3 nj + 1 < B 1log 3 nI for all integers n > k. Hence by definition of e3-notation, bn =
1 + [log3 nJ is e9(10g3 n), and thus the algorithm segment has order log3 n.

16. Let W 1 ,W 2 ,W 3 ... be defined as follows: w1 = 1 and Wk = 1 + WLk/2] for all integers k > 1.
Let k be an even integer, and suppose wt = log2 iJ + 1 for all integers i with 1 < i < k.
[This is the inductive hypothesis.] [We will show that wk = [log2 kj + 1.] Since k is even,
[k/2j = k/2. Then Wk = 1 + WLk/2J = 1 + Wk/2 = 1 + ([log2 (k/2)j + 1) [by inductive
hypothesis] = 1 + [log2 k -10g 2 2j + 1) [by exercise 29 of Section 7.2] = 1 + [log2 k -1] + 1)
[because log2 2 = 1] = 1 + (log 2 kj -1 + 1) [by exercise 15 of Section 3.5] = [log 2 kj + 1 [as
was to be shown].

17. a.

index | e- 1 7
bot 1 7 =
top 10 8 7
mid 6 9 8 7

b.

index 0
bot 1 7 9
top 10 8
mid 6 9 8

bk =
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286 Solutions for Exercises: The Efficiency of Algorithms

18. Suppose an array of length k is input to the while loop and the loop is iterated one time.

The elements of the array can be matched with the integers from I to k with m [ + 11
as shown below:

left subarray right subarray

a[iot] a[bot + 1] ... a[mid -1] a[mid] a[mid + 1] ... atop -1] a[top]

1 2 m -1 m m+1 k -1

Case 1 (k is even): In this case m = 2 1] = ±k + 1 = + 1, and so the number of

elements in the left subarray equals m 1 ( 2+ 1) 1 = [ j. The number of elements

in the right subarray equals k-(m + 1)-1 = k-m = k- (2 + 1) = -1 L i* Hence

both subarrays (and thus the new input array) have length at most [kj

Case 2 (k is odd): In this case m k 2 1 2 and so the number of elements in the
k 1 k 1 2P

left subarray equals m - 1 = 1 = 2-. = [ The number of elements in the right
2 2 2 i

subarray equals k - m = k- k = = L 2 also. Hence both subarrays (and thus the
2 = 2 = 

2

new input array) have length [Lj
The arguments in cases 1 and 2 show that the length of the new input array to the next
iteration of the while loop has length at most Lk/2j .

19. By exercise 18, given an input array of length k to the while loop of the modified binary
search algorithm, the worst that can happen is that the next iteration of the loop will have to
search an array of length Lk/2j. Hence the maximum number of iterations of the loop is one
more than the maximum number necessary to execute it for an input array of length [k/2j.
Thus wk = 1 + WLk/2j for k > 2.

21.
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23.

lit

split

merge

rge

24. a. Refer to Figure 9.5.3. Observe that when k is odd, the subarray a[mid+l], a[mid+2] .... a[top]

has length k - (k + 1 ± ) + 1 = 2 = k/2J. And when k is even, the subarray

a[mid + 1],a[mid + 2],.. .a[top] has length k- ( + I + 1

case the subarray has length Lk/2J.

2 = Lk/2i. So in either

25. a. Proof (by strong mathematical induction): Let ml, M 2 , m 3 , .... be a sequence that satisfies
the recurrence relation Mk = mLk/2] +±MFk/2] +k -1 for all integers k > 1, with initial condition
mn 0, and let the property P(n) be the inequality In log2 n < max.

Show that the property is true for n = 1 : For n = 1, the left-hand side of the inequality
is 12 log2 1 = .1 0 = 0 and the right-hand side is mi, which also equals 0. So the inequality
is true for n = 1.

Show that for all integers k > 1, if the property is true for all i with 1 < i < k
then it is true for k: Let k be an integer with k > 1 and suppose that mi < 2ilog2 i
for all integers i with 1 < i < k. /This is the inductive hypothesis.] We must show that
iMk < 2k 10g 2 k.

Case 1 (k is even): In this case,

Mk

ink

Mk

Mk

mk

Mk

Mk

Mk

Mk

Mk

inLk/2j + Mfk/21 + k -1 by definition of Ml,in 2 , M3 ,....
Mk/2 + Mk/2 + k -1 because k is even
2Tnk/ 2 + k -1.
2 1 _ log2 (k) + k -1 by inductive hypothesis
k (1og 2 k -1og 2 2) + k -1 by exercise 29 of Section 7.2

2 k(10g2 k -1) + k -1 because 1og 2 2 = 1
'klog k0 k +k- 1
klog2k±+ 1

k log2 k+ k22
2k 10g 2 k because when k > 2 then k 2 -> 0
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288 Solutions for Exercises: The Efficiency of Algorithms

Case 2 (k is odd): In this case, k = 2q + 1 for some integer q and 1 < q (since k > 2). Then
k/2 = q + 1/2, and so [k/2j = q and fk/2] = q + 1, where 1 < q < q + 1 < 2q + 1 = k. It
follows that

mk = mLk/2j + mfk/2] + k- 1
by definition of m 1 ,m 2 ,m 3 ,....

=> mk = mq + 71+l + 2q
by substitution and by subtracting 1 from both sides of k = 2q + 1

=} mk ' 2qlg 2 (q) + ±(q + 1)1og2 (q + 1) + 2q

by inductive hypothesis
•s mk > 2[q 10g 2 (q) + (q + 1)log2 (q + 1) + 4q]

by factoring out 1/2
=} mk > -[q 1lg 2(q) + 2q + (q + 1)log 2 (q + 1) + 2q]

because 4q = 2q + 2q
=> mk > 2[q(lg2 (q) + 2) + (q + 1)Log2 (q + 1) + (q 1)]

by factoring out q and because q > 1 implies that 2q > q + 1

= Mk > 2[q(lg 2 (q) + 2) + (q + 1)(log 2 (q + 1) + 1)]

by factoring out q + 1
=> mk > -[q(log2 (q) + log2 (4)) + (q + 1)(log2 (q + 1) + log 2 (2))]

because log2 4 = 2 and lg 2 2 = 1
=} mk > 2[qlog2 (4q) + (q + 1)log 2(2q + 2)]

by exercise 30 of Section 7.2
T4 k mk > [q 0log2 (2q + 1) + (q + 1)log 2 (2q + 1)]

by property (9.4.1) and because q > 1
implies that 2q + 1 < 2q + 2 < 2q + 2q = 4q

=} mk > 2[(2q + 1)log2 (2q + 1)]
by factoring out log2 (2q + 1)

=> mk > 21k log2 k
because k = 2q + 1.

Cases 1 and 2 show that regardless of whether k is even or odd, mk > 2 k lg 2 k [as was to be
shown].

b. Proof (by strong mathematical induction): Let M 1 , M 2 , m 3 , . be a sequence that satisfies
the recurrence relation mk = "Lk/2 1 +mFk/21 + k-1 for all integers k > 1, with initial condition
ml = 0, and let the property P(n) be the inequality mn < 2n lg 2 n.

Show that the property is true for n = 1 : For n = 1 the left-hand side of the inequality
is ml, which equals 0, and the right-hand side is 2 1 log2 1 = 2 10 = 0 also. So the inequality
is true for n = 1.

Show that for all integers k > 1, if the property is true for all i with 1 < i < k
then it is true for k: Let k be an integer with k > 1 and suppose that mi < 2i log2 i
for all integers i with 1 < i < k. [This is the inductive hypothesis.] We must show that
mk < 2k 1og 2 k.

Case 1 (k is even): In this case,

mk = mLk/2j + mrk/21 + k -1 by definition of M1 , M2 , m 3 ,....
' mk = Mk/2 + Mk/2 + k - 1 because k is even

' mk = 2mk/2 + k- 1.

= mk < 2 2 2k1og2 (2) + k - 1 by inductive hypothesis

M ik < 2k(10g2 k - 1lg 2 2) + k -1 by exercise 29 of Section 7.2
•= Mk < 2k(10g2 k-1) + k -1 because 1og2 2 = 1

M4 Ak < 2klog2 k -1

M4 ik < 2k log2 k.
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Case 2 (k is odd): In this case, as in part (a), k = 2q + 1 for some integer q and 1 < q (since
k > 2). Then k/2 = q + 1/2, and so [k/2j = q and rk/2] = q + 1, where 1 < q < q + 1 <
2q + 1 = k. It follows that

mk = mLk/2] +mFk/21 + k- 1
by definition of mI, M2 , m 3 ,....

= mk = mq + Mq+1 + 2q
by substitution and by subtracting 1 from both sides of k 2q + 1

n mk < 2qlog2 (q) + 2(q + 1) log2 (q + 1) + 2q
by inductive hypothesis

> mk < 2[qlog2 (q) + (q + 1) log2 (q + 1) + q]

by factoring out 2
T mk < 2[q(10g2 (q) + 1) + (q + 1) log 2 (q + 1)]

by factoring out q
• mk < 2[q(10g2 (q) + log 2 (2)) + (q + 1) log2 (q + 1)]

because log 2 (2) = 1
M ik < 2[q(10g2 (2q)) + (q + 1) l1g 2 (q + 1)]

by exercise 30 of Section 7.2
= mk < 2[q(10g 2(k)) + (q + 1) log 2 (k)]

because q + 1 < q + q = 2q < k and because
the logarithm function with base 2 is increasing

mk < 2[(q + (q + 1))(1092(k))]
by factoring out log2 (k)

=} mk < 2k 10g 2 k because k = 2q + 1.

Cases 1 and 2 show that regardless of whether k is even or odd, mk < 2k log2 k [as was to be
shown].

26. Algorithm Fast Computation of Integral Powers

/Given a real number x and a positive integer n, this algorithm computes x2. It first calls
Algorithm 4.1.1 to find the binary representation of n: (r[k]r[k - 1] ... r[l]r[0])2 . Then it
computes x' using the fact that Xn = Xr[k]2 . Xr[k-1]2k-' .. xr[11]2 . xr[0]2

0 . Initially, factor is
set equal to x and answer is either set equal to x if r[O] = 1 (which means that Xr[012

0 
= x) or

it is set equal to 1 if r[0] = 0 (which means that Xr[0]2 - 1). For each i = 1 to k, the value

of factor is squared to obtain the numbers x2 , and each such number is made a factor of the
answer provided r[i] = 1 (which means that Xr[il2' = -2.)

Input: x / a real number], n / a positive integer]

Algorithm Body:

Call Algorithm 4.1.1 with input n to obtain the output r[0],r[1],. . . ,r[k].

factor: x

if r[0] = 1 then answer:= x else answer = 1

for i :=1 to k

factor := factor- factor

if r[i] = 1 then answer := answer . factor

next i

Output: answer [a real number]

b. There are at most two multiplications per iteration of the for-next loop and there are
k iterations of this loop. Hence the total number of multiplications is at most 2k. Now
n = 2 k + lower powers of 2. Consequently, 2k < n < 2 k+1, and so k = [log2 nj by property
(9.4.2). Thus the number of multiplications is at most 2 [log 2 nj .
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Chapter 10: Relations

The first section of this chapter is an introduction to concepts and notation with emphasis on
understanding equivalent ways to specify and represent relations, both finite and infinite. In Section
10.2 the reflexivity, symmetry, and transitivity properties of binary relations are introduced and
explored, and in Section 10.3 equivalence relations are discussed. At this point in the course, students
are generally able to handle the level of abstraction fairly well. Some still need to be reminded of the
logic discussed in the first two chapters and the proof methods covered in Chapter 3. For instance,
even at this late stage of the course, I find that a few students rephrase the definition of symmetric
as "x R y and y R x". But even these students are responsive to correction and are generally able
to succeed with some assistance. In fact, it is often only at this point in the course that one can
count on virtually all students understanding that the same proof outline is used to prove universal
conditional statements no matter what the mathematical context.

Class participation in the discussion of these sections is very helpful. For instance, each time
you write a definition of a property on the board, you can ask what it means for something not
to have that property. And instead of just working examples to prove or disprove the properties
in various instances, you can pose questions on the board and get the class to solve them for you,
preferably by having several students each contribute a part of the solution. After all, once the
definitions have been written down, it is just a question of thinking things through to apply them
in any given instance, and students are supposed to have learned how to think things through or at
least to be making significant progress in doing so. If time allows, it is desirable to have students
present solutions to homework problems for the rest of the class to critique or to work on solving
problems together in groups.

Section 10.4 deepens and extends the discussion of congruence relations in Sections 10.2 and
10.3 through applications to modular arithmetic and cryptography. The section is designed to make
it possible to give students meaningful practice with RSA cryptography without having to spend
several weeks to do so. After a brief introduction to the idea of cryptography, the first part of the
section is devoted to helping students develop facility with modular arithmetic, especially finding
least positive residues of integers raised to large positive powers and using the Euclidean algorithm
to compute positive inverses modulo a number. Proofs of the underlying mathematical theory are
left to the end of the section.

Partial order relations are not discussed until the last section of this chapter so as not to confuse
students by presenting the definitions of symmetry and antisymmetry side-by-side. Another reason
for placing the discussion of partial order relations in Section 10.5 is that the flavor of partial order
relations is rather different from that of equivalence relations.

Comments on Exercises:

Section 10.2: #6-8 and #50-51: It would seem as if finite sets would provide the simplest
examples of relations, and by and large they do. But in these problems, a few properties are
vacuously true (or "true by default"), which is a mode of reasoning that some students still find
hard to grasp. Actually, the idea of vacuous truth has occurred frequently enough throughout the
book that there frequently are students who relish encountering it in new situations. And usually
even the students who still find the idea mind-boggling are amused by it.

Section 10.3: #31-36: These exercises are designed to give students practice doing the kind of
reasoning that is used to prove the main theorem of the section. These are good exercises to go over
with the class as a whole, having a different student supply each step of the solution. #43: This
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Section 10.1 291

exercise is somewhat whimsical, and students often ask what is its point. It is intended to provide
an occasion to discuss the fact that a given equivalence class may have many different names, at
least as many as there are representatives in the class, and that one needs to distinguish between
what such a mathematical object is and what it is called.

Section 10.1

2. a. No, 2 ; 4. Yes, 4 > 3. Yes, 4 > 4. No, 2 ¢ D.

b. S {(3, 3), (4, 3), (5, 3), (4, 4), (5, 4)}

3. b. Proof: Let n be any even integer. Then n - 0 = n is also even, and so n E 0 by definition
of E.

4. The following is a rather complete proof. Shorter versions that have a correct flow and feel
should certainly be acceptable.

Proof: We first observe that for all integers m and n, if m -n is even then both m and n are
even or both m and n are odd. To do this, we prove the logically equivalent statement: for all
integers m and n, if m -n is even and at least one of m or n is odd, then both m and n are odd.
[See exercise 14 in Section 1.2.] So suppose m and n are any integers so that m -n is even and
at least one of m or n is odd. Since m -n is even, m - n = 2r for some integer r. In case m is
odd, then m = 2s + 1 for some integer s, and so n = m -(m -n) = (2s + 1)-2r = 2(s-r) + 1,
which is odd [because s -r is an integer]. In case n is odd, then n = 2s + 1 for some integer
s, and so m = (m -n) + n = 2r + (2s + 1) = 2(r + s) + 1, which is odd because r + s is an
integer]. Hence in either case, both m and n are odd [as was to be shown]. To finish the
proof, we need to show that for all integers m and n, if both m and n are even or both m and
n are odd, then m -n is even. So suppose m and n are any integers such that both m and n
are even or both m and n are odd. Then m = 2a + r and n = 2b + r where a and b are integers
and r = 0 or r = 1. It follows that m -n = (2a + r) - (2b + r) = 2a- 2b = 2(a -b). But
a - b is an integer (because it is a difference of integers), and thus m - n is even by definition
of even.

5. c. One possible answer: 4, 7, 10, -2, -5

d. One possible answer: 5, 8, 11, -1, -4

e. Theorem: 1. All integers of the form 3k are related by T to 0.

2. All integers of the form 3k + 1 are related by T to 1.

3. All integers of the form 3k + 2 are related by T to 2.

Proof of (2): Let n be any integer of the form n = 3k + 1 for some integer k. By substitution,
n -1 = (3k + 1) -1 = 3k, and so by definition of divisibility, 3 1 (n - 1). Hence by definition
of T, nT 1.

The proofs of (1) and (3) are identical to the proof of (2) with 0 and 2 respectively substituted
in place of 1.

6. a. Yes, 2 > 1. Yes, 2 > 2. No, 2 ; 3. Yes,-1 >-2.
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7. b.

Y

-2

8. c. Yes, both have the prime factor 5. d. Yes, both have the prime factor 2.

9. b. No, {a} has one element and {a, b} has two. c. Yes, both have one element.

10. b. Yes, because {a, b} n {b, c} = {b} # 0. c. Yes, because {a, b} n {a, b, c} = {a, b} $ 0.

11. b. No, because aa 7 bb. c. Yes, because aa aa.

12. a.

S
A /- B T

BA

b. S is not a function because (5,5) c S and (5, 7) E S and 5 -7 7. So S does not satisfy
property (2) of the definition of function. T is not a function both because (5, x) ¢ T for any
x in B and because (6, 5) e T and (6, 7) E T and 5 # 7. So T does not satisfy either property
(1) or property (2) of the definition of function.

14. The following 12 sets are all the binary relations from {a, b} to {x, y} that are not functions:

0, {(a, x)}, {(a, y)}, {(b, x)}, {(b, y)}, {(a, x), (a, y)}, {(b, x), (b, y)}, {(a, x), (a, y), (b, x)},
{(a, x), (a, y), (b, y)}, {(b, x), (b, y), (a, x)}, {(b, x), (b, y), (a, y)}, {(a, x), (a, y), (b, X), (b, y)}.

2y =x
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15. a. There are 2m" binary relations from A to B because a binary relation from A to B is any
subset of A x B, A x B is a set with mn elements (since A has m elements and B has n
elements), and the number of subsets of a set with mn elements is 2mn (by Theorem 5.3.1).

b. In order to define a function from A to B we must specify exactly one image in B for each
of the m elements in A. So we can think of constructing a function from A to B as an rn-step
process, where step i is to choose an image for the ith element of A (for i = 1, 2,... , m).
Because there are n choices of image for each of the m elements, by the multiplication rule,
the total number of functions is n n -- n = n'.

m factors

C. = r-
2nm V2n

18. S = {(3, 6), (4, 4), (5, 5)} S- {(6, 3), (4, 4), (5,5)}

19. c. Yes, aba is the concatenation of a with ba.
d. No, abb T-lbba <> bba T abb, but bba ,Tabb because abb is not the concatenation of a with
bba.
f. Yes, abba T -bba <- bba T abba, and bba T abba because abba is the concatenation of a
with bba.

20.

3 -

2 -

I -

-4 -3 -2 -I

---- -2-

- - -3-

L

R -__o
-o

- -----

1 2 3 4

21. b. A function F: X -- Y is onto if, and only if, for all y E Y, 3x C X such that (x, y) e F.

22. b. No. If F: X -- Y is not one-to-one, then there exist x1 and x2 in X and y in Y such that
(xiy) C F and (X2,Y) C F and xi 54 x2. But this implies that there exist xi and x2 in X and
y in Y such that (yxi) E F-1 and (y,X2) E F`1 and x1 # x2. Consequently, F-1 does not
satisfy property (2) of the definition of function.

24.

a b

C

I

C
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26.

27.

28. b.

466581 Mary Lazars
778400 Jamal Baskers

30. A x B = {(-1,1), (1,1), (2,1),(4,1),(-1,2),(1,2),(2,2),(4,2)}

R = {(- 1,1), (1,1), (2,2)}

S = {(-1, 1), (1, 1), (2, 2), (4, 2)}

RuS=S RnS=R

32.

A

3-

II I I 1

-4 -3 -2 /

2 -

// -3

S

- 1 2 3 4
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3-

2-

I-

-4 -3 -2 -1 -

3-

295

(2,v2) RnfS

I I I - /

1 2 3 4

Q,- '2

To obtain R n S, solve the system of equations:

x2+y2 = 4
x = Y

Substituting the second equation into the first gives x2 + y2 = 4 = 2x2 = 4 => x2 = 2 =>
x = ±v'-. Hence x = y = or x=y= - .

33.

I1-

A

R US

S

. is

,1,

R ns

i I
,1

2

-4

RUS

4I,

34

I

i

.
i

I
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Section 10.2

2. a.

C

2

1

3

b. R2 is not reflexive because (3,3) g R2.

c. R2 is not symmetric because, for example, (0,1) e R2 but (1,0) ¢ R2 .

d. R2 is not transitive because, for example, (0,1) E R2 and (1, 2) E R2 but (0, 2) f R2.

4. a.

I

b.

c.

d.

R4 is not reflexive because, for instance, (0,0 ) V R4. (In fact, (x, x) ¢ R4 for any x in A.)

R4 is symmetric.

R4 is not transitive because, for example, (3, 1) e R4 and (1, 2) C R4 but (3, 2) ¢ Rft.

0

2h A

5. a.

b. R5 is not reflexive because, for example, (1, 1) V R2 .

c. R5 is not symmetric because, for example, (0,1) E R5 but (1, 0) V Rf5.

d. R5 is transitive.

7. a.

0 S

.1
II

I

2 3
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b. R7 is not reflexive because, for example, (0, 0) ¢ R7 .

c. R7 is not symmetric because, for example, (0, 3) e R7 but (3, 0) ¢ R7.

d. R7 is transitive.

8. a.

2. * 3

b. R5 is not reflexive because, for example, (2, 2) ¢ R5 .

c. R5 is symmetric.

d. R5 is transitive.

10. St 
= {(0, 0), (0,3), (1,0), (1,2), (2,O), (3,2), (0,2), (1,3), (2, 2), (2,3), (3, 3), (3, O)}

11. Tt = {(0, 2), (1,0), (2,3), (3,1), (0,3), (1,2), (2,1), (3, 2), (3,O), (OO), (0,1), (1, 1), (1,3), (3,3),

(2,2), (2,O)}

13. C is not reflexive: C is reflexive X for all real numbers x, x C x. By definition of C this
means that for all real numbers x, x2 + x2 = 1. But this is false. As a counterexample, take
x=0. Thenx 2 +x2 =02+02=07 1.

C is symmetric: C is symmetric X for all real numbers x and y, if x C y then y C x. By
definition of C this means that for all real numbers x and y, if X2 + y2 = 1 then y2 

+ X2 = 1.

But this is true because by commutativity of addition, x2 
+ y2 

= y 2 
+ X2 for all real numbers

x and y.

C is not transitive: C is transitive t# for all real numbers x, y, and z, if x C y and y C z
then x C z. By definition of C this means that for all real numbers x, y and z, if X2 + y2 

= 1
and y2 

+ Z2 = 1 then X2 + Z
2 = 1. But this is false. As a counterexample, take x = 0, y = 1,

and z = 0. Then x2 + y 2 = 1 because 02 + 12 = 1 and y2 + Z2 =1 because 12 + 02 = 1, but
92 + Z2 l 1 because 02 +0 2 = 0 5 1.

16. F is reflexive: Suppose m is any integer. Since m-nm, = 0 and 5 0, we have that 5 1 (m - m).
Consequently, m F m by definition of F.

F is symmetric: Suppose m and n are any integers such that mr F n. By definition of F this
means that 5 1 (m - n), and so, by definition of divisibility, m - n = 5k for some integer k.
Now n - m = -(m - n). Hence by substitution, n - m = -(5k) = 5 (-k). It follows that
51 (n - m) by definition of divisibility (since -k is an integer), and thus n F m by definition
of F.

F is transitive: Suppose m, n and p are any integers such that m F n and n F p. By definition
of F, this means that 5 1 (m - n) and 5 1 (n -p), and so, by definition of divisibility, m- n = 5k
for some integer k, and n-p - 51 for some integer 1. Now m-p = (m- n) + (n-p). Hence by
substitution, m- p = 5k + 51 5(k + 1). It follows that 5 1 (m - p) by definition of divisibility
(since k + 1 is an integer), and thus in F p by definition of F.

17. 0 is not reflexive: 0 is reflexive -' for all integers mn, m 0 m. By definition of 0 this means
that for all integers m, m - m is odd. But this is false. As a counterexample, take any integer
m. Then m - m = 0, which is even, not odd.
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o is symmetric: Suppose m and n are any integers such that m 0 n. By definition of 0 this
means that m - n is odd, and so by definition of odd m - n = 2k + 1 for some integer k. Now
n -m =- (m -n). Hence by substitution, n -m = -(2k + 1) = 2(-k- 1) + 1. It follows that
n -m is odd by definition of odd (since- k -1 is an integer), and thus n 0 m by definition
of 0.

o is not transitive: 0 is transitive #> for all integers m, n, and p, if m 0 n and n 0 p then
m 0 p. By definition of 0 this means that for all integers m, n, and p, if m -n is odd and
n - p is odd then m -p is odd. But this is false. As a counterexample, take m = 1, n = 0, and
p = 1. Then m -n = 1- = 1 is odd and n -p = 01 =- 1 is also odd, but m -p = 1- =
is not odd. Hence m 0 n and n O p but m q p.

19. A is reflexive: A is reflexive X' for all real numbers x, x 1x1 2 1. But this is true by the
reflexive property of equality.

A is symmetric: [We must show that for all real numbers x and y, if I x 1=1 y I then I y 1=1 I x1-
But this is true by the symmetric property of equality.

A is transitive: A is transitive -z> for all real numbers x, y, and z, if I x 1=1 y I and I y 1=1 z
then I 1=1 Z 1. But this is true by the transitive property of equality.

20. P is not reflexive: P is reflexive ¢> for all integers n, n P n. By definition of P this means
that for all integers n, 3 a prime number p such that p I n and p I n. But this is false. As a
counterexample, take n = 1. There is no prime number that divides 1.

P is symmetric: /We must show that for all integers m and n, if m P n then n P mi. Suppose
m and n are integers such that m P n. By definition of P this means that there exists a prime
number p such that p I m and p I n. But to say that "p I m and p I n" is logically equivalent to
saying that "p I n and p I m." Hence there exists a prime number p such that p I n and p I m,
and so by definition of P, n P m.

P is not transitive: P is transitive X for all integers m, n, and p, if m P n and n P p then
m P p. But this is false. As a counterexample, take m = 2, n = 6, and p = 9. Then m P n
because the prime number 2 divides both 2 and 6 and n P p because the prime number 3
divides both 6 and 9, but m: : n because the numbers 2 and 9 have no common prime
factor.

22. G is not reflexive: G is reflexive t* for all strings s of O's and 1's, s G s. By definition of G this
means that for all strings s of O's and 1's, the number of O's in s is greater than the number
of O's in s. But this is false for every string of O's and 1's. For instance, let s = 00. Then the
number of O's in s is 2 which is not greater than 2.

G is not symmetric: For G to be symmetric would mean that for all strings s and t of O's and
l's, if s G t then t R s. By definition of G, this would mean that for all strings s and t of O's
and 1's, if the number of O's in s is greater than the number of O's in t, then the number of O's
in t is greater than the number of O's in s. But this is false for all strings s and t of O's and
1's. For instance, take s = 100 and t = 10. Then the number of O's in s is 2 and the number
of O's in t is 1. It follows that s G t (since 2 > 1), but t ,G s (since 1 ii 2).

G is transitive: To prove transitivity of G, we must show that for all strings s, t, and u of O's
and 1's, if s G t and t G u then s G u. By definition of G this means that for all strings s, t,
and u of O's and 1's, if the number of O's in s is greater than the number of O's in t and the
number of O's in t is greater than the number of O's in a, then the number of O's in s is greater
than the number of O's in u. But this is true by the transitivity property of order (Appendix
A, T17).

24. 9 is not reflexive: be is reflexive z> for all sets A e 9(X), A Ya A. By definition of Y this
means that for all sets A in t?(X), N(A) < N(A). But this is false for every set in Y(X).
For instance, let A = 0. Then N(A) = 0, and 0 is not less than 0.
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.9 is not symmetric: For R to be symmetric would mean that for all sets A and B in .9(X), if
A .9 B then B - A. By definition of A, this would mean that for all sets A and B in .9(X),
if N(A) < N(B), then N(B) < N(A). But this is false for all sets A and B in .9(X). For
instance, take A = 0 and B = {a}. Then N(A) = 0 and N(B) = 1. It follows that A is related
to B by A' (since 0 < 1), but B is not related to A by - (since 1 54 0).

M is transitive: To prove transitivity of A, we must show that for all sets A, B, and C in
.9(X), if A M B and B M C then A - C. By definition of M this means that for all sets
A, B, and C in .9(X), if N(A) < N(B) and N(B) < N(C), then N(A) < N(C). But this is
true by the transitivity property of order (Appendix A, T17).

25. X is not reflexive: /A is reflexive A>* for all sets A E 9a(X), A XY A. By definition of XA" this
means that for all sets A in .9(X), N(A) #& N(A) (where for each set X, N(S) denotes the
number of elements in S). But this is false for every set in .Y(X). For instance, let A - 0.
Then N(A) = 0. And it is not true that 0 5 0.

XA" is symmetric: X' is symmetric ¢> for all sets A and B in .9(X), if A X B then B XA"

A. By definition of X4, this means that for all sets A and B in .(X), if N(A) 7? N(B), then
N(B) # N(A). But this is true.

XA is not transitive: Xl' is transitive ¢>* for all sets A, B, and C in .9(X), if A X B and
B X" C then A XA" C. By definition of X" this means that for all sets A, B, and C in
9(X), if N(A) 7$ N(B) and N(B) 54 N(C), then N(A) :& N(C). But this is false. As a
counterexample, let A = {a}, B = {a,b}, and C = {b}. Then N(A) = 1, N(B) = 2, and
N(C) = 1. So N(A) =A N(B) and N(B) i N(C), but N(A) = N(C).

27. -9 is not reflexive: .9 is reflexive 4= for all sets X E 9(A), X M X. By definition of - this
means that for all sets X in 9(A), X ; X. But this is false for every set in 93'(A). For
instance, let X = 0. It is not true that 0 5# 0.

.9 is symmetric: . is symmetric ez> for all sets X and Y in 9@(A), if X - Y then Y . X.
By definition of A, this means that for all sets X and Y in .9(A), if X $ Y, then Y #7 X.
But this is true.

.9 is not transitive: a is transitive X=' for all sets X, Y, and Z in .9(A), if X . Y and Y 9 Z
then X . Z. By definition of .9 this means that for all sets X, Y, and Z in 9(A), if X 54 Y
and Y #7 Z, then X # Z. But this is false as the following counterexample shows. Since
A 54 0, there exists an element x in A. Let X = {x}, Y - 0, and Z = {x}. Then X ; Y and
Y 5 Z, but X = Z.

28. V is not reflexive: W is reflexive X' for all sets X e .9(A), X W X. By definition of W this
means that for all sets X in .9(A), X = A -X. But this is false for every set in 9@(A) because
A 7# 0. For instance, let X = 0. It is not true that 0 = A-0 because A-0 = A and A # 0.

W is symmetric: /We must show that for all sets X and Y in 9(A), if X W Y then Y W X.]
Suppose X and Y are sets in .9(A) and "XT' Y. By definition of X, this means that Y = A-X.
By the properties of sets given in Sections 5.2, A -Y = A - (A - X) = A n (A n XC)c =
Afn(ACUX) = (AnAc)U(AnX) = Ou(AnX) = (A nX)u0 = AnX = X (because
X C A). Hence Y % X.

W is not transitive: W is transitive z> for all sets X, Y, and Z in 9(A), if X .9 Y and
Y W Z then X W Z. By definition of W this means that for all sets X, Y, and Z in 9(A),
if Y = A - X and Z = A- Y, then Z = A -X. However this is false, as the following
counterexample shows. Since A 5 0, there exists an element x in A. Let X = {x}, Y = A -X,

and Z = A - Y. Then by substitution, Z = A - (A - X) = X /by the same argument as in
the proof of symmetry above]. Suppose Z = A -X. Then we would have A -X = X. But
this is impossible because x e {x} = X and x 0 A -{x} = A - X. Therefore it cannot be the
case that Z = A - X. Consequently X 'C Y and Y W Z but X is not related to Z by W.
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29. M is reflexive: [We must show that for all sets X in Y'(A), X - X.] Suppose X is a set in
9/(A). By definition of subset, we know that X C X. By definition of SM, then, X .4 X.

.4 is symmetric: [We must show that for all sets X and Y in 92>(A), if X -4 Y then Y -4 X.]
Suppose X and Y are sets in Y(A) and X M Y. By definition of .?, this means that X C Y
or Y C X. In case X C Y, then the statement "Y C X or X C Y" is true, and so by definition
of A, Y -3 X. In case Y C X then the statement "Y C X or X C Y" is also true, and so by
definition of A4, Y - X. Therefore in either case Y -4 X.

If A has at least two elements, then -? is not transitive: M is transitive ¢> for all sets X, Y,
and Z in Jo/(A), if X SM Y and Y -1 Z then X M Z. By definition of -? this means that for
all sets X, Y, and Z in Y@(A), if either X C Y or Y C X and either Y C Z or Z C Y, then
either X C Z or Z C X. However this is false, as the following counterexample shows. Since
A has at least two elements, there exist elements x and y in A with x 7 y. Let X = {x},
Y =A,andZ={y}. ThenXCYandsoX 4YandZCYandsoYZ. ButXV=Z
and Z g X because x 7y y. Hence X is not related to Z by -?.

If A has a single element, then - is transitive: In this case, given any two subsets of A, either
one is a subset of the other or the other is a subset of the one. Hence regardless of the choice
of X, Y, and Z, it must be the case that X C Z or Z C X and so X . Z.

32. M is reflexive: - is reflexive Xz for all elements (x, y) in R x R, (x, y).q(x, y). By definition
of M this means that for all elements (x, y) in R x R, y = y. But this is true.

- is symmetric: [We must show that for all elements (xi,yi) and (X 2 ,Y2) in R x R, if
(XI,Yl)4(X2 ,Y2 ) then (X2 ,Y2 )-(XlyY).] Suppose (xi,yj) and (x2,y2) are elements of Rx R
such that (x1 , yi)•4(x 2 , y2). By definition of -4 this means that y = Y2. By symmetry of
equality, Y2 = Y1- So by definition of A, (x2 , y2 )-4((xl, Yl).

-4 is transitive: [We must show that for all elements (x1 , yl), (X2, Y2) and (x 3 , y3) in R x R, if
(Xi, Yl)(X2, Y2) and (X 2 , Y2)-4(X3, Y3) then (xi, yO).(x3, Y3).] Suppose (xi, yi), (x2 , Y2), and
(X 3 , Y3 ) are elements of R x R such that (Xi, Yl).4(X 2, Y2) and (x2 , Y2 )67(x3 , Y3). By definition
of M this means that yi = Y2 and Y2 = Y3. By transitivity of equality, Yi = Y3. Hence by
definition of So, (xl, Yi )4(X3 , Y3).

33. R is reflexive: R is reflexive ¢>* for all points p in A, p R p. By definition of R this means that
for all elements p in A, p and p both lie on the same half line emanating from the origin. But
this is true.

R is symmetric: [We must show that for all points P1 and P2 in A, if piR P2 then P2 R P1i!
Suppose P1 and P2 are points in A such that piR P2 By definition of R this means that P1
and P2 lie on the same half line emanating from the origin. But this implies that P2 and P1 lie
on the same half line emanating from the origin. So by definition of R, P2 R pi.

R is transitive: [We must show that for all points Pi, P2 and p3 in A, if pjR P2 and p2 R p3
then p1 R P3.] Suppose Pi, P2, and p3 are points in A such that p1 R P2 and P2 R P3. By
definition of R, this means that P1 and P2 lie on the same half line emanating from the origin
and P2 and p3 lie on the same half line emanating from the origin. Since two points determine
a line, it follows that both Pi and p3 lie on the same half line determined by the origin and P2
Thus Pi and p3 lie on the same half line emanating from the origin, and so by definition of R,
piR P3-

35. R is reflexive: R is reflexive X- for all lines 1 in A, I R 1. By definition of R this means that
for all lines 1 in the plane, 1 is parallel to itself. But this is true.

R is symmetric: [We must show that for all lines 11 and 12 in A, if h1R 12 then 12R 11 . Suppose
11 and 12 are lines in A such that I1R 12. By definition of R this means that 11 is parallel to 12.
But this implies that 12 is parallel to 11. So by definition of R, 12R 11.

R is transitive: [We must show that for all lines 11, 12 and 13 in A, if 11 R 12 and 12R 13 then
11 R 13.] Suppose 11, 12, and 13 are lines of A such that 11 R 12 and 12 R 13. By definition of R
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this means that 11 is parallel to 12 and 12 is parallel to 13. Since two lines each parallel to a
third line are parallel to each other, it follows that 11 is parallel to 13 because both are parallel
to 12. Hence by definition of R, 11 R 13.

36. R is not reflexive: R is reflexive X' for all lines 1 in A, I R 1. By definition of R this means
that for all lines l in the plane, 1 is perpendicular to itself. But this is false for every line in
the plane.

R is symmetric: [We must show that for all lines 11 and 12 in A, if 11R 12 then 12R 11.1 Suppose
11 and 12 are lines in A such that 11R 12. By definition of R this means that 11 is perpendicular
to 12. But this implies that 12 is perpendicular to 11. So by definition of R, 12 R 11.

R is not transitive: R is transitive X for all lines 1l, 12, and 13 in A, if l1R 12 and 12 R 13 then
11R 13. But this is false. As a counterexample, take 11 and 13 to be the horizontal axis and 12
to be the vertical axis. Then 11R 12 and 12R 13 because the horizontal axis is perpendicular
to the vertical axis and the vertical axis is perpendicular to the horizontal axis. But l1 4 13

because the horizontal axis is not perpendicular to itself.

37. b. A reflexive relation must contain (a,a) for all eight elements a in A. Any subset of the
remaining 56 elements of A x A (which has a total of 64 elements) can be combined with these
eight to produce a reflexive relation. Therefore, there are as many reflexive binary relations as
there are subsets of a set of 56 elements, namely 256.

d. Form a relation that is both reflexive and symmetric by a two-step process: (1) pick all
eight elements of the form (x, x) where x C A, (2) pick a set of (distinct) pairs of elements
of the form (a, b) and (b, a). There is just one way to perform step 1, and, as explained in
the answer to part (c), there are 228 ways to perform step 2. Therefore, there are 228 binary
relations on A that are reflexive and symmetric.

39. Algorithm Test for Symmetry
[The input for this algorithm consists of a binary relation R defined on a set A which is

represented as the one-dimensional array a[1], a[2],.. . , a[n]. To test whether R is symmetric,
the variable "answer" is initially set equal to "yes" and then each pair of elements a[i] and a[j]
of A is examined in turn to see whether the condition "if (a[i], a[j]) e R then (a[j], a[i]) C R"
is satisfied. If not, then "answer" is set equal to "no", the while loop is not repeated, and
processing terminates.]

Input: n [a positive integer], a[l], a[2],..., a[n] / a one-dimensional array representing a set
A], R [a subset of A x A]

Algorithm Body:
i := 1, answer := "yes"

while (answer = "yes" and i < n)

j := 1

while (answer = "yes" and j < n)

if (a[i],a[j]) C R and (a[j],a[i]) V R then answer:= "no"
j :=j+1

end while
i:=i+1

end while
Output: answer [a string]

40. Algorithm Test for Transitivity
[The input for this algorithm consists of a binary relation R defined on a set A which is

represented as the one-dimensional array a[l], a[2],... , a[n]. To test whether R is transitive,
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the variable "answer" is initially set equal to "yes" and then each triple of elements a[i],
a[j], and afk] of A is examined in turn to see whether the condition "if (a[i],a[j]) G R and
(a[j],a[k]) c R then (a[i],a[k]) c R" is satisfied. If not, then "answer" is set equal to "no",
the while loop is not repeated, and processing terminates.J

Input: n [a positive integer], a[1], a[2],... ,a[n] [a one-dimensional array representing a set
Aj, R [a subset of A x A]

Algorithm Body:

i := 1, answer := "yes"

while (answer = "yes" and i < n)

j := 1

while (answer = "yes" and j < n)

k := 1

while (answer= "yes" and k < n)

if (a[i], a[j]) E R and (a[j], a[k]) e R and (a[i], a[k]) R B then answer:= "no"

k := k + 1

end while

j := j + 1

end while

i := i +1

end while

Output: answer [a string]

41. Proof: Define an R-sequence on A from x to y to be any finite sequence of elements of A,
say (Xo,Xi, X 2 , . . , Xn), with n > 0, x = xo, and y = x, such that xi R xi+, for all integers
i with 0 < i < n. Let T be the binary relation on A defined as follows: x T y ¢} 3 an
R-sequence on A from x to y. We will show that T = Rt.

Part 1 (T is transitive): Suppose a T b and b T c for some a, b, and c in A. Then there is
an R-sequence (XO,XI,X 2 ,. . . ,xm) on A from a to b and an R-sequence (yo,yl,Y2, A . ,yn) on
A from b to c. But because xm = yo = b, it follows that (xO, xi, x2, ... , m, Yl, Y2,... , n) is an
R-sequence on A from a to c. Thus a T c.

Part 2 (R C T): Suppose (a, b) E R. Then a R b, and, by definition of R-sequence, (a, b) is
an R-sequence from a to b. Thus, by definition of T, a T b, or, equivalently, (a, b) e T.

Part 3 (If S is any transitive relation on A such that R C S. then T C S): Suppose

S is any transitive relation on A such that R C S. and suppose (a, b) c T. Then a T b and
there exists an R-sequence ( 0 , xl v x 2 ... , x,-) from a to b. We must show that (a, b) G S. We

do this by mathematical induction.

Let the property P(n) be the sentence "If a = (xO, xi, x2 ,. .X .,n) is any R-sequence on A from
a to b, then(a, b) G S."

Show that the property is true for n 1: If or = (xo, x1) is any R-sequence on A from
a to b, then x(r = a and x 1 = b, and so a R b, or, equivalently, (a, b) e R. Thus, (a, b) C S

because R C S.

Show that for all integers k > 1, if the property is true for n k then it is true
for n = k + 1: Let k be any integer with k > 1, and suppose that if T (YOY1, Y2, , yk) is
any R-sequence on A from a to b then(a, b) e S. [This is the inductive hypothesis We must

show that if af = (xO,,xI,x 2 ,. . . ,IXk+1) is any R-sequence on A from a to b, then (a,b) X S. So
suppose a = (xo,xI,x 2 ,. . . ,Xk+1) is an R-sequence on A from a to b. Then (XO,,xI,x 2 , . . . ,Xk)
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is an R-sequence on A from a to Xk, and so, by inductive hypothesis, (a, Xk) e S. Moreover,
by definition of R-sequence, Xk R Xk+l, or, equivalently, (Xk,Xk+l) G R. But R C S, and thus
(Xk, Xk+l) E S. Therefore, (a,b) E S because S is transitive and because Xk+1 = b. [This is
what was to be shown.]

Part 4 (Conclusion of the proof): Parts (1)-(3) show that T satisfies the three conditions
necessary for it to be the transitive closure of R.

42. The following is an easily understood algorithm to construct the transitive closure of a rela-
tion. A somewhat more efficient algorithm, known as Warshall's algorithm, is discussed in most
books on the design and analysis of algorithms. See, for example, Computer Algorithms (Sec-
ond Edition) by Sara Baase, Reading, Massachusetts: Addison-Wesley Publishing Company,
1988, pp.2 8 7 -9 0 .

Algorithm Constructing a Transitive Closure

[The input for this algorithm consists of a binary relation R defined on a set A which is rep-
resented as the one-dimensional array a[1],a[2],. . ,a[n]. The transitive closure is constructed
by modifying the procedure used to test for transitivity described in the answer to exercise 40.
Initially, the transitive closure, Rt, is set equal to R. Then a check is made through all triples
of elements of A. In all cases for which (a[i], a[j]) C Rt, (a[j], a[k]) e Rt, and (a[i], a[k]) f Rt,
the pair (a[i], a[k]) is added to Rt. After Rt has been enlarged in this way, it still may not
equal the actual transitive closure of R because some of the added pairs may combine with
pairs already present to necessitate the presence of additional pairs. So if any pairs have been
added, an additional pass through all triples of elements of A is made. If after all triples of
elements of A have been examined no pair has been added, the current relation Rt is transitive
and equals the transitive closure of R.]

Input: n [a positive integers, a[1],a[2],...,a[n] [a one-dimensional array representing a set
A], R [a subset of A x A]

Algorithm Body:

Rt := R

repeat := "yes"

while (repeat = "yes")

repeat := "no"

i := 1

while (i < n)

j := 1

while (j < n)

k := 1

while (k < n)

if (a[i],a[j]) G Rt and (a[j],a[k]) E Rt and (a[i],a[k]) f Rt then do

R' := Rt U {(a[i],a[k])}

repeat := "yes" end do

k := k+ 1

end while

j := j+

end while

i := i +1

end while
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end while

Output: Rt [a subset of A x A]

43. b. R n S is symmetric: Suppose R and S are symmetric. [To show that R n S is symmetric,
we must show that Vx, y C A, if (X, y) E R n S then (y, x) G R n S.] So suppose x and y are
elements of A such that (X, y) C R n S. By definition of intersection, (x, y) G R and (x, y) G S.
It follows that (y, x) C R because R is symmetric and (X, y) G R, and also (y, x) G S because
S is symmetric and (x, y) c S. Thus by definition of intersection (y, x) £ R n S.

c. R n S is transitive: Suppose R and S are transitive. [To show that R n S is transitive, we
must show that Vx, y, z C A, if (x, y) G R n S and (y, z) C R n S then (x, z) G R n S.] So
suppose x, y, and z are elements of A such that (x,Iy) c Rn S and (y, z) G Rn S. By definition
of intersection, (x,Iy) E R, (x, y) C S, (y, z) E R, and (y, z) c S. It follows that (x, z) E R
because R is transitive and (x, y) C R and (y, z) c R. Also (x, z) C S because S is transitive
and (x, y) c S and (y, z) c S. Thus by definition of intersection (x, z) C R n S.

44. a. Ru S is reflexive: Suppose R and S are reflexive. [To show that RU S is reflexive, we must
show that Vx E A, (x, x) c R U S.] So suppose x E A. Since R is reflexive, (x, x) E R, and
since S is reflexive, (x, x) c S. Thus by definition of union (x, x) E RU S [as was to be shown].

c. R u S is not necessarily transitive: As a counterexample, let R = {(0, 1)} and S = {(1, 2)}.
Then both R and S are transitive (by default), but R U S = {(0, 1), (1, 2)} is not transitive
because (0, 1) C R U S and (1, 2) c R u S but (0, 2) ¢ R U S. As another counterexample, let
R = {(x,y) E R x R I x < y} and let S = {(x,y) c R x R I x > y}. Then both R and S
are transitive because of the transitivity of order for the real numbers. But R u S = {(x, y) C
R x R I x 5 y} is not transitive because, for instance, (1, 2) C R U S and (2,1) C R u S but
(1,1) ¢ RUS.

46. R2 is not irreflexive because (0,0) c R2 . R2 is not asymmetric because (0,0) G R2 and
(0,0 ) C R2. R2 is not intransitive because (0, 0) G R2 and (0,1) C R2 and (0,1) c R2.

48. R4 is irreflexive. R4 is not asymmetric because (1, 2) E R4 and (2,1) E R4 . R4 is intransitive.

49. R5 is not irreflexive because (0,0) G R5 . R5 is not asymmetric because (0,0) E R5 and
(0,0 ) C R5 . R 5 is not intransitive because (0,1) C R5 and (1, 2) C R5 and (0, 2) E R5.

51. R7 is irreflexive. R7 is asymmetric. R7 is intransitive (by default).

52. R8 is not irreflexive because (0,0) C R8. R8 is not asymmetric because (0,0) G R8 and
(0,0 ) C R8. Rs is not intransitive because (0, 0) C R8 (so a counterexample is x = y = z = 0).

Section 10.3

2. b. R {(0,0), (1,1), (1, 3), (1, 4), (3,1), (3, 3), (3, 4), (4,1)(4, 3), (4, 4), (2, 2)}

c. R=

{ (0,0),(1,1),(1,2),(1,3),(1,4), (2,1),(2,2),(2,3),(2,4), (3,1),(3,2),(3,3),(3,4), (4,1),(4,2),(4.3),(4,4)}

4. distinct equivalence classes: {a}, {b, d}, {c}

6. distinct equivalence classes: {0, 3, -3}, {1, 4, -2}, {2, 5, -1, -4}

9. distinct equivalence classes: {0, {0}, {1, -1, {-1, 0,1}}, {{1}, {0,1}},, 1]., {0, -1}}

11, distinct equivalence classes: {00}, {01,10}, {02,11, 20}, {12, 211, {22}

12. distinct equivalence classes: {0, 3, -3}, {1, 4, -2, 2, -5, 5, -1, -4}
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13. b. false c. true d. true

14. b. [35] = [-7] = [0], [3] = [17], [12] = [-2]

15. b. Proof: Suppose that m and n are integers such that m - n (mod d). /We must show that m
mod d = n mod d.] By definition of congruence, d I (m -n), and so by definition of divisibility
m - n = dk for some integer k. Let m mod d = r. Then m = dl + r for some integer 1. Since
m -n = dk, then by substitution, (dl + r) -n = dk, or, equivalently, n = d(l -k) + r. Since

- k is an integer, it follows by definition of mod, that n mod d = r also, and so m mod d = n
mod d [as was to be shown].

Suppose that m and n are integers such that m mod d = n mod d. [We must show that m n
(mod d).] Let r = m mod d = n mod d. Then by definition of mod, m = dp + r and n = dq + r
for some integers p and q. By substitution, m -n = (dp + r) -(dq + r) = d(p -q). Since p - q
is an integer, it follows that d I (m -n), and so by definition of congruence, m - n (mod d).

16. b. Let Al = {1, 2}, A2 = {2,3}, x = 1, y = 2, and z = 3. Then both x and y are in Al and
both y and z are in A2 , but x and z are not both in either Al or A2.

17. b. (1) Proof:

S is reflexive because for each student x at a college, x has the same age as x.

S is symmetric because for all students x and y at a college, if x is the same age as y then y
is the same age as x.

S is transitive because for all students x, y, and z at a college, if x is the same age as y and y
is the same age as z then x is the same age as z.

S is an equivalence relation because it is reflexive, symmetric, and transitive.

(2) There is one equivalence class for each age that is represented in the student body of your
college. Each equivalence class consists of all the students of a given age.

18. (1) The solution given in Appendix B for exercise 15 in Section 10.2 showed that E is reflexive,
symmetric, and transitive. Thus E is an equivalence relation.

19. (1) Proof:

F is reflexive: Suppose m is any integer. Since m -m = 0 and 4 1 0, we have that 4 1 (m -m).
Consequently, m F m by definition of F.

F is symmetric: Suppose m and n are any integers such that m F n. By definition of F this
means that 4 1 (m - n), and so, by definition of divisibility, m-n = 4k for some integer k.
Now n -m =-(m -n). Hence by substitution, n -m = -(4k) = 4. (-k). It follows that
4 | n - m by definition of divisibility (since -k is an integer), and thus n F m by definition of
F.

F is transitive: Suppose m, n and p are any integers such that m F n and n F p. By definition
of F, this means that 4 1 (m - n) and 4 1 (n - p), and so, by definition of divisibility, m - n = 4k
for some integer k, and n -p - 41 for some integer 1. Now m -p = (m -n) + (n -p). Hence by
substitution, m -p = 4k + 41 = 4(k + 1). It follows that 4 1 (m - p) by definition of divisibility
(since k + 1 is an integer), and thus m F p by definition of F.

F is an equivalence relation because it is reflexive, symmetric, and transitive.

(2) Four distinct classes: {x G Z I x = 4k for some integer k}, {x C Z I x = 4k + 1 for some
integer k}, {x C Z I x = 4k + 2 for some integer k}, {x C Z I x = 4k + 3 for some integer k}

20. (1) Proof:

-4 is reflexive because any statement form in three variables has the same truth table as itself.

-4 is symmetric because for all statement forms S and T in three variables, if S has the same
truth table as T, then T has the same truth table as S.
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- is transitive because for all statement forms S, T, and U in three variables, if S has the
same truth table as T and T has the same truth table as U, then S has the same truth table
as U.

- is an equivalence relation because it is reflexive, symmetric, and transitive.

(2) There are 2' = 256 distinct equivalence classes, one for each distinct truth table for a
statement form in three variables. Each equivalence class consists of all statement forms in
three variables with a given truth table.

21. (1) Proof:

S is reflexive because for each part x in P, x has the same part number and is shipped from
the same supplier as x.

S is symmetric because for all parts x and y in P, if x has the same part number and is shipped
from the same supplier as y then y has the same part number and is shipped from the same
supplier as x.

S is transitive because for all parts x, y, and z in P, if x has the same part number and is
shipped from the same supplier as y and y has the same part number and is shipped from the
same supplier as z then x has the same part number and is shipped from the same supplier as
z.

S is an equivalence relation because it is reflexive, symmetric, and transitive.

(2) There are as many distinct equivalence classes as there are distinct ordered pairs of the
form (n, s) where n is a part number and s is a supplier name and s supplies a part with the
number n. Each equivalence class consists of all parts that have the same part number and
are shipped from the same supplier.

24. (1) Proof:

D is reflexive: Suppose m is any integer. Since m2 
_ m2 = 0 and 3 | 0, we have that

3 J (M 2  
i M 2

). Consequently, m D m by definition of D.

D is symmetric: Suppose m and n are any integers such that m D n. By definition of D this
means that 3 1 (Mi2  n2), and so, by definition of divisibility, M2 _ n2 = 3k for some integer
k. Now n2 - m2 = _(M

2  n2 ). Hence by substitution, n2 - m2 = - (3k) = 3 (- k). It follows
that 3 1 (n 2  

im
2 ) by definition of divisibility (since -k is an integer), and thus n D m by

definition of D.

D is transitive: Suppose m, n and p are any integers such that m D n and n D p. By
definition of D, this means that 3 1 (m 2 -n 2 ) and 3 1 (n2  p2), and so, by definition of
divisibility, m2 

_ n2 = 3k for some integer k, and n2 
_ p2 = 31 for some integer 1. Now

in
2 

_p
2 

= (M
2 - n2) + (n 2 

_ p2 ). Hence by substitution, M2 - p2 = 3k + 31 = 3(k + 1). It
follows that 3 1 (m2 -p 2) by definition of divisibility (since k + I is an integer), and thus m D p
by definition of D.

D is an equivalence relation because it is reflexive, symmetric, and transitive.

(2) Since m 2 
_ n2 = (m- n)(m, + n) for all integers m and n, m, D n <-> 3 1 (m -n) or

3 1 (mi + n). Then by examining cases, one sees that m D n ¢> for some integers k and I
either(m= 3kandn=31)or(m= 3k+1andn=31+1)or(m=3k+1andn =31+2)
or (m = 3k + 2 and n = 31 + 1) or (m 3k + 2 and n = 31 + 2). Therefore, there are two
distinct equivalence classes {m G Z I m= 3k for some integer k} and {m G Z I m = 3k + 1 or
m = 3k + 2 for some integer k}.

26. (1) Proof:

R is reflexive because for each identifier x in A, x has the same memory location as xr.

R is symmetric because for all identifiers x and y in A, if x has the same memory location as
y then y has the same memory location as x.
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R is transitive because for all identifiers x, y, and z in A, if x has the same memory location
as y and y has the same memory location as z then x has the same memory location as z.

R is an equivalence relation because it is reflexive, symmetric, and transitive.

(2) There are as many distinct equivalence classes as there are distinct memory locations that
are used to store variables during execution of the program. Each equivalence class consists of
all variables that are stored in the same location.

27. (1) Proof:

is reflexive because for each point 1 in A, l is parallel to 1.

is symmetric because for all points 11 and 12 in A, if 11 is parallel to 12 then 12 is parallel to
11.

H is transitive because for all points 11, 12, and 13 in A, if 11 is parallel to 12 and 12 is parallel
to 13 then 11 is parallel to 13.

11 is an equivalence relation because it is reflexive, symmetric, and transitive.

28. (1) Proof:

R is reflexive because for each point p in P, p lies on the same half-line emanating from the
origin as p.

R is symmetric because for all points Pi and P2 in P, if Pi lies on the same half-line emanating
from the origin as P2 then P2 lies on the same half-line emanating from the origin as Pi

R is transitive because for all points Pi, P2, and p3 in P, if P1 lies on the same half-line
emanating from the origin as P2 and P2 lies on the same half-line emanating from the origin
as p3 then Pi lies on the same half-line emanating from the origin as p3.

R is an equivalence relation because it is reflexive, symmetric, and transitive.

(2) There are as many distinct equivalence classes as there are points on a circle centered at
the origin. Each equivalence class consists of all points that lie on the same half-line emanating
from the origin.

29. The distinct equivalence classes can be identified with the points on a geometric figure, called
a torus, that has the shape of the surface of a doughnut. Each point in the interior of the
rectangle {(x, y) I 0 < x < 1 and 0 < y < 1} is only equivalent to itself. Each point on
the top edge of the rectangle is in the same equivalence class as the point vertically below
it on the bottom edge of the rectangle (so we can imagine identifying these points by gluing
them together -this gives us a cylinder), and each point on the left edge of the rectangle
is in the same equivalence class as the point horizontally across from it on the right edge of
the rectangle (so we can also imagine identifying these points by gluing them together this
brings the two ends of the cylinder together to produce a torus).

32. Proof: Suppose R is an equivalence relation on a set A, a and b are in A, and b £ [a]. By
definition of equivalence class, b R a. But since R is an equivalence relation, R is symmetric;
hence a R b.

34. Proof: Suppose R is an equivalence relation on a set A, a and b are in A, and [a] = [b]. Since
R is reflexive, a R a, and so by definition of class, a C [a]. [Alternatively, one could reference
exercise 31 here.] Since [a] = [b], by definition of set equality, a e [b]. But then by definition
of equivalence class, a R b.

36. Proof: Suppose R is an equivalence relation on a set A, a and b are in A, and a e [b]. By
definition of class, a R b. We must show that [a] = [b]. To show that [a] C [b], suppose 2 G [a].
[We must show that x e [b].] By definition of class, £ R a. By transitivity of R, since x R a
and a R b then x R b. Thus by definition of class, £ C [b] [as was to be shown]. To show that
[b] C [a], suppose x E [b]. [We must show that x E [a].] By definition of class, £ R b. But also
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a R b, and so by symmetry, b R a. Thus since R is transitive and since x R b and b R a, then
x R a. Therefore, by definition of class, x C [a] /as was to be shown]. Since we have proved
both subset relations [a] C [b] and [b] C [a], we conclude that [a] = [b].

37. There are, of course, an infinite number of answers to this exercise. One simple approach is
to use one of the circuits given in the exercise, adding two NOT-gates that cancel each other
out, or adding an AND-gate and a circuit for, say, QV Q, or an OR-gate and a circuit for,
say QA Q. Another approach is to play with the input-output table directly, looking at it
as, for instance, the table for - ((P A Q) V (PA Q) V (- P A Q)). Some possible answers are
shown below.

P NOT NOT R

Q

Q

R

38. a. Suppose (a, b) C A. By commutativity of multiplication for the real numbers, ab = ba. But
then by definition of R, (a, b)R(a, b).

b. Suppose (a, b), (c, d) e A and (a, b)R(c, d). By definition of R, ad = bc, and so by commu-
tativity of multiplication for the real numbers and symmetry of equality, cb = da. But then
by definition of R, (c, d)R(a, b).

d. For example, (2,5), (4,10), (-2,-5), and (6,15) are all in [(2,5)].

39. b. Proof: Suppose (a, b), (a', b'), (c, d), and (c', d') are any elements of A such that [(a, b)]
[(a', b')] and [(c, d)] = [(c', d')]. By definition of the relation, a, a', c, and c' are integers and
b, b', d, and d' are nonzero integers, and ab' = a'b (*) and cd' = c'd (**). We must show
that [(a,b)] [(c,d)] = [(a',b')] - [(c',d')]. By definition of the multiplication, this equation
holds if, and only if, [(ac, bd)] = [(a'c', b'd')]. And by definition of the relation, this equation
holds if, and only if, ac b'd' = bd a'c'. (***) But multiplying equations (*) and (**) gives
ab'.cd' = a'b c'd. And by the associative and commutative laws for real numbers, this equation
is equivalent to (***). Hence [(a, b)] - [(c, d)] = [(a', b')] - [(c', d')].

d. The identity element for multiplication is [(1,1)]. To prove this, suppose (a, b) is any element
of A. We must show that [(a, b)] . [(1,1)] = [(a, b)]. But by definition of the multiplication this
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equation holds if, and only if, [(a* 1, b. 1)] = [(a, b)]. By definition of the relation, this equation
holds if, and only if, a * 1 * b b* 1 * a, and this equation holds for all integers a and b. Thus
[(a, b)] * [(1, 1)] = [(a, b)] [as was to be shown].

f. Given any (a, b) E A with a 7& 0, [(b, a)] is an inverse for multiplication for [(a, b)]. To prove
this, we must show that [(a, b)] * [(b, a)] = [(1, 1)], which (by part (d)) is the identity element
for multiplication. But by definition of the multiplication, [(a, b)] [(b, a)] = [(ab, ba)]. And by
definition of the relation, [(ab, ba)] = [(1, 1)] if, and only if, ab 1 ba - 1, which is true for all
integers a and b. Thus [(a, b)] [(b, a)] = [(1, 1)] [as was to be shown].

40. b. Let (a, b) and (c, d) be any elements of A = Z+ x Z+, and suppose (a, b) R (c, d). [We must
show that (c, d) R (a, b)]. By definition of R, a + d = c + b, and so by the symmetry property
of equality, c + b = a + d. But then by definition of R, (c, d) R (a, b) [as was to be shown].

c. Proof: Let (a,b), (c,d), and (e,f) be any elements of A = Z+ x Z+, and suppose
(a,b) R (c,d) and (c,d) R (e,f). [We must show that (a,b) R (e,f)J. By definition of R,
a + d = c+ b (*) and c+ f = e + d (**). Adding (*) and (**) together gives a + d + c + f =
c + b + e + d, and subtracting c + d from both sides gives a + f = b + e. Then by definition of
R, (a, b) R (e, f) [as was to be shown].

e. One possible answer: (4,2), (5,3), (6,4), (7,5), (8,6)

f. One possible answer: (2,3), (3,4), (4,5), (5,6), (6,7)

41. The given argument assumes that from the fact that the statement "Vx in A, if x R y then
y R x" is true, it follows that given any element x in R, there must exist an element y in R
such that x R y and y R x. This is false. For instance, consider the following binary relation
R defined on A = {1, 2} : R = {(1, 1)}. This relation is symmetric and transitive, but it is not
reflexive. Given 2 E A, there is no element y in A such that (2, y) E R. Thus we cannot go on
to use symmetry to say that (y, 2) G R and transitivity to conclude that (2,2) C R.

42. Proof: Suppose R is a binary relation on a set A, R is symmetric and transitive, and for every
x in A there is a y in A such that x R y. Suppose x is any particular but arbitrarily chosen
element of A. By hypothesis, there is a y in A such that x R y. By symmetry, y R x, and so
by transitivity x R x. Therefore, R is reflexive. Since we already know that R is symmetric
and transitive, we conclude that R is an equivalence relation.

43. a. Haddock's Eyes b. The Aged Aged Man d. A-sittin on a Gate

This exercise follows up on the comment at the bottom of page 605. We may call an equivalence
class by many different names depending on which of its elements we use to describe it when
we use the equivalence class notation, but what the equivalence class is is the set of all its
elements.

Section 10.4

2. a. DQ DSSOH D GDB

b. KEEPS THE DOCTOR AWAY

4. a. The relation 7 1 (68 -33) is true because 68 - 33 = 35 and 7 1 35 (since 35 = 7 5).

b. By definition of congruence modulo n, to show that 68 - 33 (mod 7), one must show that
7 | (68 -33), which was verified in part (a).

c. To show that 68 = 33 + 7k for some integer k, one solves the equation for k and checks that
the result is an integer. In this case, k = (68 -33)/7 = 5, which is an integer. So 68 = 33+7 5.
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d. When 68 is divided by 7, the remainder is 5 because 68 = 7 9 + 5. When 33 is divided by 7,
the remainder is also 5 because 33 = 7 4 + 5. Thus 68 and 33 have the same remainder when
divided by 7.

e. By definition, 68 mod 7 is the remainder obtained when 68 is divided by 7, and 33 mod 7
is the remainder obtained when 33 is divided by 7. In part (d) these two numbers were shown
to be equal.

5. Proof: Suppose a, b and c and n are any integers with n > 1 and a - b (mod n) and b - c
(mod n). By definition of congruence modulo n this means that n I (a -b) and n I (b -c), and
so, by definition of divisibility, a -b = nk for some integer k, and b -c = nl for some integer
1. Now a -c = (a -b) + (b -c). Hence by substitution, a -c = nk + nl = n(k + 1). It follows
that n a (a -c) by definition of divisibility (since k + I is an integer), and thus a - c (mod n)
by definition of congruence modulo n.

6. Proof: Given any integer n > 1 and any integer a with 0 < a < n, the notation [a] denotes
the equivalence class of a for the relation of congruence module n (Theorem 10.4.2). We first
show that given any integer m, m is in one of the classes [0], [1], [2],..., [n -1]. The reason
is that, by the quotient-remainder theorem, m = nk + a, where k and a are integers and
0 < a < n, and so, by Theorem 10.4.1, m - a (mod n). It follows by Lemma 10.3.2 that
[m] = [a]. Next we use an argument by contradiction to show that all the equivalence classes
[0], [1], [2],. .. , [n - 1] are distinct. For suppose not. That is, suppose a and b are integers with
0 < a < n and 0 < b < n, a :7 b, and [a] = [b]. Without loss of generality, we may assume
that a > b > 0, which implies that -a < -b < 0. Adding a to all parts of the inequality
gives 0 < a -b < a. By Theorem 10.3.4, [a] = [b] implies that a - b (mod n). Hence,
by Theorem 10.4.1, n I (a -b), and so, by Example 3.3.3, n < a -b.. But a < n. Thus
n < a -b < a < n, which is contradictory. Therefore the supposition is false, and we conclude
that all the equivalence classes [0], [1], [2],.. . , [n -1] are distinct.

8. a. 45 - 3 (mod 6) because 45-3 = 42 6.7, and 104 - 2 (mod 6) because 104-2 102= 617

b. 45 + 104- (3 + 2) (mod 6) because 45 + 104 = 149 and 3 + 2 = 5 and 149-5 5-144 6 -24

c. 45-104 (3-2) (mod 6) because 45-104 =-59 and 3-2 = and -59-1 =-60 = 6.(-10)

d. 45 .104- (3 2) (mod 6) because 45 .104 =4680 and 3-2 = 6 and 4680 -6 = 4674 = 6 779

e. 452 - 32 (mod 6) because 452 2025 and 32 = 9 and 2025 -9 = 2016 = 6 336

10. Proof: Suppose a, b, c, d, and n are integers with n > 1, a - c (mod n), and b - d (mod n).
By definition, a -c = nr and b -d = ns for some integers r and s. Then

(a -b) -(c -d) = (a -c) -(b -d) = nr -ns = n(r -s).

But r -s is an integer, and so, by definition, a -b - (c -d) (mod n).

11. Proof (by mathematical induction on m): Let a, c, and n be integers with n > 1 and a - c
(mod n), and let the property P(m) be the congruence am - cm (mod n).

Show that the property is true for m = 1 When m = 1, the congruence is al - c1

(modn), which is true by assumption.

Show that for all integers k > 1, if the property is true for m = k then it is true
for m = k + 1 : Let k be an integer with k > 1, and suppose that ak ck(modn). [This is
the inductive hypothesis.] We must show that ak+l - ck+l(modn). But by assumption a - c
(mod n), and by inductive hypothesis ak - ck(modn). By 10.4.3(3), we can multiply the left-
and right-hand sides of these two congruences together to obtain a - ak - c * ck(mod n), or,
equivalently, akl -ck+ (mod n) [as was to be shown].
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12. b. Proof: Suppose a is a positive integer. Then a = T' o dk 0k, for some nonnegative integer
n and integers dk where 0 < dk < 10 for all k = 1, 2,. . ., n. By Theorem 10.4.3,

n n n

a = Zdk0 -- Zdkt1 -E dk(mod9)
k=O k=O k=O

because, by part (a), each 1ok 1 (mod 9). Hence, by Theorem 10.4.1, both a and I n 0 dk

have the same remainder upon division by 9, and thus if either one is divisible by 9, so is the
other.

13. a. Proof: Let n be any positive integer. By definition of congruence modulo n, 10
-1 (modll) because 10 -(-1) = 11 and 11 11. Thus, by Theorem 10.4.3(4), Ion -

1-)' (mod II).

b. Proof: Suppose a is a positive integer. Then a = o dk 1 0 k, for some nonnegative integer
n and integers dk where 0 < dk < 10 for all k = 1, 2,. .na. By Theorem 10.4.3,

n

a = dklodk- . (-1) (modIl)
k=O k=O

because, by part (a), each 1ok - (-1)k(mod 11). Hence, by Theorem 10.4.1, both a and
Zk-0 dk (- )k have the same remainder upon division by 11, and thus if either one is divisible
by 11, so is the other.

17. 891 mod 713 = 89

892 mod 713 = 78

894 mod 713 = 782 mod 713 = 380

898 mod 713 = 3802 mod 713 = 374

8916 mod 713 = 3742 mod 713 = 128

8932 mod 713 = 1282 mod 713 = 698

8964 mod 713 = 6982 mod 713 = 225

89128 mod 713 = 2252 mod 713 = 2

89256 mod 713 = 22 mod 713 = 4

Hence, by Theorem 10.4.3, 89307 = 89256+32+16+2+1 - 8925689328916892891 4 .698 128 78.
89 - 15 (mod 713), and thus 89307 mod 713 = 15.

18. 481 mod 713 = 48

482 mod 713 = 165

484 mod 713 = 1652 mod 713 = 131

488 mod 713 = 1312 mod 713 = 49

4816 mod 713 = 492 mod 713 = 262

4832 mod 713 = 2622 mod 713 = 196

4864 mod 713 = 1962 mod 713 = 627

48128 mod 713 = 6272 mod 713 = 266

48256 mod 713 = 2662 mod 713 = 169

Hence, by Theorem 10.4.3, 48307 = 48256+32+16+2+1 - 4825648324816482481 -169 196 262.
165 48 - 12 (mod 713), and thus 48307 mod 713 = 12.

http://pakimonda.blog.com 
paki.monda@gmail.com 
paki.monda@yahoo.com



312 Solutions for Exercises: Relations

20. The letters in WELCOME translate numerically into 23, 05, 12, 03, 15, 13, and 05. The
solution for exercise 19 in Appendix B shows that E, L, and 0 are encrypted as 15, 23, and 20,
respectively. To encrypt W, we compute 233 mod 55 = 12, to encrypt C, we compute 33 mod
55 = 27, and to encrypt M, we compute 133 mod 55 = 52. So the ciphertext is 12 15 23 27
20 52 15. As noted in the answer to exercise 19, individual symbols in messages are normally
grouped together in blocks during encryption so that deciphering cannot be accomplished
through knowledge of frequency patterns of letters or words.

21. The letters in EXCELLENT translate numerically into 05, 24, 03, 05,12, 12, 05, 14, 20. The
solutions for exercises 19 and 20 in Appendix B and above show that E, L, and C are encrypted
as 15, 23, and 27, respectively. To encrypt X, we compute 243 mod 55 19, to encrypt N, we
compute 143 mod 55 = 49, and to encrypt T, we compute 203 mod 55 25. So the ciphertext
is 15 19 27 15 23 23 15 49 25.

23. By Example 10.4.10, the decryption key is 27. Thus the residues modulo 55 for 827, 527, and
1527 must be found and then translated into letters of the alphabet. Because 27 = 16+8+2+1,
we first perform the following computations:

81 -8 (mod 55) 51 - 5 (mod 55) 151 15 (mod 55)
82 - 9 (mod 55) 52 - 25 (mod 55) 152 - 5 (mod 55)
84 92 - 26 (mod 55) 54 - 252 -20 (mod 55) 154- 52 _ 25 (mod 55)
88 262 - 16 (mod 55) 58 - 202 - 15 (mod 55) 158 - 252 20 (mod 55)
816 - 162 36 (mod 55) 516 - 152 5 (mod 55) 1516 = 202 = 15 (mod 55)

Then

827 mod 55 = (36 16 .9 .8) mod 55 = 2,

527 mod 55 = (5 15 .25 5) mod 55 = 25,

1527 mod 55 = (15 20 .5 .15) mod 55 = 5.

But 2, 25, and 5 translate into letters as B, Y, and E. So the message is BYE.

24. By Example 10.4.10, the decryption key is 27. Thus the residues modulo 55 for 5127, 1427,
4927, and 1527 must be found and then translated into letters of the alphabet. Because
27 = 16 + 8 + 2 + 1, we first perform the following computations:

511 _51 (mod 55) 141 - 14 (mod 55) 491 -49 (mod 55)
512 16 (mod 55) 142 -31 (mod 55) 492 - 36 (mod 55)
514 - 162 36 (mod 55) 144 4 312 - 26 (mod 55) 494 362 - 31 (mod 55)
518 362 -231 (mod 55) 148- 262 - 16 (mod 55) 498 - 312 = 26 (mod 55)
5116 _ 312 _ 26 (mod 55) 1416 162 _ 36 (mod 55) 4916 - 262 - 16 (mod 55)

Then

512 7 mod 55 = (26. 31 .16 51) mod 55 = 6,

1427 mod 55 = (36 16 31 .14) mod 55 = 9,

4927 mod 55 = (16 .26 .36. 49) mod 55 = 14.

In addition, we know from the solution to exercise 23 above that 15 2 7 mod 55 = 5. But 6, 9,
14, and 5 translate into letters as F, I, N, and E. So the message is FINE.

25. Proof: Let a and n be positive integers such that a' 1 is prime. We will show that n is prime.
Note that a > 1 because otherwise a' - 1 would equal 0, which is not a prime number. By
Theorem 4.2.3, using a in place of r and n -1 in place of n, we have that 1 + ad a2 + +an-' -
a 1 Multiplying both sides by a-1 gives an -1 = (a -1)(1 +a+a2 

+ . +a"). Because

an- 1 is prime, one of these factors equals 1. The second factor is greater than 1 because a is

I
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positive. Thus the first factor a -1 = 1, and so a = 2. Next we prove by contradiction that n
is prime. For suppose n is not prime, then n = st where s and t are integers with 1 < s < n
and 1 < t < n. Then a' - = ast - 1 = (as)t -1, and so, by Theorem 4.2.3 with a' in place

of r and t -t1 in place of n, 1 + a' + a + * + a(t-1 = l . Multiplying both sides by

a' - 1 gives a' - 1 = (a' - 1)(1 + as + a2 s + *+ a(t-l)s). But since s > I and a > 1, this
equation implies that a' - 1 is a product of two positive integer factors, neither of which is
1. Hence a' - 1 is not prime, which contradicts the hypothesis that it is prime. Therefore we
conclude that n is prime /as was to be shown].

27. Step 1: 4158 = 1568 *2 + 1022, and so 1022 = 4158 - 1568. 2

Step 2: 1568 = 1022 *1 + 546, and so 546 = 1568 - 1022

Step 3: 1022 = 546- 1 + 476, and so 476 = 1022 -546

Step 4: 546 = 476 -1 + 70, and so 70 = 546 - 476

Step 5: 476 = 70 * 6 + 56, and so 56 = 476 -70 * 6

Step 6: 70 = 56 .1 + 14, and so 14 = 70 - 56

Step 7: 56 = 14 * 4 + 0, and so gcd(4158,1568) = 14,

which is the remainder obtained just before the final division.

Substitute back through steps 6-1:

14 = 70 - 56 = 70 - (476 - 70 * 6) = 70 * 7 - 476

= (546 - 476) 7 - 476 = 7 546 - 8 * 476

= 7 546 - 8 .(1022 - 546) = 15 * 546 - 8 1022

= 15 - (1568 - 1022) - 8 - 1022 = 15 1568 - 23 * 1022

= 15 *1568 - 23 * (4158 - 1568 2) = 61 .1568 - 23 4158

(It is always a good idea to verify that no mistake has been made by verifying that the final
expression really does equal the greatest common divisor. In this case, a computation shows
that the answer is correct.)

29.
a 284 168 116 52 12 4
b 168 116 52 12 4 0
r 116 52 12 4 0
q 1 1 2 4 3
5 1 0 1 -13 -13
t 0 1 -1 2 -5 22
u 0 1 -1 3 -13 42
v - 1 2 5 22 71
newu 1 -1 3 -13 42
newv -1 2 -5 22 -71
sA + tB 284 168 116 52 12 4

30. Proof: Suppose a and b are positive integers, S = {x I x is a positive integer and xr as + bt
for some integers s and t}, and c is the least element of S. We will show that c I b. By the
quotient-remainder theorem, b = cq + r (*) for some integers q and r with 0 < r < c. Now
because c is in S, c = as + bt for some integers s and t. Thus, by substitution into equation
(*), r = b - cq = b -(as + bt)q = a(-sq) + b(l -tq). Hence, by definition of S, either r = 0
or r C S. But if r E S, then r > c because c is the least element of S, and thus both r < c
and r > c would be true, which would be a contradiction. Therefore, r 0 S, and thus by
elimination, we conclude that r = 0. It follows that b -cq = 0, or, equivalently, b = cq, and so
c I b [as was to be shown].
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32. a. Step 1: 660 = 41 16 + 4, and so 4 = 660 -41 .16.

Step 2: 41 = 4 * 10 + 1, and so I = 41-4 4 10.

Step 3: 4 = 1 4 + 0, and so gcd(660,41) = 1.

Substitute back through steps 2 1:

1 = 41 - (660 - 41 .16) 10 = 660 (-10) + 41 *161.

Thus 41. 161 - 1 (mod 660), and so 161 is an inverse for 41 modulo 660.

b. By part (a), 41 * 161 - 1 (mod 660). Multiply both sides by 125 and apply Theorem 10.4.3
to obtain 41.161 125 - 1 125 (mod 660), or, equivalently, 41.20125 -125 (mod 660). Thus a
solution for 41x - 125 (mod 660) is x = 20, 125. Now the the remainder obtained when 20,125
is divided by 660 is 325, and so, by Theorem 10.4.1, 20125 - 325 (mod 660). But then, by
Theorem 10.4.3, 41 -20125 41 .325 (mod 660). This shows that 325 is also a solution for the
congruence, and because 0 < 325 < 660, 325 is the least positive solution for the congruence.

33. Proof: Suppose a, b, and c are integers such that gcd(a, b) = 1, a I c, and b I c. We will
show that ab I c. By Corollary 10.4.6 (or by Theorem 10.4.5), there exist integers s and t such
thatas + bt = 1. Also, by definition of divisibility, c au = by, for some integers u and v.
Hence, by substitution, c = asc+btc = as(bv) +bt(au) = ab(sv +tu). But sv+tu is an integer,
and so, by definition of divisibility, ab I c [as was to be shown].

34. One counterexample among many: Let a = 2, b = 6, and c = 24. Then ab I c because 12 1 24,
but gcd(2,6) 54 1, and so the following statement is false: gcd(a, b) = 1 and a I c and b I c.

37. The numeric equivalents of C, 0, M, and E are 03, 15, 13, and 05. To encrypt these letters,
the following quantities must be computed: 343 mod 713, 1543 mod 713, 1343 mod 713, and
543 mod 713. Note that 43 = 32 + 8 + 2 + 1.

C: 3 - 3 (mod 713) 0: 15 - 15 (mod 713)
32 - 9 (mod 713) 152 225 (mod 713)
34 - 92 81 (mod 713) 154 - 2252 - 2 (mod 713)
38 - 812 144 (mod 713) 158-22 - 4 (mod 713)
316 1442 - 59 (mod 713) 1516 - 42 16 (mod 713)
332 - 592 - 629 (mod 713) 1532 - 162 - 256 (mod 713)
Thus the ciphertext is Thus the ciphertext is
343 mod 713 1543 mod 713

= (629 144 9 * 3) mod 713 675. = (256 4 225 .15) mod 713 =89.
M: 13 -13 (mod 713) E: 5 - 5 (mod 713)

132 - 169 (mod 713) 52 - 25 (mod 713)
134 1692 - 41 (mod 713) 54 - 625 (mod 713)
138 - 412 - 255 (mod 713) 58 6252- 614 (mod 713)
1316 - 2552 142 (mod 713) 516 6142 -532 (mod 713)
1332 -1422 200 (mod 713) 532 - 5322 676 (mod 713)
Thus the ciphertext is Thus the ciphertext is
1343 mod 713 543 mod 713

= (200 . 255. 169. 13) mod 713 = 476. = (676 * 614 * 25- 5) mod 713 = 129.

Therefore, the encrypted message is 675 089 476 129. (Again, note that, in practice, indi-
vidual symbols are grouped together in blocks during encryption so that deciphering cannot
be accomplished through knowledge of frequency patterns of letters or words. We kept them
separate so that the numbers in the computations would be smaller and easier to work with.)

38. To check that 307 is an inverse for 43 modulo 660, we compute 307 * 43-1 = 13200 = 660 * 20.
Hence, by definition of the congruence relation, 307 . 43 -1 (mod 660).

40. By exercise 38, the decryption key, d, is 307. So to decrypt the message, the following quantities
must be computed: 28307 mod 713, 18307 mod 713, 675307 mod 713, and 129307 mod 713. Note

I I
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that 307 = 256 + 32 + 16 + 2 + 1. To obtain the other letters in the message we perform the
following computations:
28 =- 28 (mod 713) 18 =- 18 (mod 713) 129 = 129 (mod 713)
282 71 (mod713) 182 324 (mod713) 1292 242 (mod713)
284- 712 50 (mod 713) 184- 3242 165 (mod 713) 1294 782 -98 (mod 713)
288 - 502 - 361 (mod 713) 188 - 1652 131 (mod713) 1298 782 335 (mod 713)
2816 -3612 - 555 (mod 713) 1816 1312 -49 (mod 713) 12916 - 782 - 284 (mod 713)
2832 5552 9(mod 713) 1832 492 262 (mod 713) 12932 782 - 87 (mod 713)
2864 -92 - 81 (mod 713) 1864 - 2622 - 196 (mod 713) 12964 - 782 - 439 (mod 713)
28128 - 812 - 144 (mod 713) 18128 - 1962 -627 (mod 713) 129128 - 6272 - 211 (mod 713)
28256 - 1442 - 59 (mod 713) 18256 - 6272 266 (mod 713) 129256 2662 - 315 (mod 713)

Thus the decryption for 028 is

28307 mod 713= (28256+32+16+2+1) mod 713

= (59 * 9 555. 71 -28) mod 713 = 14, which corresponds to the letter N.

The decryption for 018 is

18307 mod 713= (18256+32+16+2+1) mod 713

= (266. 262 . 49 * 324. 18) mod 713 = 9, which corresponds to the letter I.

The answer to exercise 39 in Appendix B showed that the decryption for 675 is 3, which
corresponds to the letter C.

The decryption for 129 is

129307 mod 713 = (129256+32+16+2+1) mod 713

= (315 87* 284 242 *129) mod 713 = 5, which corresponds to the letter E.

Therefore, the decrypted message is NICE.

41. a. Proof (by mathematical induction): Suppose p is a prime number. Let the property P(s)
be the sentence "If qj, q2, , q. are prime numbers and p Iq q2 ... q, then p = qj for some
integer i with 1 < i < s.

Show that the property is true for s = 1 When s = 1, the sentence becomes "If q1 is a
prime number and p I qi, then p = qj." This is true because the only positive divisors of a
prime number are 1 and itself and p cannot equal 1 because 1 is not prime."

Show that for all integers k > 1, if the property is true for s = k then it is true
for s = k + 1: Let k be an integer with k > 1, and suppose that if qj, q2:, . qk are prime
numbers and p qiq2 ... qk, then p = qj for some i with 1 < i < k. [This is the inductive
hypothesis.] We must show that if qlq2, ,qk+l are prime numbers and p I qlq2 ... qk+l,
then p = qj for some integer i with 1 < i < k + 1. So suppose ql,q2,* .. ,qk+-1 are prime
numbers and p I qlq2 .qk+l. Let a = qlq2 ... qk. Then p I aqk+1. In case p = qk+1, we are
done because we may take i = k + 1. In case p $ qk+l, gcd(pqk+l) =1 [because both p and
qk+l are prime], and so, by Euclid's lemma, p a, or, equivalently, p I qlq2 ... qk. Thus, by
inductive hypothesis, p = qj for some integer i with 1 < i < k. Hence, in either case, p = qj for
some i with 1 < i < k + 1. [This is what was to be shown.]

b. Proof by contradiction: Suppose not. That is, suppose n is an integer with n > 1, and
suppose n has two different factorizations: n = PiP2 ... Pt = qq2 ... qu, where t and u are
positive integers and P1, P2, , Pt, and qj, q2.... , qU are prime numbers. Cancel out all
factors that appear on both sides of the equation as many times as they appear on both sides.
Then none of the factors on one side equal any of the factors on the other side. Either one
side of the resulting equation equals 1 or at least one prime factor remains on each side. In the
first case, we would have a prime number or a product of prime numbers equalling 1, which
is impossible because all prime numbers are greater than 1. Thus we may eliminate this case
and conclude that the resulting equation has the form PlP2 ... Pr = qlq2 q,, where r and
s are positive integers and pj $7 qj for any integers j and i. But this equation implies that
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P1 I qiq2 ... qS because p1 (P2 ... Pr) - qlq2... q. and P2 ... Pr is an integer. Hence, by part
(a), pi = qj for some integer i with 1 < i < s. We conclude that p1 = qj and Pl1 qj, which is a
contradiction. Therefore, the supposition is false and so the prime factorization of n is unique
except, possibly, for the order in which the prime factors are written.

42. b. When a = 8 and p = 11, aP-1 = 810 = 1- 1073741824 (mod 11) because 1073741824-1 =

11 .97612893.

43. Two possible answers out of many: (1) Let a = 5 and p = 4. Then 53 - 1 (mod 4) because
53 -1 = 4 31. (2) Let a = 7 and p = 6. Then 75 =- 1 (mod 6) because 75-1 = 6 * 2801.

45. To solve this problem, we need to find a positive integer x such that x - 2 (mod 15), 2 - 1
(mod 14), and x 0 (mod 13). We apply the technique in the proof of the Chinese remainder
theorem with n1 = 15, n2 = 14, n3 = 13, a, = 2, a2 = 1, and a3 = 0. Then N = 15. 14- 13 =

2730, N1 = 14 .13 = 182, N2 = 15 .13 = 195, and N3 = 15 .14 = 210.

To find x1, we solve N1 x1 = 182x 1 - 1 (mod 15). Now 182 = 15 12+2, and so 2 = 182-15.12.
Also 15 = 2 7 + 1, and so 1 = 15-2 7. Hence, by substitution, 1 = 15-(182- 15 .12) * 7 =
182. (-7) + 85 .15, and so 182 * (-7) - 1 (mod 15). Thus i =- -7 (mod 15) 8 (mod 15)
because 15 1 ((-7) - 8). So we may take xi = 8.

To find x2, we solve N2 x2 = 195x2 1- (mod 14). Now 195 = 14 13+13, and so 13 195-14.13.
Also 14 = 1 - 13 + 1, and so 1 = 14 -13. Hence, by substitution, 1 = 14 - (195 -14 * 13) =
195 * (-1) + 14 * 14, and so 195 * (- 1) - 1 (mod 14). Thus x2 -- 1 (mod 14) - 13 (nod 14)
because 14 (-1 -13). So we may take x2 = 13.

To find X3, we solve N3x3 = 210x3 - 0 (mod 13). Now 210 = 13-16+2, and so 2 = 210-- 13 16.
Also 13 = 2 * 6 + 1, and so 1 = 13 -2 -6. Hence, by substitution, 1 = 13 -(210- 13 . 16) * 6 =
210. (-6) + 97 13, and so 210- (-6) 1- (mod 13). Thus £3 -- 6 (mod 13) - 7 (mod 13)
because 13 1 (-6 -7). So we may take x2 = 7. (Strictly speaking, as you will see below, we
did not need to calculate X3 because a3 = 0.)

By the proof of the Chinese remainder theorem, a solution x for the congruences is x =

a1 Nix, + a2N 2 x2 + a3 N3x 3 = 2 * 182 8 + 1 195 13 + 0 210 7 = 5447. But 5447 mod
2730 = 2717. Thus the least positive solution to the system of congruences is 2717. To check
this answer, observe that 2717 = 15 *181 + 2, 2717 = 14. 194 + 1, and 2717 = 13 . 209.

46. To solve this problem, we need to find a positive integer x such that x - 1 (mod 2), x - 2
(mod3), x - 3 (mod4), x - 4 (mod5), x - 5 (mod6), and x - 0 (mod7). Note first that if
x - 1 (mod 2) and x - 2 (mod 3), then x - 5 (mod 6). We could obtain this result by formal
application of the Chinese remainder theorem, but it is simpler to observe that because x - 2
(mod 3), x = 3k + 2 for some integer k, and because x - 1 (mod 2), x is odd. Now if k is
even, then x = 3k + 2 is a sum of even integers and hence even, which it is not. Thus k is
odd, and so k = 2m + 1 for some integer m. By substitution, £ = 3(2m + 1) + 2 = 6m + 5.
Hence x =- 5 (mod6). Secondly, observe that the congruence x - 3 (mod4) implies that for
some integer 1, x = 41 + 3 = 2(21 + 1) + 1, which implies that x 1 (mod 2). Thus it suffices
to solve the system of congruences modulo 3, 4, 5, and 7. In other words, it suffices to find a
positive integer x such that x -- 2 (mod 3), x - 3 (mod4), x - 4 (mod 5), and x - 0 (mod 7).
Because 3, 4, 5, and 7 are relatively prime, we may apply the technique in the proof of the
Chinese remainder theorem.

Let n1 = 3, n2 = 4, n3 = 5, n4 = 7, a, = 2, a2 = 3, a3 = 4, and a4 = 0. Then N = 3-4.5 7=
420, N1 = 4 .5 .7 = 140, N2 = 3 .5 .7 = 105, N3 = 3. 4 .7 = 84, N4 = 3 4 .5 = 60.

To find x1, we solve N1 x, = 140i -2 1 (mod 3). Now 140 = 3-46+2, and so 2 = 140-3 46. Also
3 = 2 1 + 1, and so I = 3 -2. Hence, by substitution, 1=3 -(140-3 3 46) = 140 (-1) + 3 * 47,
and so 140 (- 1) - 1 (mod3). Thus x1 1 (mod3) 2 (mod 3) because 3 1 ((-1) -- 2). So
we may take xi = 2.
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To find x2, we solve N 2x 2 = 105x2 - 1 (mod4). Now 105 = 4. 26 + 1, and so 1 = 105 - 4.26.
Hence, 105* 1 1- (mod 4). Thus we may take x2 = 1.

To find X 3, we solve N3 x3 = 84x3 1 (mod 5). Now 84 = 5*16 + 4, and so 4 = 84-5 -16. Also
5 = 4* 1 + 1, and so 1 = 5-4. Hence, by substitution, 1 = 5 -(84- 5.16) = 84- (-) + 5.17,
and so 84 . (- 1) - 1 (mod 5). Thus £3 -- 1 (mod 5) - 4 (mod5) because 5 | ((-1) -4). So
we may take £3 = 4.

Because a4 = 0, we do not need to compute X4. By the Chinese remainder theorem, a solution
x for the congruences is x = aiNixi+a2 N 2x 2 +a3 N 3 x 3 +a4 N 4 x 4 = 2-140-2+3-105 1+4-84-
4 + 0 * 60 * X4 = 2219. But 2219 mod 420 = 119. Thus the least positive solution to the system
of congruences is 119. To check this answer, observe that 119 = 2 59 + 1, 119 = 3 * 39 + 2,
119 = 4- 29 + 3, 119 = 5 23 + 4, 119 = 6 *19 + 5, and 119 = 7 *17.

47. Lemma: For all integers a, b, and c, if a I c, b I c, and gcd(a, b) = 1, then ab I c.

Proof: Suppose a, b, and c are any integers such that a I c, b I c, and gcd(a, b) = 1. By
definition of divisibility, there exist integers x and y such that c = ax = by (*), and by
Theorem 10.4.5, there exist integers s and t such that as + bt = 1 (**). Multiplying both sides
of equation (**) by c gives (as + bt)c = 1 -c = c, and so acs + cbt = c (***) Substituting from
(*) into (***) gives c = a(by)s + (ax)bt = ab(ys + xt), and this equation implies that ab I c
[because ys + xt is an integer].

Proof of exercise statement: Suppose ni, n2, n3 , are pairwise relatively prime positive integers
and a,, a2 , and a3 are any integers, and suppose that x and x' are such that

x a, (mod ni) x a2 (modn2 ) x - a3 (modn3),

x -a, (mod ni) x' - a2 (mod n2 ) x' - a3 (mod n3 ).

We will show that x - x' (modn), where n = n1 n2 n3 . First observe that by the symmetric
and transitive properties of the congruence relation,

x - x' (modni) x - x' (mod n2 ) x - x' (modn3).

Thus n1 I (x -x'), n2 I (x -x'), and n3 I (x -x'). Now because n1 and n2 are relatively prime,
by the lemma, nIn2  (x -x'). Moreover, n1n 2 and n3 are relatively prime and n1n2 I (x -x')

and n3 I (x -x'), and so, again by the lemma, nln2 n3 I (x -x'). Letting n = n1n2 n3 , by
definition of divisibility we have that n I (x - x'), and so, by definition of congruence, x - x'
(mod n). [as was to be shown].

Section 10.5

1. c.
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R3 is antisymmetric: there are no cases where a R b and b R a and a 74 b.

d.

3 - 2

R4 is not antisymmetric: 1 R4 2 and 2 R4 1 and 1 2.

3. R is not antisymmetric. Counterexample: Let s = 0 and t = 1. Then s R t and t R s because
l(s) < 1(t) and l(t) < I(s), since both l(s) and l(t) equal 1, but s : t.

4. R is antisymmetric.

Proof 1: The statement "For all real numbers x and y, if x < y and y < x, then x = y" is
vacuously true because, by the trichotomy law (Appendix A, T16), there are no real numbers
x and y such that x <y and y < x.

Proof 2 (by contradiction): Suppose R is not antisymmetric. Then there exist distinct real
numbers x and y such that x < y and y < x. But this contradicts the trichotomy law
(Appendix A, T16) which says that both x < y and y < x are not simultaneously true. [Hence
the supposition is false and so R is antisymmetric.]

6. R is a partial order relation.

Proof:

R is reflexive: Suppose r E P. Then r = r, and so by definition of R, r R r.

R is antisymmetric: Suppose r, s C P and r R s and s R r. [We must show that r = s.] By
definition of R, either r is an ancestor of s or r = s and either s is an ancestor of r or s = r.
Now it is impossible for both r to be an ancestor of s and s to be an ancestor of r. Hence one
of these conditions must be false, and so r = s [as was to be shown!.

R is transitive: Suppose r,s,t C P and r R s and s R t. [We must show that r R t.] By
definition of R. either r is an ancestor of s or r = s and either s is an ancestor of t or s = t.
In case r is an ancestor of s and s is an ancestor of t, then r is an ancestor of t, and so r R t.
In case r is an ancestor of s and s = t, then r is an ancestor of t, and so r R t. In case r = s
and s is an ancestor of t, then r is an ancestor of t, and so r R t. In case r = s and s = t, then
r = t, and so r R t. Thus in all four possible cases, r R t [as was to be shown].

Since R is reflexive, antisymmetric, and transitive, R is a partial order relation.

7. R is not a partial order relation because R is not antisymmetric. Counterexample: Let m = 2
and n = 4. Then m R n because every prime factor of 2 is a prime factor of 4, and n R m
because every prime factor of 4 is a prime factor of 2. But m 7& n because 2 78 4.

9. R is not a partial order relation because R is not antisymmetric. Counterexample: Let x = 2
and y = -2. Then x R y because (-2)2 < 22, and y R x because 22 < (-2)2. But x 7 y
because 2 -2.

11. c. True, by (3). d. True, by (2). e. False. By (2), bbaa -< bbab.
f. True, by (1). g. True, by (2).
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12. Proof:

-< is reflexive: Suppose s is in S. If s = e, then s -< s by (3). If s f c, then s -< s by (1).
Hence in either case, s -< s.

-- is antisymmetric: Suppose s and t are in S and s -q t and t < s. [We must show that
s = t.1 By definition of S. either s = e or s = a1 a2 ... am and either t = e or t = b1b2 ... bn
for some positive integers m and n and elements a1 ,a 2 , .. , am and bl, b2, . .. , b, in A. It is
impossible to have s -< t by virtue of condition (2) because in that case there is no condition
that would give t -< s. [For suppose s --< t by virtue of condition (2). Then for some integer
k with k < m, k < n, and k > 1, ai = bi for all i = 1, 2,. . ., k -1, and ak R bk and ak 7& bk.

In this situation, it is clearly impossible for t -< s by virtue either of condition (1) or (3), and

so if t -< s, then it must be by virtue of condition (2). But in that case, since ak :# bk, it

must follow that bk R ak, and so since R is a partial order relation, ak = bk. However, this
contradicts the fact that ak 7$ bk. Hence it cannot be the case that s < t by virtue of condition
(2).] Similarly, it is impossible for t -< s by virtue of condition (2). Hence s -< t and t -< s

by virtue either of condition (1) or of condition (3). In case s -< t by virtue of condition (1),
then neither s nor t is the null string and so t -< s by virtue of condition (1) also. Then by (1)
m < n and ai = bi for all i = 1,2,...,m and n < m and bi = ai for all i = 1,2,...,m, and
so in this case s = t. In case s -< t by virtue of condition (3), then s e, and so since t -< s,
t < e. But the only condition that can give this result is (3) with t e. Hence in this case,
s t = e. Thus in all possible cases, if s -< t and t -< s, then s = t [as was to be shown].

-< is transitive: Suppose s and t are in S and s -< t and t -< u. [We must show that s -< u.]

By definition of S, either s = e or s = aa 2 ... am, either t = e or t = b1b2 ... bn, and either
u = e or U = CiC 2 ... cp for some positive integers m, n, and p and elements a1, a2 ,..., am,
bi, b2, . . . , b,,, and c 1, C2 , . . ., cP in A.

Case 1 (s = e): In this case, s R u by (3).

Case 2 (s 5 e): In this case, since s R t, t 5 e either, and since t R u, u a e either.

Subcase a (s R t and t R u by condition (1)): Then m < n and n < p and ai = bi for all
i = 1, 2,. .. ,m and bj = cj for all j = 1, 2, .. ,n. It follows that ai = ci for all i = i, 2,.. ., m,
and so by (1), s R u.

Subcase b (s R t by condition (1) and t R u by condition (2)): Then m < n and ai = bi

for all i = 1,2,...,m, and for some integer k with k < n, k < p, and k > 1, b'j = c for
all j = 1,2,. . ., k -1, bk R Ck, and bk 5 Ck. If k < m, then s and u satisfy condition (2)
[because ai = bi for all i = 1, 2,...,m and so k < m, k < p, k > 1, ai = bi = ci for all

i = 1, 2,.. . , k -1, ak R Ck, and ak 5 Ck]. If k > m, then s and u satisfy condition (1) [because
ai = bi = ci for all i = 1, 2, ... ,m]. Thus in either case s R u.

Subcase c (s R t by condition (2) and t R u by condition (1)): Then for some integer k with

k < m, k < n, k > 1, ai bi for all i = 1, 2,..., k -1, ak R bk, and ak 5 bk, and n < p and
b- = cj for all j = i, 2, ... , n. Then s and u satisfy condition (2) [because k < n, k < p (since

k < n and n < p), k > 1, ai = bi = ci for all i = 1, 2,..., k - 1 (since k - I < n), ak RCk
(since bk = Ck because k < n), and ak # Ck (since bk = ck and ak = bk)]. Thus s R u.

Subcase d (s R t by condition (2) and t R u by condition (2)): Then for some integer k with
k < m, k < n, k > 1, ai = bi for all i = 1,2,... . ,k-1, akR bk, and ak y bk, and for some
integer I with I < n, I < p, and I > 1, bj =c for all j = 1,2, . I - 1, b c R l, and bl ycil.
If k < 1, then ai - bi - ci for all i = 1, 2,. .. , k -1, ak R bk, bk = Ck (in which case ak R Ck),

and ak # Ck (since ak # bk). Thus if, k < 1, then s --< u by condition (2). If k = 1, then
bk R Ck (in which case ak R Ck by transitivity of R) and bk 5 Ck. It follows that ak 7 Ck [for if

ak = ck, then ak R bk and bk R ak, which implies that ak - bk (since R is a partial order) and

contradicts the fact that ak 5 bk]. Thus if k = 1, then s - u by condition (2). If k > 1, then
ai = bi = ci for all i = 1, 2,...,l -1, al R cl (because bB R cl and a, = bl), al 7& cl (because
bi cl and a, = bl). Thus if k > 1, then s -< u by condition (2). Hence in all cases s -< u.
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The above arguments show that in all possible cases, s -< u [as was to be shown]. Hence -< is
transitive.

Since -< is reflexive, antisymmetric, and transitive, -q is a partial order relation.

14. b. {(a,a), (b, b), (c, c)}, {(aa), (b, b), (c, c), (a, b)},
{(aa), (b, b), (c, c), (a,c)}, {(aa), (b, b), (c, c), (a, b), (a,c)},
{(aa), (b, b), (c, c), (a, b), (b, c), (a,c)}, {(a,a),(b, b), (c, c), (a,c),(c, b), (a, b)},
{(a, a), (b, b), (c, c), (b, c)}, {(a, a), (b, b), (c, c), (c, b)},
{(aa), (b, b), (c, c), (a, b), (c, b)}, {(aa), (b, b), (c, c), (a,c), (b, c)}

15. Proof: Suppose R is a relation on a set A and R is reflexive, symmetric, transitive, and anti-
symmetric. We will show that R is the identity relation on A. First note that for all x and y in
A, if x R y then, because R is symmetric, y R x. But then, because R is also anti-symmetric
x = y. Thus for all x and y in A, if x R y then x = y. This argument, however, does not
prove that R is the identity relation on A because the conclusion would also follow from the
hypothesis (by default) in the case where A 7$ 0 and R = 0. But when A 7& 0, it is impossible
for R to equal 0 because R is reflexive, which means that x R x for every x in A. Thus every
element in A is related by R to itself, and no element in A is related to anything other than
itself. It follows that R is the identity relation on A.

16. b.

8

17. b.

lO, 1, 2 }

0, {1,2

{2{o0
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19.

(0,1) (1,0)

20.

(0,1,1)

(0,0,1)

23. greatest element: none least element: none

maximal elements: 8, 12, 18 minimal elements: 2, 3

25. greatest element: {0, 1, 2} least element: 0

maximal elements: {0, 1, 2} minimal elements: 0

27. greatest element: (1,1) least element: (0,0)

maximal elements: (1,1) minimal elements: (0,0)

28. greatest element: (1,1,1) least element: (0,0,0)

maximal elements: (1,1,1) minimal elements: (0,0,0)

29. greatest element: 2' least element: 1

maximal elements: 2' minimal elements: 1

30. c. no greatest element and no least element

d. greatest element: 9 least element: 1

32. R is a total order on A because it is reflexive, antisymmetric, and transitive (so it is a partial
order) and because [c, b, a, d] is a chain that contains every element of A.

33. A is not totally ordered by the given relation because 9 t 12 and 12 t 9.
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34. There are n! total orderings on a set with n elements because n! is the number of ways to write
n elements in a row or as a chain.

35. Proof: Let R' be the restriction of R to B. Then R' is reflexive because given any x in B,
(x, x) c R since R is reflexive and B C A, and so (x, x) E R' by definition of R'. Furthermore,
R' is antisymmetric because given any x and y in B such that (x, y) E R' and (y, x) E R', then
(x, y) E R and (y, x) C R by definition of R' and since R is antisymmetric, x = y. Finally, R'
is transitive because given any x, y, and z in B such that (X, y) e R' and (y, z) E R', then
by definition of R', (x, y) e R and (y, z) E R. Since R is transitive, (XI z) E R, and so by
definition of R', (x, z) E R'. Since R' is reflexive, antisymmetric, and transitive, R' is a partial
order relation on B.

37. {2, 4, 12, 24} or {3, 6, 12, 24}

38. {(0,0), (0,1), (1,1)} or {(0,0), (1,0), (1,1)1

41. b. This proof is identical to that given in part (a) provided the following changes are made:
(1) Change "minimal" to "maximal" throughout the entire proof; (2) Change " -<" to "s-"
and "h-" to " <" throughout step 2 of the proof.

42. a. Proof: Suppose A is any partially ordered set, ordered with respect to a relation -<, and
a and b are greatest elements of A. By definition of greatest element, x -< a for all x in A; in
particular, b -< a. Similarly, x -< b for all x in A, and so a -< b. Since -q is a partial order, it is
antisymmetric, and thus a = b. Hence A has at most one greatest element.

b. Proof: Suppose A is any partially ordered set, ordered with respect to a relation -<, and
a and b are least elements of A. By definition of least element, a -< x for all x in A; in
particular, a -< b. Similarly, b -< x for all x in A, and so b -< a. Since -- is a partial order, it is
antisymmetric, and thus a = b. Hence A has at most one least element.

44.

a b C

46. One such total order is 3,9,2,6,18,4,12,8.

48. One such total order is (0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,o),(1,0,1),(i,,O),(1,1,1l).

49. One such total order is 0, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d},

{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, {a, b, c, d}.

50. a. 350, 390, 345, 301, 230, 200

b. (1) 140, 150, 155, 141, 200, 225, 250, 230, 300, 340, 345, 301, 360, 390, 350

(2) 150, 155, 200, 140, 141, 225, 300, 340, 345, 250, 360, 301, 230, 390, 350
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51. b. (i) Annotate the given Hasse diagram by indicating in boxes the least number of days needed
to accomplish each job, taking into account the time needed to perform prerequisite jobs.

II

Therefore, at least five days are needed to perform all ten jobs.

(ii) At most four jobs can be performed at the same time. For instance, 10, 9, 6 and 2 could be
performed simultaneously. One way to see why the maximum cannot be greater than four is
to observe that S can be written as a union of four chains: 1 -< 10 -< 7 -- 3, 1 --< 6 -< 5 -< 7 - 3,
9 -< 5 -< 4 -< 3, and 2 -< 8 -< 3, and at most one job from each chain can be performed at any
one time.

52. a. 33 hours

I
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Chapter 11: Graphs and Trees

The first section of this chapter introduces the terminology of graph theory, illustrating it in a variety
of different instances. Several exercises are designed to clarify the distinction between a graph and a
drawing of a graph. You might point out to students the advantage of the formal definition over the
informal drawing for computer representation of graphs. Other exercises explore the use of graphs
to solve problems of various sorts. In some cases, students may be able to solve the given problems,
such as the wolf, the goat, the cabbage and the ferryman, more easily without using graphs than
using them. The point to make is that such problems can be solved using graphs and that for more
complex problems involving, say, hundreds of possible states, a graphical representation coupled with
a computer path-finding algorithm makes it possible find a solution that could not be discovered by
trial-and-error alone. Exercise 33, on the number of edges of a complete graph, is good to assign
because discussing the variety of solutions provides a way to illustrate the relations among different
branches of discrete mathematics. The rest of the exercises in this section give students practice in
applying the theorem that relates the total degree of a graph to the number of its edges, especially
for exploring properties of simple graphs, complete graphs, and bipartite graphs.

In Section 11.2 the general topic of paths and circuits is discussed, including the notion of
connectedness and Euler and Hamiltonian circuits. As throughout the chapter, an attempt is made
to balance the presentation of theory and application so that you can create whatever mix seems
most appropriate for your students. Thus while many exercises are designed to develop facility with
terminology and the use of theorems, quite a few others provide opportunities for students to engage
in the kind of reasoning that lies behind the theorems.

Section 11.3 introduces the concept of the adjacency matrix of a graph. The main theorem of
the section states that the ijth entry of the kth power of the adjacency matrix equals the number of
walks of length k from the ith to the jth vertices in the graph. Matrix multiplication is defined and
explored in this section in a way that is intended to be adequate for students who have never seen
the definition before but also provide some challenge to students who were exposed to the topic in
high school.

The concept of graph isomorphism is discussed in Section 11.4. In this section the main theorem
gives a list of isomorphic invariants that can be used to determine the non-isomorphism of two
graphs. The theoretical exercises at the end of this section give students an opportunity to fill in
the parts of the proof of this theorem that are not included in the text.

The last two sections of the chapter deal with the subject of trees. Section 11.5 is rather long. In
addition to definitions, examples, and theorems giving necessary and sufficient conditions for graphs
to be trees, the section also contains the definition of rooted tree, binary tree, and the theorems
that relate the number of internal to the number of terminal vertices of a full binary tree and the
maximum height of a binary tree to the number of its terminal vertices. Section 11.6 on spanning
trees contains Kruskal's and Prim's algorithms and proofs of their correctness, as well as applications
of minimum spanning trees.

Section 11.1

2. V(G) = {vi,v 2 ,v 3 ,v 4}, E(G) = {e1 ,e 2 ,e3,e 4,e 5}

edge-endpoint function:

edge endpoints
el {v1 , V2 }

e 2  {V 2 , V3 }

e3  {V2, V3}

e 4  {V 2 , V4 }

e5 {V 4 }
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4.

V2 e2 V3

e3

el \e

V5

6.

V] 4

7.

e3

I V-

or
V4 V7VI

e
\e9

e
8

V6

9. (i) el, e2, e7 are incident on el.

(ii) vs and v2 are adjacent to V3.

(iii) e2 and e7 are adjacent to el.

e
6

* V4

eI
i i

V4 4I

e2 z
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(iv) el and e3 are loops.

(v) e4 and e5 are parallel.

(Vi) V4 is an isolated vertex.

(vii) degree of V3 = 2

(viii) total degree of the graph = 14

10. b. Yes. According to the graph, Poetry Magazine is an instance of a Literary journal which is
a Scholarly journal and, therefore, contains Long words.

11.

(vvccBl) -* (vc/Bvc) -*(vvcB/c) - (c/Bvvc) --* (vcB/vc) -* (/Bvvcc)
(vvccB/) -* (vv/Bcc) - (vvcB/c) -* (c/Bvvc) -* (vcB/vc) -*(/Bvvcc)

(vvccB/) -* (vv/Bcc) -*(vvcB/c) -4 (c/Bvvc) -, (ccB/vv) -*(/Bvvcc)

13.

t 0 a < 1 0vvvccBe P<aH )

/B I'ecC

The diagram shows several solutions. Among them is (vvvcccB/) -* (vvcc/Bvc) - (vvvccB/c)
-*(vcv/Bccc) -*(vvvcB/cc) -* (vc/Bvvcc) -* (vvccB/vc) - (cc/Bvvvc) -* (cccB/vvv)
-* (c/Bvvvcc) -*(vcB/vvcc) -*(/Bvvvccc), or one can end with (c/Bvvvcc) -* (ccB/vvvc)
-* (/Bvvvccc), or one can start with (vvvcccB/) -* (vvvc/Bcc) - (vvvccB/c).

14. Represent possible amounts of water in jugs A and B by ordered pairs with, say, the ordered
pair (1,3) indicating that there is one quart of water in jug A and three quarts in jug B.
Starting with (0,0), draw an edge from one ordered pair to another if it is possible to go from
the situation represented by the one pair to that represented by the other and back by either
filling a jug from the tap, emptying a jug into the drain, or transferring water from one jug
to another. Except for (0,0), only draw edges from states that have edges incident on them
(since these are the only states that can be reached). The resulting graph is shown as follows:
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It is clear from the graph that one solution is (0, 0) - (3, 0) - (0, 3) , (3, 3) - (1, 5) - (1, 0)
and another solution is (0, 0) -* (0, 5) (3, 2) - (0, 2) - (2, 0) - (2, 5) -* (3,4) - (0,4)
(3, 1) - (0,1).

Note that it would be possible to add arrows to the above graph from each reachable state
to each other state that could be obtained from it either by filling one of the jugs to the top
or by emptying the entire contents of one of the jugs. For instance, one could draw an arrow
from (0,3) to (0,5) or from (0,3) to (0,0). Because the graph is connected, all such arrows
would point to states already reachable by other means, so that it is not necessary to add
such additional arrows to find solutions to the problem (and it makes the diagram look more
complicated). However, if the problem were to find all possible solutions, the arrows would
have to be added.

17. Solution 1: If there were a graph with four vertices of degrees 1, 1, 1 and 4, then its total
degree would be 7, which is odd, which would contradict Corollary 11.1.2. Thus there is no
such graph.

Solution 2: If there were a graph with four vertices of degrees 1, 1, 1 and 4, then it would have
three vertices of odd degree, which would contradict Corollary 11.1.3. Thus there is no such
graph.

18.

V2  V3  V4

20. Since a simple graph has no loops or parallel edges, the maximum number of edges incident
on a vertex equals the number of other vertices in the graph (because the vertex can only be
connected to these and only once each). In a simple graph with five vertices, therefore, the
maximum degree of any vertex is four, and so there can be no vertex of degree 5. Thus there
is no simple graph with five vertices of degrees 2, 3, 3, 3, and 5.
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21.

V3 V4

VI

V5

23. Let us first deduce what we can about such a graph. Its total degree would be two times the
number of edges, or 18, and since each vertex would have degree 3, the number of vertices
would be 18/3, or 6. Two graphs that satisfy the given properties are shown below.

VI
V2

V3

V3

24. b. There are 7 nonempty subgraphs.

II V, V,.

V. T

c. There are 17 nonempty subgraphs.

vI

V2 V3

VI

V2 V3

VI

V2 V3
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VI

V2 V3

V2

V2

V2 V3

V3

VI

0

V2 V3

VI
S

V2

2 V3

V2 V3

329

VI
6

S 0

V2 V3

VI
0

V3

VI
S

25. b. Yes. Each could be friends with all three others.

26. No. If the people were represented by vertices of a graph and each handshake were represented
by an edge joining two vertices, the result would be a graph with a total degree of 75, which
is odd. But this is impossible because the total degree of a graph must be even.

27. Yes. For example, the graph shown below satisfies this condition.

V2

VI V3

29. The total degree of the graph is 1 + 1 + 4 + 4 + 6 = 16. So by Theorem 11.1.1, the number of
edges is 16/2, or 8.

30. Let t be the total degree of the graph. Since the degree of each vertex is at least dmi,, and at
most dmaxI dmin .v < t < dmax v. But by Theorem 11.1.1, t equals twice the number of edges.
So by substitution, dmin v < 2e < dmax v.

32. Proof: Suppose not. That is, suppose there exists a positive integer n such that there is a
sum of n odd integers that is even and n is not even. By Theorem 3.6.2, n is odd. Thus, by
exercise 31, any sum of n odd integers is odd, which contradicts the supposition that there is
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330 Chapter 11: Graphs and Trees

a sum of n odd integers that is even. /Hence the supposition is false, and the given statement
is true.]

33. b. Proof 1: Suppose n is an integer with n > 1 and K& is a complete graph on n vertices.
n(n - _1 1(1 1)

If n = 1, then K, has one vertex and 0 edges and 2) = - = 0, and so K& has
2 2

n(n ) edges. If n > 2, then since each pair of distinct vertices of Kn is connected by exactly
2 _

one edge, there are as many edges in Kn as there are subsets of size two of the set of n vertices.

By Theorem 6.4.1, there are (2) such sets. But (2) = ( = ( )~ Hence there
2 2/ 2! (n -2)! 2

are ( - ) edges in Kn.
2

Proof 2 (by mathematical induction): Let the property P(n) be the sentence "the complete

graph on n vertices, Kn, has n(n ) edges."
2

Show that the property is true for n = 1: For n = 1 the property is true because the

complete graph on one vertex, K1 , has 0 edges and ( 1) - ( - ) =
2 2

Show that for all integers m > 1, if the property is true for n = m then it is true

for n = m + 1: Let m be an integer with m > 1, and suppose that Km has m(m ) edges.

/This is the inductive hypothesis.] We must show that Km,+ has

(m + )((m + 1) -1) (m + 1)m
2 2

edges. Note that Km+i vertices can be obtained from Km vertices by adding one vertex, say
v, and connecting v to each of the k other vertices. But by inductive hypothesis, Km has

m(m 1) edges. Connecting v to each of the m other vertices adds another m edges. Hence
2

m(m 1) m(m-1) 2m _ m 2 -m +2m
the total number of edges of Km+l is 2 + m = + 2 = 2

m(m + 1) /as was to be shown].
2

Proof 3: Suppose n is an integer with n > 1 and Kn is a complete graph on n vertices.
Because each vertex of Kn is connected by an edge to each of the other n - 1 vertices of K,
by exactly one edge, the degree of each vertex of K, is n -1. Thus the total degree of Kn
equals the number of vertices times the degree of each vertex, or n(n -1). But by Theorem
11.1.1, the total degree of K& equals twice the number e of edges of Kn, and so n(n -1) = 2e.
Equivalently, e = n(n -1)/2, [as was to be shown].

34. Proof: Let n be a positive integer and let G be any simple graph with n vertices. Add edges
to G to connect any pairs of vertices not already connected by an edge of G. The result is a
complete graph on n vertices which has n(n -1)/2 edges by exercise 33. Hence the number of
edges of G is at most n(n -1)/2.

36. b. K 1 ,3

WI
Aw2

vI a. W2

\W3

I
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c. K3 ,4

VI

V2

V3

d. If n 54 m, the vertices of Km,n are divided into two groups: one of size m and the other of
size n. Every vertex in the group of size m has degree n because each is connected to every
vertex in the group of size n. So Km,n has n vertices of degree m. Similarly, every vertex in
the group of size n has degree m because each is connected to every vertex in the group of size
m. So K,,n has n vertices of degree m. Note that if n = m, then all n + m = 2n vertices have
the same degree, namely n.

e. The total degree of Km,n is 2mn because Km,n has m vertices of degree n (which contribute
mn to its total degree) and n vertices of degree m (which contribute another mn to its total
degree)

f. The number of edges of Km,n = mn. The reason is that the total degree of Km,n is

2mn, and so, by Theorem 11.1.1, K,,n has 2mn/2 = mn edges. Another way to reach this
conclusion is to say that K ,n has n edges coming out of each of the group of m vertices (each
leading to a vertex in the group of n vertices) for a total of mn edges. Equivalently, Km,n has
m edges coming out of each of the group of n vertices (each leading to a vertex in the group
of m vertices) for a total of mn edges.

37. c.

V3 V4

V5 .V 6

d. Suppose the graph were bipartite with disjoint vertex sets V1 and V2, where no vertices
within either V1 or V2 are connected by edges. Then v1 would be in one of the sets, say V1,
and so V2 and V6 would be in V2 (because each is connected by an edge to v1). Furthermore,
V3, V4, and V5 would be in V, (because all are connected by edges to V2). But V4 is connected
by an edge to V5 , and so both cannot be in V1. This contradiction shows that the supposition
is false, and so the graph is not bipartite.

e.

V :

VV

V3
V
5

V
4
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f. Suppose the graph were bipartite with disjoint vertex sets V, and V2, where no vertices
within either V1 or V2 are connected by edges. Then vl would be in one of the sets, say V1 ,
and so v2 and V5 would be in V2 (because each is connected by an edge to v1). Furthermore,
V3 and V4 would be in V, (because V3 is connected by an edge to V2 and V4 is connected by
an edge to V5 ). But V3 is connected by an edge to V4 , and so both cannot be in V1. This
contradiction shows that the supposition is false, and so the graph is not bipartite.

38. Yes. Given positive integers r and s, let G be the complete bipartite graph Kr,s. If r 0 s,
then G has r vertices of degree s, s vertices of degree r, and no vertices of any other degree.
If r = s, then G has 2r vertices, all of degree r, and no vertices of any other degree.

39. b.

40. a.

.v 3

b.

VI

V3V3

lI

W2

41. a.

B

A - C

E / D

42. The graph obtained by taking all the vertices and edges of G together with all the edges of G'
is Kit. Therefore, by exercise 33b, the number of edges of G plus the number of edges of G'
equals n(n -1)/2.

43. Represent each person at the party by a vertex of an acquaintance graph and draw an edge
connecting each pair of acquaintances. By assumption, the graph has at least two vertices. If
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the acquaintance graph has at least one edge, then the people represented by the endpoints
of that edge are acquaintances. If the acquaintance graph has no edges, then its complement
has at least one edge (because the graph has at least two vertices), and we may choose such
an edge. Then the people represented by the endpoints of that edge are mutual strangers.

44. a. Yes. Let G be a simple graph with n vertices and let v be a vertex of G. Since G has no
parallel edges, v can be joined by at most a single edge to each of the n -1 other vertices of
G, and since G has no loops, v cannot be joined to itself. Therefore, the maximum degree of
visn -1.

b. No. Suppose there is a simple graph with four vertices each of which has a different degree.
By part (a), no vertex can have degree greater than three, and, of course, no vertex can have
degree less than 0. Therefore, the only possible degrees of the vertices are 0, 1, 2, and 3. Since
all four vertices have different degrees, there is one vertex with each degree. But then the
vertex of degree 3 is connected to all the other vertices, which contradicts the fact that one
of the vertices has degree 0. Hence the supposition is false, and there is no simple graph with
four vertices each of which has a different degree.

c. No. Suppose there is a simple graph with n vertices (where n > 2) each of which has a
different degree. By part (a), no vertex can have degree greater than n -1, and, of course, no
vertex can have degree less than 0. Therefore, the only possible degrees of the vertices are 0,
1, 2,.. ., n - 1. Since the vertices all have different degrees, there are n vertices, and there are
n integers from 0 to n -1 inclusive, there is one vertex with each degree. But then the vertex
of degree n - 1 is connected to all the other vertices, which contradicts the fact that one of
the vertices has degree 0. Hence the supposition is false, and there is no simple graph with n
vertices each of which has a different degree.

45. Yes. Suppose that in a group of two or more people, each person is acquainted with a different
number of people. Then the acquaintance graph representing the situation is a simple graph
in which all the vertices have different degrees. But by exercise 44(c) such a graph does not
exist. Hence the supposition is false, and so in a group of two or more people there must be
at least two people who are acquainted with the same number of people within the group.

46. In the graph below each committee name is represented as a vertex and labeled with the first
letter of the name of the committee. Vertices are joined if, and only if, the corresponding
committees have a member in common.

U

P 9

H (

G

C

To the first time slot, assign a committee whose vertex has maximal degree. There is only one
choice, the hiring committee. Since the library committee has no members in common with
the hiring committee, assign it to meet in the first time slot also. Every other committee shares
a member with the hiring committee and so cannot meet during the first time slot. To the
second time slot, assign a committee that has not already been scheduled and whose vertex has
next highest degree. This will be either the personnel, undergraduate education, or graduate
education committee. Say the personnel committee is selected. The committees that have not
already been scheduled and that do not share a member with the personnel committee are the
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334 Chapter 11: Graphs and Trees

undergraduate education and the colloquium committees. So assign these to the second time
slot also. To the third time slot, assign a committee that has not already been scheduled and
whose vertex has next highest degree. Only the graduate education committee satisfies this
condition. The time slots of all the committee meetings are as follows.

Time 1: hiring, library

Time 2: personnel, undergraduate education, colloquium

Time 3: graduate education

Note that if the graduate education committee is chose in step 2, the result is as follows.

Time 1: hiring, library

Time 2: graduate education, colloquium

Time 3: personnel, undergraduate education

Section 11.2

2. a. just a walk, not a path or a circuit

b. simple circuit

c. just a closed walk, not a path or a circuit (has a repeated edge)

d. circuit, not a simple circuit

e. path, not a simple path, not a circuit

f. simple path

3. b. No, because e1e2 could refer either to v1 eIv2 e2v1 or to v2 elv1 e2 v2.

5. a. The number of simple paths from a to c is 4 [the number of ways to choose an edge to travel
from a to b].

b. The number of paths from a to c is 4 + 4 3.2 = 28. (In addition to the 4 simple paths from
a to c, there are 4- 3. 2 paths with vertices abababc. The reason is that there are 4 edges to
choose from to go from a to b, then 3 edges to choose from to return from b to a, and finally
2 edges to choose from to go from a to b before traveling along the edge that joins b to c.)

c. There are infinitely many walks from a to c because it is possible to travel back and forth
from a to b or from b to c an arbitrarily large number of times before ending up at c.

6. b. {V7,V8}, {V1,V2}, {V3,VV4}

C. {V 2 , V3}, {V6, V7}, {V7, V8}, {f9, V1O}

7. a. For any positive integer n, consider the graph with distinct vertices vo, V1, V2,.. ,n and
edges {vovi}, {V0,V2} ... , {vO, vi},..., {v0, vn}. Removal of any of these edges disconnects
the graph.

b. For any positive integer n, consider the graph with distinct vertices v1, V2,..., on and
edges {Vi, V2}, {V2, V 3 }, . . ., {Vi- 1 ,Vi}, . ., {vn- 1, Vn}, {vn, vo}. Any one of these edges can be
removed without disconnecting the graph.

8. b. Two connected components:

V
U

(I) Z - x (2)
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c. Three connected components:

b d

a e

d. Two connected components:

- V

4(2 V2

(2) ' v4- 3

(3)

g

f

9. b. Yes, by Theorem 11.2.3 since G is connected and every vertex has even degree.

c. Not necessarily. It is not specified that G is connected. For instance, the following graph
satisfies the given conditions but does not have an Euler circuit:

a

a

10. One such example is given in the answer to exercise 9c above. A simpler example is the graph
shown below. Its vertices have degrees 2, 2, 2, and 0 which are all even numbers, but the graph
does not have an Euler circuit.

a a

b

(1) i h (2)

(]) VI

,c
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11. Yes. The graph that models the situation in which each bridge is crossed twice is the following.

A

B C

D

This graph is connected and its vertices have degrees 6, 6, 6, and 10, all of which are even
numbers. Therefore, by Theorem 11.2.3, the graph has an Euler circuit, and so it is possible
for a citizen of K6nigsberg to make a tour of the city and cross each bridge exactly twice.

13. This graph does not have an Euler circuit because vertices v1, v8, v9 , and V7 have odd degree.

15. One Euler circuit is the following: stuvwxyzrsuwyuzs.

16. This graph does not have an Euler circuit because it is not connected.

17. This graph does not have an Euler circuit because vertices C and D have odd degree.

18. Yes. One Euler circuit is ABDEACDA.

20. There is not an Euler path from u to w because e, f, and h also have odd degree.

21. One Euler path from u to w is uv1 v2 v3uvOv 7v6v 3v4v6 wv 5v4w.

22. Yes. One such path is AHGBCDGFE.

24. One Hamiltonian circuit is balkjedcfihgb.

25. Call the given graph G and suppose G has a Hamiltonian circuit. Then G has a subgraph H
that satisfies conditions (1) - (4) of Proposition 11.2.6. Since the degree of c in G is five and
every vertex in H has degree two, three edges incident on c must be removed from G to create
H. Edge {c, d} cannot be removed because doing so would result in vertex d having degree
less than two in H. Similar reasoning shows that edges {c, f}, {c, b}, and {c, g} cannot be
removed either. It follows that the degree of c in H must be at least four, which contradicts
the condition that every vertex in H has degree two in H. Hence no such subgraph H can
exist, and so G does not have a Hamiltonian circuit.

27. Call the given graph G and suppose G has a Hamiltonian circuit. Then G has a subgraph H
that satisfies conditions (1) (4) of Proposition 11.2.6. Since the degree of B in G is five and
every vertex in H has degree two, three edges incident on B must be removed from G to create
H. Edge {B, C} cannot be removed because doing so would result in vertex C having degree
less than two in H. Similar reasoning shows that edges {B, E}, {B, F}, and {B, A} cannot be
removed either. It follows that the degree of B in H must be at least four, which contradicts
the condition that every vertex in H has degree two in H. Hence no such subgraph H can
exist, and so G does not have a Hamiltonian circuit.

28. Call the given graph G and suppose G has a Hamiltonian circuit. Then G has a subgraph H
that satisfies conditions (1) - (4) of Proposition 11.2.6. Since the degree of b in G is three and
every vertex in H has degree two, one edge incident on b must be removed from G to create H.
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Edge {b, a} cannot be removed because doing so would result in vertex a having degree less
than two in H. Similar reasoning shows that edges {b, d} and {b, c} cannot be removed either.
It follows that the degree of b in H must be at least three, which contradicts the condition
that every vertex in H has degree two in H. Hence no such subgraph H can exist, and so G
does not have a Hamiltonian circuit.

29. One Hamiltonian circuit is abcdefga.

30. One Hamiltonian circuit is v0 v1 v5 v4 v7 v6 v2v3v0.

31. Call the given graph G and suppose G has a Hamiltonian circuit. Then G has a subgraph H
that satisfies conditions (1) - (4) of Proposition 11.2.6. Edges {a, b} and {a, d} must be part
of H because otherwise vertices b and d would have degree less than two in H. Similarly, edges
{ c, b} and {c, d} must be in H. Therefore, edges {a, e} and {f , c} are not in H because otherwise
vertices a and c would have degrees greater than two in H. But removal of {a, e} and {f, c}
disconnects G, which implies that H is not connected. This contradicts the condition that H
is connected. Hence no such subgraph H can exist, and so G does not have a Hamiltonian
circuit.

32. Other such graphs are those shown in exercise 12 and Example 11.2.6.

33. Other such graphs are those shown in exercises 17, 21, 23, 24, 29 and 30.

34. In the graph below, abeda is both an Euler and a Hamiltonian circuit.

a s b

d c

35. In the graph below, velwe2 v is a Hamiltonian circuit that is not an Euler circuit, and velwe 2ve3
We 4 v is an Euler circuit that is not a Hamiltonian circuit.

e

V W

e4

36. It is clear from the map that only a few routes have a chance of minimizing the distance. For
instance, one must go to either Dusseldorf or Luxembourg just after leaving Brussels or just
before returning to Brussels, and one must either travel from Berlin directly to Munich or the
reverse. The possible minimizing routes are those shown below plus the same routes traveled
in the reverse direction.

Route Total Distance (in km)

Bru-Lux-Diiss-Ber-Mun-Par-Bru 219 + 224 + 564 + 585 + 832 + 308 = 2732
Bru-Diiss-Ber-Mun-Par-Lux-Bru 223 + 564 + 585 + 832 + 375 + 219 = 2798
Bru-Diiss-Lux-Ber-Mun-Par-Bru 223 + 224 + 764 + 585 + 832 + 308 = 2936
Bru-Dilss-Ber-Mun-Lux-Par-Bru 223 + 564 + 585 + 517 + 375 + 308 = 2572

The routes that minimize distance, therefore, are the bottom route shown in the table and
that same route traveled in the reverse direction.

37. b. This statement is the contrapositive of the statement proved in part (a). So since a statement
is logically equivalent to its contrapositive, this statement is true.
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39. Proof: Suppose vertices v and w are part of a circuit in a graph G and one edge e is removed
from the circuit. Without loss of generality, we may assume the v occurs before the w in the
circuit, and we may denote the circuit by vOe 1 vle 2 ... e-Iv,-lenv( with vi = v, vj = w, i < j,
and ek = e. If either k < i or k > j, then v = viei+lvi+l . . .vj-ejvj = w is a path in G from v
to w that does not include e. If i < k < j, then v = vieivi- 1ei-1 ... vjelvoenv-l ... ej+lvj =
w is a path in G from v to w that does not include e. These possibilities are illustrated by
examples (1) and (2) in the diagram below. In either case there is a path in G from v to w
that does not include e.

(1) V3 = v

v

i = 3, j=6, e is deleted

path from v to w:

V = V3V V V6

V7

i )

v4

VO V5

i = 3, j=6, e is deleted

path from v to w:

v = V3V 2 VI VV 8 V7 V6 = w

V8

"7

41. Proof: Suppose there is a path P in a graph G from a vertex v to a vertex w. By definition
of path from v to w, P has the form v = vOe 1v1e2v2 ... en-V1 n-lenv, = w for some vertices
Vo, cV, .. .,ve and distinct edges e1 , e2 , .. ., en. Then w = VneeVn-een-1 ... v2 e2 v 1 e1 VO = v is

a path from w to v.

43. Proof: Suppose C is a circuit in a graph G that starts and ends at a vertex v, and suppose w is
another vertex in the circuit. By definition the circuit has the form VCcVle 2V2 . .. e,- ]Vn-lenv

where Vj, V 2 ,. . ., v,-, are vertices of G, e1, e2, .. ., en are distinct edges of G, and v, = w for
some i with 1 < i < n -1. Then w = viei+1 vi+l ... enVelVle2V2 . . .vi = w is a circuit that
starts and ends at w.

46. Proof: Let G be a graph and let v and w be two distinct vertices of G.

(=#l) Suppose there is an Euler path in G from v to w. Form a new graph G' from G by adding
an edge e from v to w. To the end of the Euler path in G from v to w, add edge e and vertex

VO

= W

I ,

I
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v. The result is an Euler circuit in G' from v to v. It follows from Theorem 11.1.1 that every
vertex in G' has even degree. Now the degrees of all vertices in G' except v and w are the
same as their degrees in G. So all such vertices have even degree in G. Also the degrees of v
and w in G are one less than their degrees in G'; so since one less than an even number is odd,
both v and w have odd degree in G. Furthermore, G' is connected because it has an Euler
circuit, and since removing an edge from a circuit does not disconnect a graph. (by Lemma
11.2.1c, which is proved as Lemma 11.5.2) and since G is obtained from G' by removing edge
e (which is an edge of a circuit), G is also connected.

(•) Suppose G is connected, v and w have odd degree, and all other vertices of G have even
degree. Form a new graph G' from G by adding an edge e from v to w. This increases the
degrees of v and w by one each, so that every vertex of G' has even degree and G' remains
connected. Therefore, by Theorem 11.2.3, G' has an Euler circuit. Construct a (possibly
different) Euler circuit for G' by starting at w, following e to v, and continuing from v using
the method outlined in the proof of Theorem 11.2.3, eventually to return to w having traversed
every edge of G'. Removing the initial vertex w and edge e from this circuit gives an Euler
path in G from v to w.

47. a. For each integer n > 1, the complete graph on n vertices, Kn, has an Euler circuit if, and
only if, n is odd. The reason is that by Theorem 11.2.4 Kn has an Euler circuit if, and only if,
every vertex has even degree. But the degree of each vertex of Kn is n -1, and n -1 is even
exactly when n is odd. (Note that the Euler circuit for K1 is the trivial circuit.)

b. For each integer n > 1, Kn has an Hamiltonian circuit if, and only if, n = 1 or n > 2. When
n = 1, the Hamiltonian circuit for Kn is the trivial circuit. For any integer n > 2, we can
construct a Hamiltonian circuit for K, as follows: Arrange the vertices of K, in any order,
and construct a circuit by starting at any vertex, visiting every other vertex in the order listed,
and returning to the starting vertex. This is possible because each pair of vertices is connected
by an edge. Hence Kn has a Hamiltonian circuit. K2 does not have a Hamiltonian circuit
because K2 does not have any circuits, other than trivial ones, that start and end at the same
vertex.

48. a. Let m and n be positive integers and let Km,n be a complete bipartite graph on (m, n)
vertices. Since Km n is connected, by Theorem 11.2.4 it has an Euler circuit if, and only if,
every vertex has even degree. But Ki,,n has m vertices of degree n and n vertices of degree
m. So Km,. has an Euler circuit if, and only if, both m and n are even.

b. Let m and n be positive integers, let Km,n be a complete bipartite graph on (m, n) vertices,
and suppose V, = {v1,v 2 , .. . , v,} and V2 = {w 1, w2 ,. . . , w} are the disjoint sets of vertices
such that each vertex in V1 is joined by an edge to each vertex in V2 and no vertex within V1 or
V2 is joined by an edge to any other vertex within the same set. If m = n > 2, then Km,, has
the following Hamiltonian circuit: vlwlv 2w2 ... VmWmV1. If K,,n has a Hamiltonian circuit,
then m = n because the vertices in any Hamiltonian circuit must alternate between V, and
V2 (since no edges connect vertices within either set) and because no vertex, except the first
and last, appears twice in a Hamiltonian circuit. If m = n = 1, then Km.n does not have a
Hamiltonian circuit because K 1,1 contains just one edge joining two vertices. Therefore, Kmn
has a Hamiltonian circuit if, and only if, m = n > 2.

49. Proposition: If n is an integer with n > 2, then a simple disconnected graph with n vertices
has a maximum of (n- 1)(n -2)/2 edges.

Proof: Let n be an integer with n > 2, and let G be a simple disconnected graph with n
vertices and a maximum number of edges. Then G consists of just two connected components
because if G had more than two components, an edge could be added between two vertices
in two separate components, giving a graph that would still be disconnected but would have
more edges than G. Suppose one connected component contains k vertices (1 < k < n - 1).
Then the other connected component contains n -k vertices. By exercise 34 of Section 11.1,
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the maximum number of edges in the two components are k(k -1)/2 and (n - k)(n - k -1)/2
respectively. Therefore, the total maximum number of edges is k(k-1)/2+(n-k)(n-k-1)/2.
We may complete the proof in several ways.

Version 1: Observe that

k(k -1) +(n-k)(n- k -1) k2 - k + n2 - nk n-nk + k2 + k kk2 r 2 
_n

22 22

We wish to find an integer k, with 1 < k < n - 1, that maximizes k2 - nk + 2 Let f be
2

the function defined by specifying that f (x) = x- nx + - on the interval 1 < x < n -1.
2 _

We may use either calculus or the technique of completing the square to find k.

Version la (using calculus): Because f'(x) = 2x - n, (1) f'(x) > 0 ,# 2x - n > 0 X x > n/2,
(2) f'(x) = 0 < 2x -n = 0 X x = n/2, and (3) f'(x) < 0 X 2x-n < 0 A> x < n/2.
Therefore, f is decreasing on x < n/2, attains a minimum at x = n/2, and is increasing for
x > n/2 and decreasing for x < n/2. It follows that f achieves its maximum values at the
endpoints of the interval: x = 1 and x = n -1. These both correspond to the situation in
which one component of G has one vertex and no edges and the other component is a complete
graph on n -1 vertices. Consequently, the total number of edges for the graph is the same as
the total number of edges of a complete graph on n -1 vertices, namely (n- 1)(n -2)/2 (by
exercise 33b of Section 11.1).

Version lb (using completing the square): Note that f(x) = 2- nx + n2-n = (X _ n)2

n + fl4 = (X - 2 4+ (n42) for all real x . It follows that the graph of f is a parabola that
opens out upward with minimum value at x = n/2. Thus, as above, f achieves its maximum
values at the endpoints of the interval: x = 1 and x = n - 1, and, therefore, the total number
of edges for the graph is (n - 1)(n- 2)/2.

Version 2 (an alternative way to complete the proof that does not use calculus): In this version,
we show that the total number of edges, which we know to be k(k - 1)/2 + (n -k)(n- k -1)/2,

(na 1)(n -2)
is less than or equal to . Observe that

2
k(k 1) + (n - k)(n- k -1) < (n- 1)(n -2) at k2 - k+n 2  2nk+k 2 -n+k < n2 -3n+2

2 2 2
¢>2k 2 -2< -2n+2nk. k2  1< -n+nk .(k-1)(k+1)<n(k -1).

Call the final inequality (*). When k = 1, inequality (*) is true because both sides are 0.
When k > 1, we may divide both sides of (*) by k -1, which is positive, to deduce that

(k- 1)(k + 1) < n(k -1) k + 1 < n X k < n -1.

But this last inequality is true because k < n -1. So, because the original inequality is
equivalent to one that is known to be true, the original inequality must also be true.

50. Proof 1: Suppose a graph G is bipartite. We will show that every circuit in G has an even
number of edges. Let V1 and V2 be disjoint subsets of vertices such that vertices in V1 are
joined by edges to vertices in V2 but no edges join vertices within either VI or V2, and suppose
that v E V1. Let C be any circuit in G. Since no edges join vertices within either V1 or V2,

the only way that C can start from a vertex and return to the same vertex is for it to go back
and forth from V1 to V2. Thus adjacent edges of C can be divided into pairs, one leading from
V1 to V2 and the other leading back. It follows that the total number of edges in C is even.

Proof 2: Let G be a bipartite graph with disjoint subsets of vertices Vi and V2 such that
vertices in V1 are joined by edges to vertices in V2 but no edges join vertices within either V1
or V2, and suppose C is a circuit in G. In case C is a trivial circuit, C has an even number
of edges because 0 is even. In case C is a nontrivial circuit, C must have a vertex in one
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set of vertices, have an edge leading from that vertex to a vertex in the other set of vertices
(because G is simple and therefore has no loops). C must also have an edge going back to the
first set of vertices, and this edge cannot be the same as the first edge because G is simple
and therefore has no parallel edges. Thus C has at least 3 edges and may be displayed as
aoboalbla 2 ... bkak = ao, where aoaia 2 .... are vertices in VI and boblb 2 ,... are vertices in
V2. The edges of C may, therefore, be grouped in pairs as follows:

{aobo){boal} {albi){b1 ,a 2} {a 2,b 2){b 2,a 3} . .. {ak- 1,bk- 1){bk- 1,ak} {ak,bk){bk,ao}.

Hence the number of edges of C is clearly 2(k + 1), an even number

Section 11.3

1. b. By equating corresponding entries, we see that 2a = 4, b+c = 3, c-a = 1, and 2b -a 2.
Now2a=4•'a=2,c-a=c-2= 1•cc=3,andb+c=b+3=3•'b=0. Substituting
these solutions into the last equation to check for consistency gives 2b- a = 2 . - 2 = -2,
which agrees. Therefore, a = 2, b = 0, and c = 3.

2. b.

V1

V 2

V3

V4

3. b.

VI

1
0
1
0

V2

0

0
0
0o

V3

1

1
0
1

VI

V4

V4

01
o
01

Any labels may be applied to the edges because the adjacency matrix does not determine edge
labels.

4. b.

V1

V2

V3

V4

d.

al

a 2

bi

b2

b3

Vi

[ 0

0
0

- 0o

a,
0

a1
1
1

V2

0
1
1
2

a2

0
0
1
1

1

V3

0
1

1

0

bi

1
1
0
0
0

V4

01

2
01
01

b2

1
1
0
0

0

1
1
0
0
0
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5. b.

VI *V2
o3

Any labels may be applied to the edges because the adjacency matrix does not determine edge
labels.

6. b. The graph is not connected; the matrix shows that there are no edges joining the vertices
from the set {v 1 , v 2} to those in the set {v3,V 4}.

7. If, for all integers i > 1, all entries in the ith row and ith column of the adjacency matrix of
a graph are zero, then the graph has no loops.

8. b. 2

9. b.
0o 81

L-5 41
C.

[2 -3]
1 4 62

10. c. no product (A does not have the same number of columns as rows)

d. no product (B has two columns and C has three rows)

C.
- 2 -6
-5 3
-2 0

9.
[78 0
L7 27]

h. no product (C does not have the same number of columns as rows)

iJ

4 -2
31 -2

1 1 -1

11. The following is one example among many.

Let A- [= 1 ] and B [= I ]. Then AB
[0 0] [2 0] [°

13. The following is one example among many.

Let A [ [ ]and B [ 0 ] Then A B,

BA ] 0.

01OJ whereas BA

B#+O. and AB-

E121
12 4

[1
11 1i 7 0 whereas

14. Proof: Let I be the m x nt identity matrix and let A = (aij) be any m x n matrix. Then for
all ij = 1, 2, . .. , m, the ijth entry of IA is E' 1ASkakj = 6iiaij = aij because by definition
of I, 6ik = 0 for all k with i 5 k and 6ii = 1. But aij is the ijth entry of A. So IA = A.
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16. Proof: Let A = (aij), B = (bij), and C = (cij) be any m x k, k x r, and r x n matrices,
respectively. The numbers of rows and columns are such that AB, BC, (AB)C, and A(BC)
are all defined. Let AB = (dij) and BC = (eij). Then for all integers i and j with 1 < i < m
and 1 < j < n,

the ijth entry of (AB)C = E'=Idicpj

= p (q~ aiqbqp) Cpj

= zr= Ek=laiqbqpCpj by Theorem 4.1.1
p q1 bqcjb

= Zk=y b cbq =1 p=1aiqbqpCpj by a generalized commutative law

- q=lai (EP= bqpcpj) by Theorem 4.1.1

= Eq 1aiqeqj

= the ij th entry of A(BC).

Since all corresponding entries are equal, (AB)C = A(BC).

18. Proof (by mathematical induction): Let the property P(n) be the sentence "An is symmetric."

Show that the property is true for n = 1: For n = 1 the property is true because by
assumption A is a symmetric matrix.

Show that for all integers k > 1, if the property is true for n = k then it is true
for n = k + 1: Let k be an integer with k > 1, and suppose that Ak is symmetric. [This
is the inductive hypothesis.] We must show that Ak+1 is symmetric. Let Ak = (bij). Then
for all i,j = 1,2,... ,m, the ijth entry of Ak+1 = the ijth entry of AAk [by definition of
matrix power] = Eljairbr~j [by definition of matrix multiplicationj = E 2la.ibj, [because A is
symmetric by hypothesis and Ak is symmetric by inductive hypothesis] = El lbjrari [because
multiplication of real numbers is commutative] = the jith entry of AkA [by definition of matrix
multiplication] = the jith entry of AAk [by exercise 17] = the jith entry of Ak+1 [by definition
of matrix power]. Therefore, Ak+1 is symmetric [as was to be shown].

19. b. There are three walks of length two from v1 to v3 because the entry in row 1 column 3 (and
row 3 column 1) of A2 is 3. There are 15 walks of length three from v1 to v3 because the entry
in row 1 column 3 (and row 3 column 1) of A3 is 15.

c. The calculations are [2 1 0] [1 2-22+ 1 1+0*0=5. Inthissum

2 2 number of edges i number of edges 1 F number of walks of length 2
2 from v3 to v1  J [from v1 to V3  J [from V3 to V3 that go via v1 ]

1 [ number of edges 1 . number of edges 1 - [ number of walks of length 2 1
from V3 to v2  j from v2 to V3  J [from v3 to v3 that go via v2 j

O O-= [number of edges 1 F number of edges 1 - F number of walks of length 2
from V3 to V3  j [from V3 to V3  J from V3 to V3 that go via V3 j

Since any walk of length two from V3 to V3 must go via either v1, v2 , or V3 , 2 2 + 1 1 + 0 0 - 5
is the total number of walks of length two from V3 to V3 .

In the diagram below, the five walks of length two from V3 to V3 can be seen to be v3e1 vje1v3 ,
v3ejvje2v3 , v3 e2 v1 ejv3 , v3 e2v1e2v3 , and v3 e5v2 e5v3.
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e

V2

21. Proof (by mathematical induction): Let the property P(n) be the sentence "all the entries
along the main diagonal of Al are equal to each other and all the entries off the main diagonal
are also equal to each other."

Show that the property is true for n = 1: For n = 1 the property is true because A' = A
, which is the adjacency matrix for K3 , and all the entries along the main diagonal of A are 0
/because K3 has no loops] and all the entries off the main diagonal are 1 /because each pair of
vertices is connected by exactly one edge].

Show that for all integers m > 1, if the property is true for n = m then it is true
for n = m + 1: Let m be an integer with m > 1, and suppose that all the entries along the
main diagonal of Al are equal to each other and all the entries off the main diagonal are also
equal to each other. [This is the inductive hypothesis.] Then

bc c
Am [c b c for some integers b and c.

cc b

It follows that

1 1 b c cI 2c b+c b+c
Arn+l =AA` = 1 0 1 b = b + c 2c b-+ c

1 1 0 c b +c b+c 2c

As can be seen, all the entries of Am+' along the main diagonal are equal to each other and all

the entries off the main diagonal are equal to each other. So the property is true for n = m +1.

22. a.

Any labels may be applied to the edges because the adjacency matrix does not determine edge
labels. Regardless of edge labels, this graph is bipartite.

b. Proof:

(=>) Suppose that a graph G with n vertices is bipartite. Then its vertices can be partitioned
into two disjoint sets V1 and V2 so that no two vertices within V1 are connected to each other
by an edge and no two vertices within V2 are connected to each other by an edge. Label the
vertices in V1 as v1, v 2 ,..., Vk and label the vertices in V2 as vk+1 , Vk+2,..., vn. Then the
adjacency matrix of G relative to this vertex labeling is

I
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V1 V2 ... Vk Vk+1 ... Vn

V1

V 2

Vk

Vk+1

Vn

- 0 0 ... 0 a1,k~1 ... a,,

o 0 ... 0 a2,k+l ... a2,n

o o ... 0 ak,k+l ... ak,n

ak+l,l ak+1,2 ... ak+l,k 0 ... 0

- an., a.,2 ... an,k 0 ... 0 -

Let A be the k x (n - k) matrix whose ijth entry is aik+j for all i = 1, 2,..., k and j = 1,
2,..., n - k, and let B be the (n -k) x k matrix whose jith entry is ak+ji for all i = 1, 2,...,
k and j = 1, 2,..., n-k. For all i and j, the ijth entry of A = ai,k+j = the number of edges
from vi to Vk+j = the number of edges from Vk+j to vi = ak+j,i = the jith entry of B, and so
B = At and the adjacency matrix of G has the required form.

(.=) Suppose that for some labeling of the vertices of a graph G, its adjacency matrix has the
given form. Denote the labeling of the vertices of G that gives rise to this adjacency matrix
by vI,v 2 , . . . v,v. Let V, = {vl,v2, .. . ,vk} and V2 = {vk+l,vk+2 , ... ) ,vnI. For all i and j with
1 < ij < k, the ijth entry of the adjacency matrix is zero. This implies that there is no edge
that connects two vertices in V1. Similarly, for all i and j with k + 1 < ij < n, the ijth
entry in the adjacency matrix is zero, and so there is no edge that connects two vertices in V2 .
Therefore, G is bipartite.

23. a. Proof: Suppose G is a graph with n vertices, v and w are distinct vertices of G, and there is
a walk in G from v to w. If this walk has length k greater than or equal to n, then it contains
a repeated vertex, say u, because there are only n vertices in G and there are k + 1 vertices
in a walk of length k. Replace the section of the walk from u to u by the vertex u alone; the
result is still a walk from v to w but it has shorter length than the given walk [because a walk
consists of an alternating sequence of vertices and edges so that the section of a walk between
two vertices contains at least one edge]. If this walk has length greater than or equal to n, then
repeat the replacement process described above. Continue repeating the replacement process
until a walk from v to w with no more than n - 1 edges is found. This must happen eventually
because the total number of edges and vertices in the initial walk is finite and each repetition
of the process results in the removal of at least one edge.

b. Proof: Let G be a graph with n vertices (where n > 1 ) and let A be the adjacency matrix
of G relative to the vertex labeling v1, v2,. . ., vn.

(•=) Suppose G is connected. Let integers i and j with 1 < i < j < n be given. We will show
that the ijth entry in the matrix sum A + A2 + ... + An-1 is positive. Since G is connected,
there is a walk from vi to vj, and so by part (a), there is a walk of length at most n-1 from
vi to vj. Let the length of such a walk be k. Then the ijth entry of Ak, which equals the
number of walks of length k from vi to vj (by Theorem 11.3.2), is at least one. Now all entries
in all powers of A are nonnegative /because each equals the number of walks from one vertex
to another], and if one term of a sum of nonnegative numbers is positive then the entire sum
is positive. Hence the ijth entry in A + A2 +... + An-I /which is the sum of the ijth entries
in all powers of A from 1 to n -1] is positive.

(^=) Suppose every entry in A + A 2 +... + An-1 is positive. Let vi and vj be any two vertices
of G. We must show that there is a walk from vi to vj. For each k = 1, 2,..., n - 1, the ijth
entry of Ak equals the number of walks of length k from vi to vj (by Theorem 11.3.2) and is
therefore nonnegative. By supposition, when these nonnegative numbers are added together,
the sum is positive. Now the only way that a sum of real numbers can be positive is for at
least one of the numbers to be positive. Hence for some k, the ijth entry of Ak is positive. It
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346 Chapter 11: Graphs and Trees

follows that the number of walks of length k from vi to vj is positive, and so there is at least
one walk joining vi to vj.

Section 11.4

3. The graphs are isomorphic. One way to define to isomorphism is as follows.

h
g

4. The graphs are not isomorphic: G has a circuit of length 4, a circuit of length 5, and a vertex
of degree 4, whereas G' has none of these.

5. The graphs are not isomorphic: G has a vertex of degree five whereas G' does not.

7. The graphs are isomorphic. One way to define to isomorphism is as follows.

g

9. The graphs are isomorphic. One way to define to isomorphism is as follows.

g
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11. The graphs are not isomorphic: G' has a circuit of length six whereas G does not. Also G' is
connected whereas G is not.

13. The graphs are not isomorphic: G has a simple circuit of length five (abcfea) whereas G' does
not.

15. There is one such graph with 0 edges, one with 1 edge, and there are two with 2 edges, three
with 3 edges, two with 4 edges, one with 5 edges, and one with 6 edges. These eleven graphs
are shown below.

*

I*
0

Li

Li

17. There is one such graph with 0 edges, and there are two with 1 edge (one in which the edge
is a loop and one in which it is not), and six with 2 edges (two simple graphs, one with two
parallel edges, two in which one of the edges is a loop and the other is not a loop, and two in
which both edges are loops). These are shown below.

* S 0 0

* S S 0 *D 0-O

18. There are three such graphs in which all 3 edges are loops, five in which 2 edges are loops and
1 is not a loop, six in which 1 edge is a loop and 2 edges are not loops, and six in which none
of the 3 edges is a loop. These 20 graphs are shown below.

0 0 40 0 0 0

0 40 0 C�O 0
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S * * * *

K~2. 1 2Q)

S

0 0

20. Four (of many) such graphs are shown below.

22. Proof: Suppose G and G' are isomorphic graphs and G has m edges where m is a non-
negative integer. By definition of graph isomorphism, there is a one-to-one correspondence
h: E(G) -* E(G'). But E(G) is a finite set and two finite sets in one-to-one correspondence
have the same number of elements. Therefore, there are as many edges in E(G') as there are
in E(G), and so G and G' have the same number of edges.

24. Proof: Suppose G and G' are isomorphic graphs and suppose G has a simple circuit C
of length k, where k is a nonnegative integer. By definition of graph isomorphism, there
are one-to-one correspondences g: V(G) - V(G') and h: E(G) -* E(G') that preserve the
edge-endpoint functions in the sense that for all v in V(G) and e in E(G), v is an end-
point of e 4-> g(v) is an endpoint of h(e). Let C be vOeIv 1e2 ... ekvk(= vo), and let C' be
g(vo)h(ej)g(vj)h(e2 ) ... h(ek)g(vk)(= g(vo)). By the same reasoning as in the solution to ex-
ercise 23, C' is a circuit of length k in G'. Suppose C' is not a simple circuit. Then (' has a
repeated vertex, say g(vi) = g(vj) for some i,j = 0,1, 2,... ,k -1 with i :A j. But since g is a

l

�O
�O
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one-to-one correspondence this implies that vi = vj, which is impossible because C is a simple
circuit. Hence the supposition is false, C' is a simple circuit, and therefore G' has a simple
circuit of length k.

25. Proof: Suppose G and G' are isomorphic graphs and suppose G has m vertices of degree k, vi,
V2 ... I vm where m and k are nonnegative integers. By definition of graph isomorphism, there
are one-to-one correspondences g: V(G) -* V(G') and h: E(G) E(G') that preserve the
edge-endpoint functions in the sense that for all v in V(G) and e in E(G), v is an endpoint of
e X- g(v) is an endpoint of h(e). Consider the vertices g(vi), g(v 2), . . ., g(vm) in G'. Because g
is a one-to-one correspondence, these vertices are all distinct. And applying the same argument
as that used in Example 11.4.4 to each vertex g(vi) enables us to conclude that each has degree
k. Hence G' has at least m vertices of degree k. If G' had an additional vertex w of degree k,
then, by similar reasoning as in Example 11.4.4, g- l(w) would also have degree k and, because
g is a one-to-one correspondence, g- 1(w) 7$ vi for any i = 1,2, ... , m, which would contradict
the assumption that G has exactly m vertices of degree k. Thus G' does not have more than
m vertices of degree k, and so G' has exactly m vertices of degree k.

26. Proof: Suppose G and G' are isomorphic graphs and suppose G has m distinct simple circuits
of length k, where m and k are nonnegative integers. By definition of graph isomorphism,
there are one-to-one correspondences 9: V(G) -* V(G') and h: E(G) -4 E(G') that pre-
serve the edge-endpoint functions in the sense that for all v in V(G) and e in E(G), v is
an endpoint of e < g(v) is an endpoint of h(e). Define a function K from the set of all
simple circuits of length k in G to the set of all simple circuits of length k in G' as follows:
Given a simple circuit C in G of length k, denote C by XzcOXIC1 ... Xk-lck-lXO where 10,

x1 ,..., and Xk-1 are distinct vertices and co, c1 ,..., and Ck-1 are distinct edges. Define
K(C) = g(xo)h(co)g(xi)h(c1 ) ... 9(Xk-1)h(Ck-1)9(Xo)- [We will show that K is one-to-one.]
Suppose C1 = vOe 1 vle2 ... ekvo and C2 = wofiwif2 ... fkwo are simple circuits of length k in
G with K(C1 ) = K(C2 ). By definition of K, g(vo)h(eo)g(vi)h(e) ... g(vk-l)h(ek-l)g(vo) =

g(wo)h(fo)g(wi)h(fi) ... 9(wk-l)h(fk i)g(wo), and, by definition of sequence, this implies
that g(vi) = g(wi) and h(ei) = h(fi) for all i = 0,1, 2,. .. , k - 1. Since both g and h are
one-to-one, we have that vi = wi and ej = fi for all i = 0,1, 2, .. ., k -1, and, thus, C, = C2 .
Hence K is one-to-one. But because the graphs are finite, K is a function from one finite
set to another, and so, by Theorem 7.3.2, since K is also onto. Therefore K is a one-to-one
correspondence, and thus there are the same number of distinct simple circuits of length k in
G as there are in G'. So since G has m simple circuits of length k, G' also has m simple circuits
of length k.

27. Proof: Suppose G and G' are isomorphic graphs and suppose G is connected. By def-
inition of graph isomorphism, there are one-to-one correspondences g: V(G) -* V(G') and
h: E(G) -- E(G') that preserve the edge-endpoint functions in the sense that for all v in
V(G) and e in E(G), v is an endpoint of e 4 g(v) is an endpoint of h(e). Suppose w and x are
any two vertices of G'. Then u = g- 1 (w) and v = g- 1 (x) are distinct vertices in G (because g
is a one-to-one correspondence). Since G is connected, there is a walk in G connecting u and
v. Say this walk is ueivle2v2 .. . e1,v. Because g and h preserve the edge-endpoint functions,
w = g(u)h(e1)g(vi)h(e2 )g(v2 ) ... h(e.)g(v) = x is a walk in G' connecting w and x.

28. Proof: Suppose G and G' are isomorphic graphs and suppose G has an Euler circuit C. Let
m be the number of edges in G. Then C has length m because it includes every edge of G.
By the same argument as in the answer to exercise 23, G' has a corresponding circuit C' of
length m, and by exercise 22, G' also has m edges. Since all the edges of a circuit are distinct,
C' includes all of the m edges of G'. Hence C' is an Euler circuit for G'.

29. Proof: Suppose G and G' are isomorphic graphs and suppose G has an Hamiltonian circuit
C. Let the number of vertices of G be n. Since C is a Hamiltonian circuit, it is a simple
circuit that has length n (because it includes every vertex of G exactly once, except for the
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first and last which are repeated). By the same argument as in the answer to exercise 23, G'
has a corresponding circuit C' of length n, and by exercise 21, G' also has n vertices. Now all
the edges and vertices of a simple circuit are distinct except for the repetition of the first and
last vertex, the vertices of C' are by construction the images under g of the vertices of C, and
since g is a one-to-one correspondence, g sends the n distinct vertices of C onto the n distinct
vertices of G'. Hence C' is a simple circuit of length n in G', and so C' includes all of the n
vertices of G'. Therefore, C' is a Hamiltonian circuit for G'.

30. Suppose that G and G' are isomorphic via one-to-one correspondences g: V(G) -* V(G') and
h: E(G) -* E(G'), where g and h preserve the edge-endpoint functions. Now w6 has degree
one in G', and so by the argument given in Example 11.4.4, w6 must correspond to one of the
vertices of degree one in G: either g(vI) = W 6 or 9(V6) = W6. Similarly, since W 5 has degree
three in G', W 5 must correspond to one of the vertices of degree three in G: either g(v3 ) = W5

or g(V4 ) = W5. Because g and h preserve the edge-endpoint functions, edge f6 with endpoints
W 5 and w6 must correspond to an edge in G with endpoints v1 and V3, or vi and V4, or v6 and
V3 , or v6 and V4 . But this contradicts the fact that none of these pairs of vertices are connected
by edges in G. Hence the supposition is false, and G and G' are not isomorphic.

Section 11.5

1. b. Math 110

2. b.

<sentence>

<noun phrase> <verb phrase>

<article> <noun> <verb> <noun phrase>

the man caught <article> <adjective> <noun>

the young ball

3. By Theorem 11.5.2, a tree with n vertices (where n > 1) has n -1 edges, and so by Theorem
11.1.1, its total degree is twice the number of edges, or 2(n -1) 2n - 2.

4. b.

H H H H

H C C C C C H

H H H H H

H H H H

H C C C C H

H H
H C H

H

. .
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H

H H-C-H H

H C C C H

H H-C H H

H

c. Proof: Let G be the graph of a hydrocarbon molecule with the maximum number of atoms
for the number of its carbon atoms, and suppose G has k carbon atoms and m hydrogen atoms.
By Example 11.5.4, G is a tree with k + m vertices. By exercise 3, the total degree of this tree
is 2(k + m)-2 = 2k + 2m-2 = 2(k + m-1).

d. Proof: Let G be the graph of a hydrocarbon molecule with the maximum number of atoms
for the number of its carbon atoms, and suppose G has k carbon atoms and m hydrogen atoms.
Each carbon atom is bonded to four other atoms because otherwise an additional hydrogen
atom could be bonded to it, which would contradict the assumption that the number of
hydrogen atoms is maximal for the given number of carbon atoms. Hence each of the k carbon
atom vertices has degree four in the graph. Also each hydrogen atom is bonded to exactly
one carbon atom because otherwise the molecule would not be connected. Hence each of the
m hydrogen atom vertices has degree one in the graph. It follows that the total degree of the
graph is 4 k+ 1 m = 4k+m.

e. Equating the results of parts (c) and (d) above gives 2k + 2m - 2 = 4k + m. Solving for
m gives m = 2k + 2. In other words, a hydrocarbon molecule with k carbon atoms and a
maximal number of hydrogen atoms has 2k + 2 hydrogen atoms.

5. Proof: Let T be a particular but arbitrarily chosen tree that has more than one vertex, and
consider the following algorithm. For justification of the various steps, see the proof of Lemma
11.5.1.

Step 1: Pick a vertex vo of T and let eo be an edge incident on vo.

[The starting vertex and edge are given the names vo and eo that will not be changed during
execution of the algorithm.]

Step 2: if deg(vo) > 1

then choose el to be an edge incident on vo such that e1 $ eo

else let v1 := vo and let el := co

[The name vl is given to the first vertex of degree 1 that is found. The second vertex of
degree 1 will be named V2. The name el is given to the edge adjacent to the starting vertex
along which the search for a vertex of degree 1 begins.]

Step 3: Let v' be the vertex at the other end of el from vo, and let e := el and v := v'.

[The values of v and e may change many times during the search outward from vo toward a
vertex of degree 1.]

Step 4: while (deg(v) > 1)

Choose e' to be an edge incident on v such that e' 7 e.

Let v' be the vertex at the other end of e' from v.

Lete:= e'andv:=v'.

end while

Step 5: if v1 does not have a value
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352 Chapter 11: Graphs and Trees

then let v1 := v and e1 := eo, and go to step 3

[If deg(vo) 7$ 1, a vertex v1 of degree 1 was first sought by moving away from vo along an
edge other than eo. Now a return is made to vo, and the search for a second vertex of degree
1 is made by moving away from vo starting along eo.]

else let v2 := v

[If deg(vo) = 1, Step 5 is executed just once; otherwise it is executed twice, once to give v1
a value and again to give V2 a value.]

After execution of this algorithm, v1 and v2 are distinct vertices of degree 1.

6. Define an infinite graph G as follows: V(G) = {vi I i E Z} = {.. , v-2, v- 1 ,v0 ,v, V2 .. .

E(G) = {ei I i E Z} = {... ,e- 2 ,e- 1 ,e,ele 2 ,... .}, and the edge-endpoint function is defined
by the rule f(ei) = {vi- 1, vi} for all i E Z. Then G is circuit-free, but each vertex has degree
two. G is illustrated below.

V-3 Y2

e1

V-1 Vo V,
V ...3

e,

7. b. terminal vertices: V 1, V2 , V5 , V6 , V5 internal vertices: V3 , V4, V7

15. One such graph is shown below.

V2

VI V3

V
5

V4

V

V6

16. Any tree with twelve vertices has eleven edges, not fifteen. Thus there is no such graph.

17. One such graph is shown below.

V5

V, V3

V4

18. Any tree with five vertices has four edges. By Theorem 11.1.1, the total degree of such a graph
is eight, not ten. Hence there is no such graph.

19. By Theorem 11.5.4, a connected graph with ten vertices and nine edges is a tree. By definition
of tree, a tree cannot have a nontrivial circuit. Hence there is no such graph.

- - -
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20. One such graph is shown below.

V2

VI

V6

V3

V4

V5v5

21. Any tree with ten vertices has nine edges. By Theorem 11.1.1, the total degree of such a tree
is 18, not 24. Hence there is no such graph.

23. Yes, because a connected graph with no nontrivial circuits is a tree, and a tree with nine
vertices has eight edges, not twelve.

24. Yes. Given any two vertices u and w of G', then u and w are vertices of G neither equal to v.
Since G is connected, there is a walk in G from u to w, and so by Lemma 11.2.1, there is a
path in G from u to w. This path does not include edge e or vertex v because a path does not
have a repeated edge, and e is the unique edge incident on v. [If a path from u to w leads into
v, then it must do so via e. But then it cannot emerge from v to continue on to w because no
edge other than e is incident on v.] Thus this path is a path in G'. It follows that any two
vertices of G' are connected by a walk in G', and so G' is connected.

26. No. Suppose there were a connected graph with n vertices and n - 2 or fewer edges. Either
the graph itself would be a tree or edges could be eliminated from its circuits to obtain a tree.
In either case, there would be a tree with n vertices and n -2 or fewer edges. This would
contradict the result of Theorem 11.5.2, which says that a tree with n vertices has n - 1 edges.
So there is no connected graph with n vertices and n - 2 or fewer edges.

28. Yes. Suppose G is a circuit-free graph with n vertices and at least n- 1 edges. Let G1, G2 ,
Gk be the connected components of G where k > 1. Each Gi is a tree because each is connected
and circuit-free. For each i = 1, 2, ... , k, let ni be the number of vertices in Gi. Since G has n
vertices in all, n 1 +n 2 +.. .+nk = n. By Theorem 11.5.2, Gi has ni -1 edges for all i = 1, 2, ....
k. So the number of edges in G is (ni-1)+(n2 -1)+. .. +(nk- 1) = (n, +n 2 + ...+nk)-k = n-k.
But by hypothesis, G has at least n - 1 edges. So n - k > n-1. It follows that k < 1, and so
G has exactly one connected component. Therefore, G is connected.

29. Proof: Let T be a nonempty, nontrivial tree and let S be the set of all paths from one vertex to
another of T. Among all the paths in S, choose a path P with the most edges. [This is possible
because since the number of vertices and edges of a graph is finite, there are only finitely many
paths in T.] The initial and final vertices of P both have degree one. For suppose that one of
these vertices, say v, does not have degree one. Let e be the edge of the path that leads into
v. Since deg(v) > 1, there is an edge e' of T with e 54 e'. Add e' and the vertex at the other
end of e' from v to the path. The result is a path that is longer than P (the path of maximal
length), which is a contradiction. Hence the supposition is false, and so both the initial and
final vertices of P have degree one.

30. Such a tree must have 4 edges and, therefore, a total degree of 8. Since at least two vertices
have degree 1 and no vertex has degree greater than 4, the possible degrees of the five vertices
are as follows: 1,1,1,1,4; 1,1,1,2,3; and 1,1,2,2,2. The corresponding trees are shown below.
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354 Chapter 11: Graphs and Trees

p p p p p

31. a. Proof: Suppose G and G' are isomorphic graphs and G has a vertex v of degree i that is
adjacent to a vertex w of degree j (where i and j are positive integers). Since G and G' are
isomorphic, there are one-to-one correspondences g: V(G) -* V(G') and h: E(G) -* E(G')
that preserve the edge-endpoint functions in the sense that for all vertices v and edges e in
G, e is an endpoint of v <z> h(e) is an endpoint of g(V'). It follows that since v and w are
adjacent vertices of G, g(v) and g(w) are adjacent vertices of G'. Let el, e2 ,.. ., ei be the i
edges incident on v and let fl, f2,..., fj be the j edges incident on w. Then since g and h
preserve the edge-endpoint functions and h is one-to-one, h(el), h(e2),.. ., h(ei) are i distinct
edges incident on g(v), and h(fl), h(f 2 ),..., h(fj) are j distinct edges incident on g(w). There
are no more than i edges incident on g(w) because any such edge would have to be the image
under h of an edge incident on v [because h is onto]. Similarly, there are no more than j edges
incident on g(w). Hence g(v) has degree i and g(w) has degree j, and so G' has a vertex of
degree i that is adjacent to a vertex of degree j.

b. The six nonisomorphic trees with six vertices are shown below. Note that a tree with six
vertices has five edges and hence a total degree of ten. Also any such tree has at least two
vertices of degree one, and it has no vertex of degree greater than five. Thus the possible
degrees of the vertices of such a tree are the following: 2, 2, 2, 2, 1, 1; 3, 2, 2, 1, 1, 1; 3, 3, 1,
1, 1, 1; 4, 2, 1, 1, 1, 1; or 5, 1, 1, 1, 1, 1. Furthermore, by part (a) the two trees whose vertices
have degrees 1, 1, 1, 2, 2, and 3 are not isomorphic: in one, the vertex of degree 3 is adjacent
to vertices of degrees 1, 1, and 2, whereas in the other, the vertex of degree 3 is adjacent to
vertices of degrees 2, 2, and 1.

33. a. 3 b. 0 c. 5 d. V1 4 , V15 , V16  e. v1  f. v2 (only) 9. v17, v18, v19

34. b.

43. There is no tree with the given properties because any full binary tree with eight internal
vertices has nine terminal vertices, not seven.

44. One such tree is the following.

WX

0 0 0 0

. ___4W

- -

0 0 -6

V

^ . . . .
^ * * * -
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45. A full binary tree with k internal vertices has 2k + 1 vertices in all. If 2k + 1 = 7, then k = 3.
Thus such a tree would have three internal and four terminal vertices. Two such trees are
shown below.

46. There is no tree with the given properties because a full binary tree with five internal vertices
has 2 5 + 1 or eleven vertices in all, not nine.

47. A full binary tree with four internal vertices has five terminal vertices. One such tree is shown
below.

48. There is no tree with the given properties because a binary tree of height four has at most
24 = 16 terminal vertices.

49. There is no tree with the given properties because a full binary tree has 2k + 1 vertices, where
k is the number of internal vertices, and 16 zh 2k + 1 for any integer k.

50. A full binary tree with seven terminal vertices has six internal vertices. One such tree of height
three is shown below.
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356 Chapter 11: Graphs and Trees

51. b. height > log2 40- 5.322. Since the height of a tree is an integer, the height must be at
least 6.

c. height > log2 60 - 5.907. Since the height of a tree is an integer, the height must be at
least 6.

Section 11.6

2.

V, VI

V3 V2

3 2

V3 V2

V VI

V3  . V2

vo v

V3 V2

V3 V2

Vo .4

V3 9--V 2

V V

V3  V2

V3 V2

4. One of many spanning trees is the following.

r

U

6. Minimum spanning tree:

VO V/

V7

Order of adding the edges: {V3 ,V 4}, {Vo,V5}, {v 1 ,V3 }, {V5 ,v 6 }, {V4 ,V 5}, {V6 ,vV7 }, {V2 , 7 }

8. Minimum spanning tree: same as in exercise 6.

Order of adding the edges: {Vo,V5}, {v5,V 6}, {V5,V 4 }, {V4,V3}, {V3 ,Vl}, {V6 ,v 7}, {V7 ,V2}

10. There are four minimum spanning trees:

t 7 U 2 V

3 1 x 5

z 2 X w

T 7 U 2 -

, 2 * s
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When Kruskal's algorithm is used, edges are added in any of the orders obtained by following
one of the eight paths from left to right across the diagram below.

[y,xi [u, vi /vgwi [t,ui

/uy]< Vtz} :

[u, vi fy, xI / tx, WI [zY

When Prim's algorithm is used, edges are added in any of the orders obtained
one of the eight paths from left to right across the diagram below.

yi [u, vi

(y, u]/

u] / fy, xI

ly, xI [v, wI

/u, vi [x, wI

nme

Denver

Amarillo
Albuquerque

12. Proof: Suppose T1 and T2 are spanning trees for a graph G with n vertices. By definition of
spanning tree, both T1 and T2 contain all n vertices of G, and so by Theorem 11.5.2, both T1
and T2 have n -1 edges.

13. a. If there were two distinct paths from one vertex of a tree to another, they (or pieces of them)
could be patched together to obtain a nontrivial circuit. But a tree cannot have a nontrivial
circuit.

14. Proof: Suppose that G is a graph with n vertices and with spanning tree T, and suppose e is
an edge of G that is not in T.

(1) Let H be the graph obtained by adding e to T. Then H has n vertices and n edges and
is connected, and so H contains a nontrivial circuit [because if H were both connected and
circuit-free, then H would be a tree and would therefore have n -1 edges which it does not].

(2) Suppose H contains two distinct sets of edges that form nontrivial circuits Cl and C2.
Then one of the circuits, say Cl, would contain an edge, say e1 , not contained in C2. Remove
e1 from H to obtain a graph H'. By Lemma 11.5.3, H' is connected. Since e1 is not in C2,
and e1 was the only edge removed from H to obtain H', C2 is a circuit in H'. Remove an
edge from C2 to obtain a graph H". Again, by Lemma 11.5.3, H" is connected. Then H" is a
connected graph with n - 2 edges that contains all n vertices of G. By Proposition 11.6.1 (or
by exercise 26 of Section 11.5), this is impossible. Hence the supposition is false, and so the
graph obtained by adding e to T contains at most one circuit.

At.

by following

11.

Salt La

1.2

Phoenix

A.
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358 Chapter 11: Graphs and Trees

By (1) and (2) above, T contains one and only one nontrivial circuit.

16. b. Counterexample: Let G be the following simple graph.

vI -- V2

V4
4

Then G has the spanning trees shown below.

V] V2VI

V4 V4 V3

These trees have no edge in common.

17. Proof:

(=>) Let G be a graph and e an edge that is contained in every spanning tree for G. Suppose
that removal of e does not disconnect G. Let G' be the graph obtained by removing e from
G. Then G' is connected, and so it has a spanning tree T' (by Proposition 11.6.1). But T'
contains every vertex of G (because no vertices were removed from G to create G'), and every
edge in T' is also an edge in G (by construction). Hence T' is a spanning tree for G that does
not contain e. This contradicts the fact that e is contained in every spanning tree for G. Hence
the supposition is false, and so removal of e disconnects G .

(.t=) Let G be a graph and e an edge of G such that removal of e disconnects G. Suppose there
is a spanning tree T of G that does not contain e. Then T is a connected subgraph of G that
does not contain e. Hence removal of e plus (possibly) other edges from G does not disconnect
G, which implies that removal of e alone from G does not disconnect G, a contradiction. Hence
the supposition is false, and so e is contained in every spanning tree T of G.

18. Proof: Since T2 is obtained from T1 by removing e' and adding e, w(T2 ) = w(Ti) -w(e')+w(e).
Now according to the proof of Theorem 11.6.3, w(e') > w(e). Hence w(e') -w(e) > 0. and so

w(T2) = w(Ti) -(w(e') -w(e)) < w(Ti).

20. Proof: Let G be a connected, weighted graph, and let e be an edge of G (not a loop) that
has smaller weight than any other edge of G. Suppose there is a minimum spanning tree T
that does not contain e. Since T is a spanning tree, T contains the endpoints v and w of e.
By exercise 13, there is a unique path in T from v to w. Let e' be any edge along this path.
By exercise 19, w(e') < w(e). This contradicts the fact that w(e) has smaller weight than any
other edge of G. Hence the supposition is false: every minimum spanning tree contains e.

22. Proof: Suppose not. Suppose G is a connected, weighted graph, e is an edge of G that (1)
has larger weight than any other edge of G and (2) is in a circuit of G, and suppose that there
is a minimum spanning tree T for G that contains e. Construct another tree T' as follows:
Let v and w be the endpoints of e. Because e is part of a circuit in G, there is a path in G
that joins v and w. Also there is an edge e' of this path such that e' is not an edge of T (for
otherwise T would contain a circuit). Form T' by removing e from T and adding e'. Then
T' contains all n vertices of G, has n -1 edges, and is connected [because T is connected and
contains all the vertices of G, and so some edges of T must be incident on the endpoints of e'].
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By Theorem 11.5.4, therefore, T' is a tree. But T' also contains all the vertices of G [because
T' is formed from T by adding and deleting only edges], and so T' is a spanning tree for G.
Now w(T') = w(T) -w(e) + w(e') = w(T) -(w(e) -w(e')) < w(T) because w(e) > w(e').
Thus T' is a spanning tree of smaller weight than a minimum spanning tree for G, which is a
contradiction. Hence the supposition is false, and the given statement is true.

24. The output will be a minimum spanning tree for the connected component of the graph that
contains the starting vertex input to Prim's algorithm.

25. Proof: Suppose that G is a connected, weighted graph with n vertices and that T is the output
graph produced when G is input to Algorithm 11.6.3. Clearly T is a subgraph of G and T is
connected because no edge is removed from T as T is being constructed if its removal would
disconnect T. Also T is circuit-free because if T had a circuit then the circuit would contain
edges e1 , e2 , ... , ek of maximal weight. At some point during execution of the algorithm, each
of these edges would be examined (since all edges are examined eventually). Let ej be the first
such edge to be examined. When examined, ej must be removed because deletion of an edge
from a circuit does not disconnect a graph and at the time ej is examined no other edge of the
circuit would have been removed. But this contradicts the supposition that ej was one of the
edges in the output graph T. Thus T is circuit-free. Furthermore, T contains every vertex of
G since only edges, not vertices, are removed from G in the construction of T. Hence T is a
spanning tree for G.

Next we show that T has minimum weight. Let T1 be any minimum spanning tree for G.
If T = T1 , we are done. If T #h T1, then there is an edge e of T that is not in T1 . Now
adding e to T1 produces a graph with a unique set of edges that forms a circuit C (by exercise
14). Let e' be an edge of C that is not in T, and let T2 be the graph obtained from T1
by removing e' and adding e. Note that T2 has n - 1 edges and n vertices and that T2 is
connected. Consequently, T2 is a spanning tree for G. Now w(e') < w(e) because at the stage
in Algorithm 11.6.3 when e' was deleted from T, e was also available to be deleted from T
[since it was in T, and at that stage its deletion would not have disconnected T because e' was
also in T and so were all the other edges in C which stayed in T throughout execution of the
algorithm], and e would have been deleted from T if its weight had been greater than that of
e'. Therefore, w(T2 ) = w(Ti) -w(e') + w(e) = w(Ti) -(w(e') -w(e)) < w(Ti). Since T1 is
a minimum spanning tree and T2 is a spanning tree with weight less than or equal to T1, T2
is also a minimum spanning tree for G. In addition, T2 has one more edge in common with
T than does T1 . [The remainder of the proof is identical to the last few lines of the proofs of
Theorems 11.6.2 and 11.6.3.] If T now equals T2, then we are done. If not, then, as above, we
can find another minimum spanning tree T3 having one more edge in common with T than T2.
Continuing in this way produces a sequence of minimum spanning trees T1 , T2 , T3 ,... each of
which has one more edge in common with T than the preceding tree. Since T has only a finite
number of edges, this sequence if finite, and so for some k, Tk is identical to T. This shows
that T is itself a minimum spanning tree.
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This chapter opens with some historical background about the connections between computers and
formal languages. Section 12.1 focuses on regular expressions and emphasizes their utility for pattern
matching, whether for compilers or for general text processing.

Section 12.2 introduces the concept of finite-state automaton. In one sense, it is a natural sequel
to the discussions of digital logic circuits in Section 1.4 and Boolean functions in Section 7.1, with
the next-state function of an automaton governing the operation of sequential circuit in much the
same way that a Boolean function governs the operation of a combinatorial circuit. Students seem
genuinely to enjoy working with automata. When you present the section in class, it is helpful to
nice lead in to the concept of the language accepted by an automaton by including the following
kind of example: for a particular finite-state automaton under discussion, give a list of strings
and ask students to determine whether or not these strings are accepted by the automaton. The
section also gives students significant practice in finding a finite-state automaton that corresponds
to a regular expression and shows how to write a program to implement a finite-state automaton.
Both abilities are useful for computer programming. The section ends with a statement and partial
proof of Kleene's theorem, which describes the exact nature of the relationship between finite-state
automata and regular languages.

The equivalence and simplification of finite-state automata, discussed in Section 12.3, provides
an additional application for the concept of equivalence relation, introduced in Section 10.3. Because
equivalence of digital logic circuits is defined in Section 10.3, when covering Section 12.3, you can
draw parallels between the simplification of digital logic circuits discussed in Section 1.4 and the
simplification of finite-state automata developed in this section. Both kinds of simplification have
obvious practical use.

Section 12.1

2. a. L3 =E, Y, y, yy, yY, yyy, x, xy, xyY, xx, XXy, XXX}

b. 4 - {XXXX, XXXy, XXYX, XXYY, XYxx, Xyxy, XyyX, Xyyy, yxxx, yxXY, yxyx, yxyy,

yyxXyyXyyyyxyyyy}

c. A is the set of all strings of length 1 or 2, B is the set of all strings of length 3 or 4 and
A U B is the set of all non-empty strings of length < 4.

3. L {11*,11/,12*,12/,21*,21/,22*,22/}

11* = 1*1 = 1, 11/ 1/1 = 1, 12* = 1*2 = 2, 12/ = 1/2 = 0.5, 21* = 2*I = 2,
21/ = 2/1 = 2, 22* = 22 = 4, 22/ = 2/2 = 1

5. L1 L2 is the set of all strings of a's, b's and c's with an equal number of a's and b's and with
all the c's at the end of the string. Note that e E L1 L2 .

L, U L2 is the set of all strings of a's and b's that consist of only c's or that have no c's but
have an equal number of a's and b's. Note that e E L1 U L2.

(LI U L2)* is the set of all strings of a's and b's and c's such that every substring containing
no c's and having maximal length has an equal number of a's and b's.

6. L1 L2 is the set of strings of O's and l's that both start and end with a 0.

L1 U L2 is the set of strings of O's and l's that start with a 0 or end with a 0 (or both).

(L1 U L2 )* is the set of strings of O's and l's that start with a 0 or end with a 0 (or both) or
that contain 00.

8. (((O*)I) I (0((O*)I)*))
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9. (((x I (y(z*)))*)((yx) I (((yz)*)z)))

11. 11* I 10* | 1*1 (Note that by definition of the I symbol, this expression can be written more
simply as 1*1 I 10*. If the + notation is used, it can be further simplified to 1+ I 10*.)

12. xy(x*y)* (yX y)y*

14. L(0 I e) = L(0) U L(e) = 0 U {e} = {e}
15. L((a I b)c) = L(a I b)L(c) = (L(a) U L(b))L(c) = ({a} U {b}){c} = {a, b}){c} = {ac, bc}

17. e, b, bb, bab, ab, ba, a, . . .

18. x, yxxy, xx, xyxxy, xyxxyyxxy, ....

20. The language consists of the set of all strings of 0's and 1's that start with a 1 and end with
00 (and contain any number of 0's and I's in between).

21. The language consists of the set of all strings of x's and y's that start with xy or yy followed
by any string of x's and y's.

23. The string zyyxz does not belong to the language defined by (x*y I zy*)* because any x in
the language must be followed by possibly more x's and then a y (which could be followed by
other symbols). On the other hand zyyzy belongs to the language because both zyy and zy
belong to zy* and the language is closed under concatenation.

24. The string 120 does not belong to the language defined by (01*2)* because it does not start
with 0. However, 01202 does belong to the language because 012 and 02 are both defined by
01*2 and the language is closed under concatenation.

26. (a b)*b(a I b)(a I b)

27. x |* I y*(xyy*)(E I x)

29. These languages are not the same because rsrs is in the language defined by (rs)*, but it is
not in the language r*s*.

30. Note that for any regular expression x, (x*)* defines the set of all strings obtained by concate-
nating a finite number of a finite number of concatenations of copies of x. But any such string
can equally well be obtained simply by concatenating a finite number of copies of x, and thus
(x*)* = x*. Hence the given languages are the same: L((rs)*) = L(((rs)*)*).

32. [A -Z]*BIO[A - Z]*)I([A - Z]*INFO[A - Z]*

33. [a -z]{3}[a-z]*ly

35. ['aeiou]*(ajejijoju)[-aeiou]*

36. [^AEIOU][A -Z]*[AIEIIIOIU]{2}[A - Z]*

38. (8001888) - [0 - 9]{3} - 2[0 - 9]{2}2

40. The following string is broken up into four sections corresponding to (1) months with 30 days
(those numbered 4, 6, 9, and 11), (2) months with 31 days (those numbered 1,3, 5, 7, 8, 10, and
12), (3) months with 29 days (month 2, in leap years), and (4) months with 28 days (month
2, in non-leap years).

(([4 6 9 11] 1 0[4 6 9])[- /]([1 - 30] | 0[1 - 9])[- /][0 - 9]{2})

I (([1 3 5 7 8 10 12] I 0[1 3 5 7 8])[- /]([1 - 31] l 0[1 - 9])[- /][0 - 9]{2})

I (2 1 02)[- /]([i - 29] |0[1 - 9])[- /]([0 2 4 6 8][0 4 8] | [1 3 5 7 9][2 6]))

1(2102)[-/]([ -28] IO[ -9])[-/]([02468][1235679]l[13579][01345789]))
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362 Solutions for Exercises: Regular Expressions and Finite-State Automata

41. (00 I 11 I (01 I 10)(00 I 11)*(01 I 10))*

Section 12.2

1. b. $1 or more deposited. c. 75 ¢ deposited

3. a. Uo, U1 , U 2 , 1113 b. a,b c. UO d. U3

e.
input
a b

U0  U2  U1

state U1 U2 U3

(© U3  U3  U3

4. a. 80, S1, 82 b. 0, 1 c. so d. 82

e.

input
0 1

-o SO 81 so

state 81 82 s0
© 82 82 so

6. a. SO, 81, 82, 83 b. 0, 1 c. so d. so

e.
input

I0 1
D so so Si

state 81 si S2
S2 82 S3

S3 S3 SO

9. a. SO, SI, 82, S3 b. 0, 1

e.
0

C. SO d. s

0

10. b. N(s2 , 0) = 83, N(si, 0) = S3 d. N*(s2 , 11010) = 83, N*(so, 01000) = 83

11. b. N(so,0) = s1, N(s4 , 1) = S3 d. N*(so, 1111) = 83, N*(s2 ,00111) = S2

13. a. (i) U3  (ii) U2  (iii) U2  (iv) U3

b. bb and bbaaaabaa

c. The language accepted by this automaton is the set of all strings of a's and b's that begin
bb.

d. bb(alb)*

0 0
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16. a. The language accepted by this automaton is the set of all strings of O's and l's in which
the number of l's is divisible by 4.

b. (0*10*10M0*10*)*

19. a. The language accepted by this automaton is the set of all strings in which the number of
l's has the form 4k + 1 for some integer k.

b. (O I 101* 10*1 )*10*

21. a.

b. (alb)*(aalbb)

22. a.

b. (01110)(011)*

24. a.

0

b. 101(011)*
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27. a.

b. 00*10* (or using the + notation: 0+10*)

30.

32.

34.

nlx,y-so-vi

3Sx~

D

HI

L
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35.

I I;,
so

37.

38.
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40.

41.

[Aly]

43.

elouj

-No

[A.
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44.

46. Let d represent the character class [O -9]. Also any input symbol that is not labeled as an
explicit transition from one state to another should be understood to lead to an error state.
For simplicity, this error state is not shown.

d d d

HL S S

SUJ3-~-12 S~( %~ S9

47. To simplify the appearance of this regular expression, we let d denote the character class
[O- 9]. Then the regular expression for signed or unsigned numbers is denoted ((+ I-I E)(d+ I
d+\.d+ I .d+ \.d+). (Following standard usage, we exclude numbers of the form 2. or 147.,
which contain a decimal point but no decimal expansion.)
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48. Let d represent the character class [O - 9].

49.

Algorithm 12.2.3 Finite-State Automaton of Exercise 2

[This algorithm simulates the action of the finite-state automaton of exercise 2 by mimicking
the functioning of the transition diagram. The states are denoted 0, 1, and 2.]

Input: string [a string of O's and 1's plus an end marker e

Algorithm Body:

state := 0

symbol := first symbol in the input string

while (symbol 7# e)

if state = 0 then if symbol = 0

then state := 1

else state := 0

else if state = 1 then if symbol = 0

else if state

then state := 1

else state := 2

2 then if symbol = 0

then state := 2

else state := 2

symbol := next symbol in the input string

end while

Output: state

50.

Algorithm 12.2.4 Finite-State Automaton of Exercise 8

[This algorithm simulates the action of the finite-state automaton of exercise 8 by repeated
application of the next-state function. The states are denoted 0, 1, and 2.]

Input: string [a string of O's and 1's plus an end marker el
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Algorithm Body:

N(O,0) := 1, N(O, 1) := 2, N(1,0) := 1, N(1, 1) := 2, N(2,0) := 1, N(2, 1) := 2,

state := 0

symbol := first symbol in the input string

while (symbol 7# e)

state := N(state,symbol)

symbol := next symbol in the input string

end while

Output: state

51. Proof (by contradiction): Suppose there were a finite-state automaton A that accepts L. Con-
sider all strings of the form a' for some integer i > 0. Since the set of all such strings is infinite
and the number of states of A is finite, by the pigeonhole principle at least two of these strings,
say aP and aq with p < q, must send A to the same state, say s, when input to A starting in
its initial state. (The strings of the given form are the pigeons, the states are the pigeonholes,
and each string is associated with the state to which A goes when the string is input to A
starting in its initial state.) Because A accepts L, A accepts aqbq but not aPbq. But since
aqbq is accepted by A, inputting bq to A when it is in state s (after input of aq) sends A to
an accepting state. Because A also goes to state s after input of aP, inputting bq to A after
inputting aP also sends A to an accepting state. Thus aPbq is accepted by A and yet it is not
accepted by A, which is a contradiction. Hence the supposition is false: there is no finite-state
automaton that accepts L.

52. Proof (by contradiction): Suppose there were a finite-state automaton A that accepts L. Con-
sider all strings of the form ai for some integer i > 0. Since the set of all such strings is infinite
and the number of states of A is finite, by the pigeonhole principle at least two of these strings,
say aP and aq with p < q, must send A to the same state, say s, when input to A starting in
its initial state. Because A accepts L, A accepts aPbP but not aqbP. But since aPbP is accepted
by A, inputting bP to A when it is in state s (after input of aP) sends A to an accepting state.
Because A also goes to state s after input of a , inputting bV to A after inputting a also sends
A to an accepting state. Thus aqbP is accepted by A and yet it is not accepted by A, which is
a contradiction. Hence the supposition is false: there is no finite-state automaton that accepts
L.

53. Proof 1 (by contradiction): Suppose there were a finite-state automaton A that accepts L. Let
N be the number of states in A. Choose an integer m with (m + 1)2 - m2 > N. [Such an
integer exists because (m+ 1)2 -m 2 = 2m + 1, and 2m + 1 > N if, and only if, m > (N - 1)/2.
So any integer m with m > (N -1)/2 will work.] Consider the set of all strings a' with
m2 < i < (m + 1)2. Since (m + 1)2 -m 2 > N and A has N states, there exist integers p
and q so that m2 < p < q < (m + 1)2 and both aP and aq send A to the same state s. [This
follows from the pigeonhole principle: the 2m + 1 strings ai with m2 < i < (m + 1)2 are the

pigeons and the N states are the pigeonholes.] Now a(m'+) 2 is in L and hence sends A to an
accepting state. But (m + 1)2 = q + ((in + 1)2 -q), and so a(m+1)' = aqa(m+1) 2  . This
implies that when A is in state s, input of a(m+1) 2 

-q sends A to an accepting state. Since aP
also sends A to state s, it follows that aPa(-+') -q = aP+(m+) -q = a(m+1)

2 
-(q-P) sends A

to an accepting state also. Let k = (m + 1)2 -(q -p). Then ak is accepted by A. However,
ak is not in L because (m + 1)2 -(q -p) is not a perfect square. (The reason is that since
m2 < p < q < (m + 1) 2 , then q - p < (m + 1) 2 - m 2 , and so m 2 < (m + 1)2 - (q - p).

Furthermore (m+ 1) 2 - (q-p) < (m+ 1)2 because q -p > 0. Hence k = (m+ 1)2 - (q -p) is in
between two successive perfect squares and so is not a perfect square.) This result contradicts
the supposition that A is an automaton that accepts L. Hence the supposition that A exists
is false.
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Proof 2 (by contradiction): Suppose there were a finite-state automaton A that accepts all
strings of the form an where n = m2 for some positive integer m. Since there are infinitely
many strings of the form a' for some integer i > 1 and A has only finitely many states, at
least two strings aP and aq with 0 < p < q must go to the same state s. Consider the strings
aPa l)q and a a = aq . Since A accepts strings of the form am ,it will accept a 1qa

But since A will be in the same state after processing aP as it is after processing aq, it will also
accept aPa(q-l)q = aq -(q-P)* Now q2 -(q -p) :& m2 for any integer m. The reason is that since
p and q are integers with 0 < p < q, then q + p > 1. It follows that q2 - 2q+ 1 < q2 

_ (q - p),
and so (q -1)2 < q2 _ (q - p). Furthermore, since q - p > 0, q2 - (q - p) < q2 . Hence
(q- 1)2 < q2 - (q -p) < q2 . Thus on the one hand A accepts aq -(q-P) but on the other hand
A does not accept aq -(q -P) because q2 

_ (q-p) is not a perfect square. This is a contradiction.
It follows that the supposition that A exists is false.

54. a. Proof: Suppose A is a finite-state automaton with input alphabet E, and suppose L(A) is
the language accepted by A. Define a new automaton A' as follows: Both the states and the
input symbols of A' are the same as the states and input symbols of A. The only difference
between A and A' is that each accepting state of A is a non-accepting state of A', and each
non-accepting state of A is an accepting state of A'. It follows that each string in Z* that
is accepted by A is not accepted by A', and each string in * that is not accepted by A is
accepted by A'. Thus L(A') = (L(A))c.

b. Proof: Let A1 and A2 be finite-state automata, and let L(A1 ) and L(A2 ) be the languages
accepted by A1 and A2 , respectively. By part (a), there exist automata A' and A' such that
L(AI) = (L(A1 ))c and L(A') = (L(A2 ))c. Hence, by Kleene's theorem (part 1), there are
regular expressions r1 and r2 that define (L(Al))c and (L(A 2 ))c, respectively. So we may
write (L(Al))c = L(ri) and (L(A2 ))c = L(r 2 ). Now by definition of regular expression, r1 I r2
is a regular expression, and, by definition of the language defined by a regular expression,
L(ri I r2) = L(ri)UL(r 2 ). Thus, by substitution and De Morgan's law, L(r, I r2) = (L(A1 ))cU
(L(A 2 ))c (L(A 1 ) n L(A2 ))c, and so, by Kleene's theorem (part(2)), there is a finite-state
automaton, say A, that accepts (L(Aj)nL(A2 ))c. It follows from part (a) that there is a finite-
state automaton, A', that accepts ((L(A1 ) n L(A 2 ))c)c. But, by the double complement law
for sets, ((L(A 1 ) n L(A2 ))c)c = L(A1 ) n L(A2 ). So there is a finite-state automaton, A', that
accepts L(Al) n L(A 2 ), and hence, by Kleene's theorem and the definition of regular language,
L(A1 ) n L(A 2) is a regular language.

Section 12.3

2. a. O-equivalence classes: {so, s 1, S34}, {S2, S5, S6}

1-equivalence classes: {so,s 1}, {S3}, {S4}, {S2,S5}, {S6}

2-equivalence classes: {so,s1}, {83}, {S4}, {S2,S5}, {S6}

b. transition diagram for A:

0

so_

I
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3. a. 0-equivalence classes: {s1 , 83}, {So, S2}

1-equivalence classes: {Si, 53}, {SO, 82}

b. transition diagram for A:

0 0

5. a. 0-equivalence classes: {so, S1, S3, S4}, {S2, 85}

1-equivalence classes: {so,S 3 ,S 4}, {81}, {S2,S5}

2-equivalence classes: {so, S3}, {S4}, {S1}, {S2, S5}

3-equivalence classes: {SO, 83}, {S4}, {S1}, {S2,S5}

b. transition diagram for A:

6. a. 0-equivalence classes: {so,s 1 ,s3 ,s4 ,s5 }, {s2,86}

1-equivalence classes: {So,S 4 ,S 5}, {81,83}, {82}, {S6}

2-equivalence classes: {so, S4}, {S5}, {S1 }, {S3}, {S2}, {S6}

3-equivalence classes: {SO}, {S4}, {S5}, {S1}, {S3}, {82}, {S6}

b. The transition diagram for A is the same as the one given for A except that the states are
denoted [so], [Si], [S2], [S3], [S4], [S5], [86].

8. For A:

O-equivalence classes: {S2, S4}, {SO, S1, S3}

1-equivalence classes: {S2 , S4}, {So, S1}, {S3}

2-equivalence classes: {S2, 84}, {So,81}, {S3}

Therefore, the states of A are the 2-equivalence classes of A.

For A':

0-equivalence classes: {S4}, {I SO , S2, s8 }
1-equivalence classes: {s'}, {Is, s'},{0s, s'}

2-equivalence classes: {s4}, {s', s' } ,{s3, s

Therefore, the states of A' are the 2-equivalence classes of A'.

According to the text, two automata are equivalent if, and only if, their quotient automata
are isomorphic, provided inaccessible states have first been removed. Now A and A' have
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no inaccessible states, and A has one accepting state and two nonaccepting states as does
A'. But the labels on the arrows connecting the states are different. For instance, in both
quotient automata, there is one nonaccepting state which has an arrow going out from it to
the accepting state and an arrow going back from the accepting state to it. But for A, the
label on the arrow going to the accepting state is labeled 0 whereas for A' it is labeled 1.

A A'

The nonequivalence of A and A' can also be seen by noting, for example, that the string 00 is
accepted by A but not by A'.

10. For A:

O-equivalence classes: {so, s 1 , 82, S3}, {S4}

1-equivalence classes: {So, SI, S21, {S3}, {S4}

2-equivalence classes: {so}, {S1,S2}, {S3}, {S4}

3-equivalence classes: {so}, {Sl,S2}, {S3}, {S4}

Therefore, the states of A are the 3-equivalence classes of A.

For A':

O-equivalence classes: {s', s', s3}, {Is, s'}

1-equivalence classes: {se}, {s'}, {s3}1, I{S24}

2-equivalence classes: {Is}, {fs}, {Is}, {s5}, {s'}

Therefore, the states of A' are the 2-equivalence classes of A'.

According to the text, two automata are equivalent if, and only if, their quotient automata
are isomorphic, provided inaccessible states have first been removed. Now A and A' have no
inaccessible states, and A has four states whereas A' has five states. Therefore A and A' are
not equivalent. This result can also be obtained by noting, for example, that the string 10 is
accepted by A' but not by A.

11. Proof: Suppose A is a finite-state automaton with set of states S and relation R. of *-
equivalence of states. We will show that R* is reflexive, symmetric, and transitive.

R* is reflexive: Suppose that s is a state of A. It is certainly true that for all input strings w,
N* (s, w) is an accepting state <-* N* (s, w) is an accepting state. So by definition of R., s R*s.

R* is symmetric: This is proved in Appendix B of the text.

R* is transitive: Suppose that s, t, and u are states of A such that s Rat and t R*u. By
definition of R., for all input strings w, N*(s,w) is an accepting state ¢> N*(t,w) is an
accepting state and N* (t, w) is an accepting state X N* (u, w) is an accepting state. It follows
by transitivity of the .> relation that N* (s, w) is an accepting state <> N* (u, w) is an accepting
state. Hence by definition of R*, s R*u.
Since R* is reflexive, symmetric, and transitive, R* is an equivalence relation.
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14. Proof: Suppose k is an integer such that k > 1 and states s and t are k-equivalent. Then for
all input strings w of length less than or equal to k, N* (s, w) is an accepting state X* N* (t, w)
is an accepting state. Since k - 1 < k, it follows that for all input strings w of length less than
or equal to k -1, N*(s,w) is an accepting state 4> N*(t, w) is an accepting state. Hence s
and t are (k -1)-equivalent.

15. Proof: Suppose k is an integer such that k > 1 and Ck is a k-equivalence class. We must show
that there is a k -1 equivalence class, Qk-1, such that Ck C Ck-1. By property (12.3.3), the
(k - 1)-equivalence classes partition the set of all states of A in to a union of mutually disjoint
subsets. Let s be any state in Ck. Then s is in some (k -1)-equivalence class; call it Ck-1.

Let t be any other state in Ck. [We will show that t G Ck-1 also.] Then t Rk s, and so for
all input strings of length k, N*(t, w) is an accepting state X> N*(s, w) is an accepting state.
Since k - 1 < k, it follows that for all input strings of length k -1, N*(t, w) is an accepting
state < N*(s, w) is an accepting state. Consequently, t Rk-I s, and so t and s are in the same
(k - 1)-equivalence class. But s E Ck-1. Hence t E Ck-1 also. We, therefore, conclude that
Ck C Ck-1,

16. Proof: Suppose s and t are states that are k-equivalent for all integers k > 0. Let w be any
[particular but arbitrarily chosen! input string and let the length of w be 1. Then I > 0 and
so by hypothesis, s and t are Rl-equivalent. By definition of RI, N* (s, w) is an accepting state
# N*(t, w) is an accepting state. Since the choice of w was arbitrary, we conclude that for
all input strings w, N*(s, w) is an accepting state Xt* N*(t, w) is an accepting state. Thus by
definition of *-equivalence, s and t are *-equivalent.

17. Proof: Suppose k is an integer such that states s and t are k-equivalent and suppose that m is
a nonnegative integer less than k. Then for all input strings w of length less than or equal to k,
N* (s, w) is an accepting state 4 N* (t, w) is an accepting state. Now since m is a nonnegative
integer and m < k, then any string of length less than or equal to m has length less than or
equal to k. Consequently, for all input strings w of length less than or equal to m, N* (s, w) is
an accepting state # N*(t, w) is an accepting state. Hence s and t are m-equivalent.

18. Proof: Suppose A is an automaton and C is a *-equivalence class of states of A. By Theorem
12.3.2, for some integer K > 0, C is a K-equivalence class of A. Suppose C contains both
an accepting state s and a nonaccepting state t of A. Since both s and t are in the same K-
equivalence class, s is K-equivalent to t (by exercise 34 of Section 10.3), and so by exercise 17,
s is 0-equivalent to t. But this is impossible because there are only two 0-equivalence classes,
the set of all accepting states and the set of all nonaccepting states, and these two sets are
disjoint. Hence the supposition that C contains both an accepting and a nonaccepting state
is false: C consists entirely of accepting states or entirely of nonaccepting states.

19. Proof: Suppose A is an automaton and states s and t of A are *-equivalent. Let m be any
input symbol and let w be any input string. By definition of the next-state and eventual-state
functions, N*(N(s,m),w) = N*(s,mw) and N*(N(t,m),w) = N*(t,mw), where mw is the
concatenation of m and w. But since s and t are *-equivalent, N*(s,mw) is an accepting
state < N*(t,mw) is an accepting state. Hence N*(N(s,m),w) is an accepting state #>
N* (N(t, m), w) is an accepting state. So by definition of *-equivalence, N(s, m) is *-equivalent
to N(t, m).
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General Review Guide: Chapter 1

Compound Statements

* What is a statement? (p. 2)
* If p and q are statements, how do you symbolize "p but q" and "neither p nor q"? (p. 3)

* What does the notation a < x < b mean? (p. 4)
* What is the conjunction of statements p and q? (p. 5)
* What is the disjunction of statements p and q? (p. 6)
* What are the truth table definitions for - p, p A q, p V q, p -i q, and p +-* q? (pp. 5, 6, 18, 24)
* How do you construct a truth table for a general compound statement? (p. 7)
* What is exclusive or? (p. 7)
* What is a tautology, and what is a contradiction? (p. 13)
* What is a conditional statement? (p. 18)
* Given a conditional statement, what is its hypothesis (antecedent)? conclusion (consequent)?

(p. 18)
* What is a biconditional statement? (p. 24)
* What is the order of operations for the logical operators? (p. 24)

Logical Equivalence

* What does it mean for two statement forms to be logically equivalent? (p. 8)
* How do you test to see whether two statement forms are logically equivalent? (p. 9)
* How do you annotate a truth table to explain how it shows that two statement forms are or

are not logically equivalent? (p. 9)
* What is the double negative property? (p. 9)
* What are De Morgan's laws? (p. 10)
* How is Theorem 1.1.1 used to show that two statement forms are logically equivalent? (p. 14)
* What are negations for the following forms of statements? (pp. 10, 11, 20)

pAq
pVq
p - q (if p then q)

Converse, Inverse, Contrapositive

* What is the contrapositive of a statement of the form "If p then q"? (p. 21)

* What are the converse and inverse of a statement of the form "If p then q"? (p. 22)
* Can you express converses, inverses, and contrapositives of conditional statements in ordinary

English? (p. 21-22)
* If a conditional statement is true, can its converse also be true? (p. 22)
* Given a conditional statement and its contrapositive, converse, and inverse, which of these are

logically equivalent and which are not? (p. 23)

Necessary and Sufficient Conditions, Only If

* What does it mean to say that something is true only if something else is true? (p. 23)
* How are statements about only-if statements translated into if-then form.? (p. 23)
* What does it mean to say that something is a necessary condition for something else? (p. 25)
* What does it mean to say that something is a sufficient condition for something else? (p. 25)
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* How are statements about necessary and sufficient conditions translated into if-then form.? (pp.
25-26)

Validity and Invalidity

* How do you identify the logical form of an argument? (p. 2)

* What does it mean for a form of argument to be valid? (p. 29)
* How do you test to see whether a given form of argument is valid? (p. 30)
* How do you annotate a truth table to explain how it shows that an argument is or is not valid?

(pp. 30-31)
* What are modus ponens and modus tollens? (pp. 31-32)
* Can you give examples for and prove the validity of the following forms of argument? (pp.

33-35)

P qand
pVq pVq

p q and p
P q

pVq pV q
- q ~ and

P q

q r

-pVq
p r
q r
r

* What are converse error and inverse error? (p. 37)
* Can a valid argument have a false conclusion? (p. 38)
* Can an invalid argument have a true conclusion? (p. 38)
* Which of modus ponens, modus tollens, converse error, and inverse error are valid and which

are invalid? (pp. 31, 32, 37, 38)
* What is the contradiction rule? (p. 39)
* How do you use valid forms of argument to solve puzzles such as those of Raymond Smullyan

about knights and knaves? (p. 40)

Digital Logic Circuits and Boolean Expressions

* Given a digital logic circuit, how do you
- find the output for a given set of input signals (p. 47)
- construct an input/output table (p. 47)
- find the corresponding Boolean expression? (p. 48)

* What is a recognized? (p. 49)
* Given a Boolean expression, how do you draw the corresponding digital logic circuit? (p. 49)
* Given an input/output table, how do you draw the corresponding digital logic circuit? (p. 51)
* What is disjunctive normal form? (p. 52)

* What does it mean for two circuits to be equivalent? (p. 53)
* What are NAND and NOR gates? (p. 54)
* What are Sheffer strokes and Peirce arrows? (p. 54)
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Binary and Hexadecimal Notation

* How do you transform positive integers from decimal to binary notation and the reverse? (p.
59)

* How do you add and subtract integers using binary notation? (p. 60)

* What is a half-adder? (p. 61)

* What is a full-adder? (p. 62)

* What is the 8-bit two's complement of an integer in binary notation? (p. 63)

* How do you find the 8-bit two's complement of a positive integer a that is at most 255? (p.
64)

* How do you find the decimal representation of the integer with a given 8-bit two's complement?
(p. 65)

* How are negative integers represented using two's complements? (p. 66)
* How is computer addition with negative integers performed? (pp. 66-70)

* How do you transform positive integers from hexadecimal to decimal notation? (p. 71)

* How do you transform positive integers from binary to hexadecimal notation and the reverse?
(p. 72)

* What is octal notation? (p. 74)

Test Your Understanding: Chapter 1

Test yourself by filling in the blanks.

1. A statement is -.

2. If p and q are statements, the statement "p but q" is symbolized

3. If p and q are statements, the statement "neither p nor q" is symbolized -.

4. An and statement is true if, and only if, both components are

5. An or statement is false if, and only if, both components are

6. An if-then statement is false if, and only if, its hypothesis is and its conclusion is

7. A statement of the form p +-* q is true if, and only if, _.

8. If a logical expression includes the symbols -, A or V, and-- or +-+ and the expression does
not include parentheses, then the first operation to be performed is _ , the second is _

and the third is . To indicate the order of operations for an expression that includes both
A and V or both and A-+, it is frequently necessary to add

9. A tautology is for every substitution of statements for the statement variables.

10. A contradiction is _ for every substitution of statements for the statement variables.

11. Two statement forms are logically equivalent if, and only if, their truth values are for
every substitution of statements for the statement variables.

12. Less formal version: Two statement forms are logically equivalent if, and only if, they always
have

13. Two statement forms are not logically equivalent if, and only if,
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14. De Morgan's laws say that and

15. The negation of p -4 q is

16. The contrapositive of "if p then q" is

17. The converse of "if p then q" is

18. The inverse of "if p then q" is -.

19. A conditional statement and its contrapositive are

20. A conditional statement and its converse are not

21. If r and s are statements, r only if s can be expressed in if-then form as or as -.

22. If t and u are statements, t is a sufficient condition for u can be expressed in if-then form as

23. If v and w are statements, v is a necessary condition for w can be expressed in if-then form as
or as

24. A form of argument is valid if, and only if, for every substitution of statements for the statement
variables, if of the premises are _ , then the conclusion is

25. Less formal version: A form of argument is valid if, and only if, in all cases where the premises
are , the conclusion is also -.

26. A form of argument is invalid if, and only if, there is a substitution of statements for the
statement variables that makes the premises and the conclusion

27. Less formal version: A form of argument is invalid if, and only if, it is possible for all the
premises to be and the conclusion

28. Modus ponens is an argument of the form , and modus tollens is an argument of the form

29. Converse error is an argument of the form ,and inverse error is an argument of the form

30. Insert the words "valid " or "invalid" as appropriate: modus ponens is modus tollens is
;_ converse error is _ ; inverse error is

31. The contradiction rule is an argument of the form

32. The input/output table for a digital logic circuit is a table that shows

33. The Boolean expression that corresponds to a digital logic circuit is

34. A recognizer is a digital logic circuit that

35. Two digital logic circuits are equivalent if, and only if, -.

36. A NAND-gate is constructed by placing a - gate immediately following an _ gate.

37. A NOR-gate is constructed by placing a gate immediately following an gate.

38. To represent a nonnegative integer in binary notation means to write it as a sum of products
of the form _ , where

39. To add integers in binary notation, you use the facts that 12 + 12 = and 12 + 12 + 12 =
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40. To subtract integers in binary notation, you use the facts that 102 - 12 = and 112 -12

41. A half-adder is a digital logic circuit that _ , and a full-adder is a digital logic circuit that

42. The 8-bit two's complement of a positive integer a is

43. To find the 8-bit two's complement of a positive integer a that is at most 255, you , -,
and

44. If a is an integer with -128 < a < 127, the 8-bit representation of a is if a > 0 and is
if a < 0.

45. To add two integers in the range -128 through 127 whose sum is also in the range -128
through 127, you , -, , and - .

46. To represent a nonnegative integer in hexadecimal notation means to write it as a sum of
products of the form __, where

47. To convert a nonnegative integer from hexadecimal to binary notation, you and

Answers

1. a sentence that is true or false but not both
2. pAq
3. -pA - q
4. true
5. false
6. true, false
7. both p and q are true or both p and q are false
8. A; A or V; - or -; parentheses
9. true

10. false
11. identical
12. the same truth values
13. there exist statements with the property that when the statements are substituted for the

statement variables, one of the resulting statements is true and the other is false
14. - (p Aq)_--pV-q; - (p Vq)-- pA-~q

15. pV q
16. if q then p
17. if q then p
18. if c p then q
19. logically equivalent
20. logically equivalent
21. if -s then -r; if r then s
22. if t then u
23. if - v then w; if w then v
24. all; true; true
25. true; true
26. true; false
27. true; false
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28. p-q p-*q

P -q

q ,p

29. p q peq

q P
.. p .'. o

30. valid; valid; invalid; invalid
31. p -i c, where c is a contradiction

32. shows the output signal(s) that correspond to all possible combinations of input signals to the
circuit

33. a logical expression that represents the input signals symbolically and indicates the successive
actions of the logic gates on the input signals

34. outputs a 1 for exactly one particular combination of input signals and outputs 0's for all other
combinations

35. they have the same input/output table
36. NOT; AND

37. NOT; OR
38. d- 2 n; d = 0 or d = 1, and n is a nonnegative integer

39. 102; 112

40. 12; 102

41. outputs the sum of any two binary digits;
outputs the sum of any three binary digits

42. 28 - a
43. write the 8-bit binary representation of a;

flip the bits
add 1 in binary notation

44. the 8-bit binary representation of a
the 8-bit binary representation of 28- a

45. convert both integers to their 8-bit binary representations
add the results using binary notation
truncate any leading 1
convert back to decimal form

46. d- 16n; d = 0,1,2, ... 9, A, B, C, D, E, F, and n is a nonnegative integer
47. write each hexadecimal digit in fixed 4-bit binary notation

juxtapose the results
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General Review Guide: Chapter 2

Quantified Statements

* What is a predicate? (p. 76)

* What is the truth set of a predicate? (p. 77)

* What is a universal statement, and what is required for such a statement to be true? (p. 78)

* What is the method of exhaustion? (p. 79)

* What is required for a universal statement to be false? (p. 78)

* What is an existential statement, and what is required for such a statement to be true? (p.
80)

* What is required for a existential statement to be false? (p. 80)

* What are some ways to translate quantified statements from formal to informal language? (p.
80)

* What are some ways to translate quantified statements from informal to formal language? (pp.
81-82)

* What is a universal conditional statement? (p. 81)

* What is an equivalent way to write a universal conditional statement? (pp. 83)

* What are equivalent ways to write existential statements? (p. 83)

* What does it mean for a statement to be quantified implicitly? (p. 83)

* What do the notations =• and 4> mean? (p. 84)
* What is the relation among V, 3, A, and V? (p. 91)

* What does it mean for a universal statement to be vacuously true? (p. 92)
* What is the rule for interpreting a statement that contains both a universal and an existential

quantifier? (p. 99)

* How are statements expressed in the computer programming language Prolog? (p. 107)

Negations: What are negations for the following forms of statements?

* Vx, Q((x) (p. 88)

* 3x such that Q(x) (p. 89)

* Vx, if P(x) then Q(x) (p. 91)

* Vx, 3y such that P(X, y) (p. 103)
* 3x such that Vy, P(x, y) (p. 103)

Variants of Conditional Statements

* What are the converse, inverse, and contrapositive of a statement of the form "Vx, if P(x)
then Q(x)"? (p. 93)

* How are quantified statements involving necessary and sufficient conditions and the phrase
only-if translated into if-then form? (p. 95)

Validity and Invalidity

* What is universal instantiation? (p. 111)
* What are the universal versions of modus ponens, modus tollens, converse error, and inverse

error, and which of these forms of argument are valid and which are invalid? (pp. 112, 114,
118)

* How is universal modus ponens used in a proof? (p. 113)

I
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* How can diagrams be used to test the validity of an argument with quantified statements? (p.
115)

Test Your Understanding: Chapter 2

Test yourself by filling in the blanks.

1. A predicate is

2. The truth set of a predicate P(x) with domain D is

3. A statement of the form "Vx E D, Q(x)" is true if, and only if, -.

4. A statement of the form "3x e D, Q(x)" is true if, and only if,

5. A universal conditional statement is a statement of the form -.

6. A negation of a universal statement is an statement.

7. A negation of an existential statement is a statement.

8. A statement of the form "All A are B" can be written with a quantifier and a variable as

9. A statement of the form "Some A are B" can be written with a quantifier and a variable as .

10. A statement of the form "No A are B" can be written with a quantifier and a variable as .

11. A negation for a statement of the form "Vx e D, Q(x)" is __

12. A negation for a statement of the form "3x E D such that Q(x)" is

13. A negation for a statement of the form "Vx e D, if P(x) then Q(x)" is

14. For a statement of the form "Vx E D, Q(x)" to be vacuously true means that

15. Given a statement of the form "Vx, if P(x) then Q(x)," the contrapositive is _ , the converse
is _ , and the inverse is

16. If you want to establish the truth of a statement of the form "Vx E D, ]y E E such that
P(x, y)," your challenge is to allow someone else to pick , and then you must find
for which P(x, y)

17. If you want to establish the truth of a statement of the form "3x E D such that Vy E E,
P(x, y)," your job is to find with the property that no matter what , P(x, y) will
be

18. A negation for a statement of the form "Vx e D, Ey E E such that P(x, y)" is

19. A negation for a statement of the form "3x G D such that Vy G E, P(x, y)" is

20. The rule of universal instantiation says that

21. Universal modus ponens is an argument of the form , and universal modus tollens is an
argument of the form

22. To use a diagram to represent a statement of the form "All A are B," you

23. To use a diagram to represent a statement of the form "Some A are B," you

24. To use a diagram to represent a statement of the form "No A are B," you
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Answers

1. a sentence that contains a finite number of variables and becomes a statement when specific
values are substituted for the variables

2. the set of all x in D such that P(x) is true
3. Q(x) is true for each individual x in D

4. there is at least one x in D for which Q(x) is true
5. Vx, if P(x) then Q(x), where P(x) and Q(x) are predicates

6. existential
7. universal
8. Vx, if x is an A then x is a B
9. 3x such that x is an A and x is a B

10. Vx, if x is an A then x is not a B (Or: Vx, if x is an B then x is not a A)

11. 3x C D such that Q(x)
12. Vx G D, Q(x)

13. 3x G D such that P(x) and Q(x)
14. there are no elements in D

15. Vx, if -v Q(x) then P(x);
Vx, if Q(x) then P(x)
Vx, if - P(x) then Q(x)

16. whatever element x in D they wish; an element y in E; is true
17. an element x in D; element y in E anyone might choose; true
18. 3x E D such that Vy C E, P(x, y)

19. Vx £ D, 3y £ E such that P(x, y)
20. if a property is true of everything in a domain, then it is true of any particular thing in the

domain

21. Vx, if P(x) then Q(x) Vx, if P(x) then Q(x)

P(a), for a particular a '- Q(a), for a particular a
Q(a) -v P(a)

22. place a disk labeled A inside a disk labeled B
23. draw overlapping disks labeled A and B, respectively, and place a dot inside the part that

overlaps
24. draw non-overlapping disks labeled A and B
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General Review Guide: Chapter 3

Definitions

* Why is the phrase "if, and only if' used in a definition? (p. 127)

* How are the following terms defined?
- even integer (p. 127)
-odd integer (p. 127)
-prime number (p. 128)
-composite number (p. 128)
-rational number (p. 141)
-divisibility of one integer by another (p. 148)
- the floor of a real number (p. 165)
- the ceiling of a real number (p. 165)
- greatest common divisor of two integers (p. 192)

Proving an Existential Statement/Disproving a Universal Statement

* How do you determine the truth of an existential statement? (p. 128)
* What does it mean to "disprove" a statement? (p. 129)

* What is disproof by counterexample? (p. 129)

* How do you establish the falsity of a universal statement? (p. 129)

Proving a Universal Statement/Disproving an Existential Statement

* If a universal statement is defined over a small, finite domain, how do you use the method of
exhaustion to prove that it is true? (p. 130)

* What is the method of generalizing from the generic particular? (p. 130)
* If you use the method of direct proof to prove a statement of the form "Vx, if P(x) then Q(x)",

what do you suppose and what do you have to show? (p. 131)

* What are the guidelines for writing proofs of universal statements? (p. 134)

* What are some common mistakes people make when writing mathematical proofs? (p. 135)

* How do you disprove an existential statement? (p. 138)
* What is the method of proof by division into cases? (p. 138)

* If you use the method of proof by contradiction to prove a statement, what do you suppose
and what do you have to show? (p. 171)

* If you use the method of proof by contraposition to prove a statement of the form "Vx, if P(x)
then Q(x)", what do you suppose and what do you have to show? (p. 175)

* Are you able to use the various methods of proof and disproof to establish the truth or falsity
of statements about odd and even integers (p. 133), prime numbers (p. 138), rational numbers
(pp. 143, 145, 146), divisibility of integers (pp. 151-152), and the floor and ceiling of a real
number (pp. 166-168)?

Some Important Theorems and Algorithms

* What is the theorem about divisibility by a prime number? (p. 151)

* What is the unique factorization theorem for the integers? (This theorem is also called the
fundamental theorem of arithmetic.) (p. 153)

* What is the quotient-remainder theorem? Can you apply it to specific situations? (p. 157)

* What is the theorem about the irrationality of the square root of 2? Can you prove this
theorem? (p. 181)
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* What is the theorem about the infinitude of the prime numbers? Can you prove this theorem?
(p. 183)

* What is the division algorithm ? (p. 191)

* What is the Euclidean algorithm? (p. 192)

* How do you use the Euclidean algorithm to compute the greatest common divisor of two
positive integers? (p. 195)

Notation for Algorithms

* How is an assignment statement executed? (p. 186)

* How is an if-then statement executed? (p. 187)

* How is an if-then-else statement executed? (p. 187)

* How are the statements do and end do used in an algorithm? (p. 187)

* How is a while loop executed? (p. 188)

* How is a for-next loop executed? (p. 189)

* How do you construct a trace table for a segment of an algorithm? (pp. 188-89, 191)

Test Your Understanding: Chapter 3

Test yourself by filling in the blanks.

1. An integer is even if, and only if, it

2. An integer is odd if, and only if, it

3. An integer is prime if, and only if,

4. An integer is composite if, and only if, -.

5. If n = 2k + 1 for some integer k, then

6. Given integers a and b, if there exists an integer k such that b = ak, then

7. To find a counterexample for a statement of the form "Vx e D, if P(x) then Q(x)" you find

8. According to the method of generalizing from the generic particular, to prove that every
element of a domain satisfies a certain property, you suppose that and you show that

9. According to the method of direct proof, to prove that a statement of the form "Vx in D, if
P(x) then Q(x)" is true, you suppose that and you show that

10. Proofs should always be written in - sentences, and each assertion made in a proof should
be accompanied by a

11. The fact that a universal statement is true in some instances does not imply that it is

12. When writing a proof, it is a mistake to use the same letter to represent

13. A real number is rational if, and only if, __

14. An integer a divides an integer b if, and only if,
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15. If a and b are integers, the notation a I b stands for , and the notation a/b stands for

16. According to the theorem about divisibility by a prime number, given any integer n > 1, there
is a

17. The unique factorization theorem (fundamental theorem of arithmetic) says that given any
integer n > 1, n can be written as a - in a way that is unique, except possibly for the
in which the numbers are written.

18. The quotient-remainder theorem says that given any integer n and any positive integer d, there
exist unique integers q and r such that

19. If n is a nonnegative integer and d is a positive integer, then n div d = and n mod d -

where __

20. The parity property says that any integer is either

21. Suppose that at some point in a proof you know that one of the statements Al or A2 or A3
is true and you want to show that regardless of which statement happens to be true a certain
conclusion C will follow. Then you need to show that and _ and

22. Given any real number x, the floor of x is the unique integer n such that __

23. Given any real number x, the ceiling of x is the unique integer n such that

24. To prove a statement by contradiction, you suppose that - and you show that

25. To prove a statement of the form "Vx C D, if P(x) then Q(x)" by contraposition, you suppose
that and you show that

26. One way to prove that X/2 is an irrational number is to assume that Va = a/b for some integers
a and b with no common factors greater than 1, use the lemma that says that if the square of
an integer is even then _ , and eventually show that a and b __-

27. One way to prove that there are infinitely many prime numbers is to assume that there are
only finitely many prime numbers PI, P2, ,pn construct the number _ , and then show
that this number has to be divisible by a prime number that is greater than

28. When an algorithm statement of the form x := e is executed,

29. Consider an algorithm statement of the following form.

if (condition)
then si
else 82

When such a statement is executed, the truth or falsity of the condition is evaluated. If
condition is true, _ . If condition is false,

30. Consider an algorithm statement of the following form.

while (condition)
[statements that make up the body of the loop]

end while

When such a statement is executed, the truth or falsity of the condition is evaluated. If
condition is true, . If condition is false, __
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31. Consider an algorithm statement of the following form.

for variable := initial expression to final expression
[statements that make up the body of the loop]

next (same) variable

When such a statement is executed, variable is set equal to the value of the initial expression,
and a check is made to determine whether the value of variable is less than or equal to the
value of final expression. If so, . If not,__

32. Given a nonnegative integer a and a positive integer d, the division algorithm computes

33. Given integers a and b, not both zero, gcd(a, b) is the integer d that satisfies the following two
conditions: and

34. If r is a positive integer, then gcd(r, 0) =

35. If a and b are integers with b 7$ 0 and if q and r are nonnegative integers such that a = bq + r,
then gcd(a,b) =

36. Given positive integers A and B with A > B, the Euclidean algorithm computes

Answers

1. equals twice some integer
2. equals twice some integer plus 1
3. it is greater than 1, and if it is written as a product of positive integers, then one of the integers

is 1
4. it is greater than 1, and it can be written as a product of positive integers neither of which is

1
5. n is an odd integer
6. a divides b (or a I b, or a is a factor of b; or a is a divisor of b; or b is divisible by a; or b is a

multiple of a)
7. an element of D for which P(x) is true and Q(x) is false

8. you have a particular but arbitrarily chosen element of the domain
that element satisfies the property

9. x is any [particular but arbitrarily chosen] element of D for which P(x) is true
Q(x) is true

10. complete; reason that justifies the assertion
11. true in all instances
12. two different quantities
13. it can be written as a ratio of integers with a nonzero denominator
14. there is an integer, say k, such that b = ak
15. the sentence "a divides b"; the real number a divided by b (if b #& 0)

16. prime number that divides n
17. product of prime numbers, order

18. n =dq+rand O<r<d
19. q; r; n=dq+randO<r<d

20. even or odd
21. if Al is true then C is true; if A2 is true then C is true; if A3 is true then C is true
22. n < x < n + 1
23. n- 1 < x < n
24. the statement is false; this supposition leads to a contradiction
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25. x is any [Particular but arbitrarily chosen] element of D for which Q(x) is false
P(x) is false

26. the integer is even; have a common factor greater than 1

27. P1 P2 Pn.+. ; all the numbers P1 ,P2 , sPn
28. the expression e is evaluated (using the current values of all the variables in the expression),

and this value is placed in the memory location corresponding to x (replacing any previous
contents of the location)

29. statement si is executed; statement 82 is executed
30. all statements in the body of the loop are executed in order and then execution moves back to

the beginning of the loop and the process repeats:
execution passes to the next algorithm statement following the loop

31. the statements in the body of the loop are executed in order, variable is increased by 1, and
execution returns to the top of the loop;
execution passes to the next algorithm statement following the loop

32. integers q and r with the property that n = dq + r and 0 < r < d

33. d divides a and d divides b; if c is a common divisor of both a and b, then c < d

34. r

35. gcd(b, r)
36. the greatest common divisor of A and B
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General Review Guide: Chapter 4

Sequences and Summations

* What is a method to help find an explicit formula for a sequence whose first few terms are
given (provided a nice explicit formula exists!)? (p. 201)

* What is the summation notation for a sum that is given in expanded form? (p. 202)

* What is the expanded form for a sum that is given in summation notation? (p. 203)

* What is the product notation? (p. 205)
* What is factorial notation? (p. 206)

* What are some properties of summations and products? (p. 207)

* How do you transform a summation by making a change of variable? (p. 209)

* What is an algorithm for converting from base 10 to base 2? (p. 211)

Mathematical Induction

* What do you show in the basis step and what do you show in the inductive step when you use
(ordinary) mathematical induction to prove that a property involving an integer n is true for
all integers greater than or equal to some initial integer? (p. 218)

* What is the inductive hypothesis in a proof by (ordinary) mathematical induction? (p. 218)

* Are you able to use (ordinary) mathematical induction to construct proofs involving various
kinds of statements such as formulas, divisibility properties, and inequalities? (pp. 218, 220,
223, 229, 231, 232)

* Are you able to apply the formula for the sum of the first n positive integers? (p. 222)

* Are you able to apply the formula for the sum of the successive powers of a number, starting
with the zeroth power? (p. 225)

Strong Mathematical Induction and The Well-Ordering Principle

* What do you show in the basis step and what do you show in the inductive step when you use
strong mathematical induction to prove that a property involving an integer n is true for all
integers greater than or equal to some initial integer? (p. 235)

* What is the inductive hypothesis in a proof by strong mathematical induction? (p. 235)

* Are you able to use strong mathematical induction to construct proofs of various statements?
(pp. 236-240)

* What is the well-ordering principle for the integers? (p. 240)

* Are you able to use the well-ordering principle for the integers to prove statements, such as
the existence part of the quotient-remainder theorem? (p. 241)

* How are ordinary mathematical induction, strong mathematical induction, and the well-
ordering principle related? (p. 240)

Algorithm Correctness

* What are the pre-condition and the post-condition for an algorithm? (p. 245)

* What does it mean for a loop to be correct with respect to its pre- and post-conditions? (p.
246)

* What is a loop invariant? (p. 247)

* How do you use the loop invariant theorem to prove that a loop is correct with respect to its
pre- and post-conditions? (pp. 248-253)

http://pakimonda.blog.com 
paki.monda@gmail.com 
paki.monda@yahoo.com



Chapter 4 Review 389

Test Your Understanding: Chapter 4

Test yourself by filling in the blanks.

n

1. The expanded form of the summation Eak is
k=1

2. When n = 1, the value of 12 + 22 + 32 + + n2 is

m

3. The expanded form of the product ]7c, is
i=o

4. The notation n! = -.

n n

5. When cEak + Ebk is written as a single summation, the result is -.
k=1 k=1

n

6. If you start with Eak and make the change of variable j = k- 1, the result is
k=1

7. Repeated division by 2 is used to convert a positive integer to notation.

8. To prove by (ordinary) mathematical induction that a property is true for all integers n > a,
the first step is to show that and the second step is to show that

9. To prove by (ordinary) mathematical induction that P(n) is true for all integers n greater than
or equal to some integer a, the inductive hypothesis in the inductive step is

10. To prove by strong mathematical induction that a property is true for all integers n > a, the
first step is to show that and the second step is to show that -.

11. If the claim that P(n) is true for all integers n greater than or equal to some integer a is proved
by strong mathematical induction and if the basis step shows that P(n) is true for all integers
n with a < n < b, then the inductive hypothesis in the inductive step is -.

12. The well-ordering principle for the integers says that

13. A pre-condition for an algorithm is _ and a post-condition for an algorithm is

14. A loop is defined as correct with respect to its pre- and post-conditions if, and only if, whenever
the algorithm variables satisfy the pre-condition for the loop and the loop terminates after a
finite number of steps, then _ .

15. For each iteration of a loop, if a loop invariant is true before iteration of the loop, then

16. Given a while loop with guard G and a predicate 1(n) if the following four properties are true,
then the loop is correct with respect to its pre- and post-conditions:
(1) The pre-condition for the loop implies that is true before the first iteration of the
loop;
(2) For all integers k > 0, if the guard G and the predicate 1(k) are both true before an
iteration of the loop, then _ ;
(3) After a finite number of iterations of the loop, ;
(4) If N is the least number of iterations after which G is false and I(N) is true, then the
values of the algorithm variables will be as specified
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Answers

1. al+a2+ -+a,

2. 1

3. C1 C2 .C

4. n(n -l)(n -2) 3 2.1
n

5. J(cak + bk)
k=1
n-1

6. Zaj+l

j=O

7. binary
8. the property is true for n = a

for all integers k > a, if the property is true for n =k then it is true for n = k + 1
9. the supposition that for any [Particular but arbitrarily chosen] integer k with k > a, P(k) is

true
10. the property is true for an initial integer or set of initial integers

for any integer k that is greater than the largest of the initial integers, if the property is true
for all integers from the smallest of the initial integers through k- 1, then it is true for k

11. the supposition that for any [particular but arbitrarily chosen integer with k > b, P(i) is true
for all integers i with a < i < k

12. any set of integers, all of which are greater than or equal to some fixed integer, has a least
element

13. a predicate that describes the initial state of the input variables for the algorithm;
a predicate that describes the final state of the output variables for the algorithm

14. the algorithm variables satisfy the post-condition for the loop

15. it is true after iteration of the loop
16. I(O) is true

I(k + 1) is true after the iteration of the loop
the guard G becomes false
in the post-condition of the loop
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General Review Guide: Chapter 5

Definitions: Can you define the following terms, use them correctly in sentences, and work with
concrete examples involving them?

* subset (p. 256)
* proper subset (p. 257)
a equality of sets (p. 258)

* union, intersection, and difference of sets (p. 260)
* complement of a set (p. 260)

* empty set (p. 262)
* disjoint sets (p. 262)
* mutually disjoint sets (p. 262)
* partition of a set (p. 263)

* power set of a set (p. 264)
* Cartesian product of sets (p. 265)

Set Theory

* What is the difference between E and C? (p. 258)

* How do you use an element argument to prove that one set is a subset of another set? (p.
269)

* How are the procedural versions of set definitions used to prove properties of sets? (p. 270)

* What is the basic (two-step) method for showing that two sets are equal? (p. 273)
* Are you familiar with the set properties in Theorems 5.2.1 and 5.2.2? (pp. 269, 272)

* Why is the empty set a subset of every set? (p. 278)
* What is the special method used to show that a set equals the empty set? (p. 279)
* How do you find a counterexample for a proposed set identity? (p. 283)

* How do you find the number of subsets of a set with a finite number of elements? (p. 285)
* What is an "algebraic method" for proving that one set equals another set? (p. 286)
* What is a Boolean algebra? (p. 288)

* How do you deduce additional properties of a Boolean algebra from the properties that define
it? (p. 289)

* What is Russell's paradox? (p. 293)

* What is the Halting Problem? (p. 295)

Test Your Understanding: Chapter 5

Test yourself by filling in the blanks.

1. The notation x E A is read

2. The notation A C B is read - and means that

3. A set A equals a set B if, and only if, A and B have -.

4. An element x is in A U B if, and only if,

5. An element x is in A n B if, and only if,

6. An element x is in A - B if, and only if,
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7. An element x is in AC if, and only if,

8. The empty set is a set with

9. The power set of a set A is -.

10. Sets A and B are disjoint if, and only if,

11. A collection of nonempty sets Al, A2 ,.. -, A, is a partition of a set A if, and only if, -.

12. Given sets A and B, the Cartesian product of A and B, A x B, is __

13. Given sets A 1 ,A 2 ,... An, the Cartesian product Al x A2 x .. x An is

14. To use an element argument for proving that a set X is a subset of a set Y, you suppose that
and show that -.

15. To use the basic method for proving that two sets X and Y are equal, you prove that
and that

16. To prove a proposed set identity involving set variables A, B, and C, you suppose that
and show that

17. If 0 is a set with no elements and A is any set, the relation of 0 and A is that

18. To use the element method for proving that a set X equals the empty set, you prove that X
has _ . To do this, you suppose that and you show that this supposition leads to

19. To show that a set X is not a subset of a set Y,

20. Given a proposed set identity involving set variables A, B, and C, the most common way to
show that the proposed identity is false is to find

21. When using the "algebraic" method for proving a set identity, it is important to -.

22. The operations of + and in a Boolean algebra are generalizations of the operations of
and in the set of all statements forms in a given finite number of variables and the
operations of and in the set of all subsets of a given set.

23. Russell showed that the following proposed "set definition" could not actually define a set:

24. Turing's solution to the halting problem showed that there is no computer algorithm that will
accept any algorithm X and data set D as input and then will indicate whether or not

Answers

1. x is an element of the set A
2. the set A is a subset of the set B;

for all x, if 2 E A then x E B (in other words, every element of A is also an element of B)
3. exactly the same elements
4. x is in A or x is in B
5. x is in A and x is in B
6. x is in A and x is not in B
7. x is not in A
8. no elements
9. the set of all subsets of A
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10. A n B = 0 (in other words, A and B have no elements in common)
11. A = Al u A2 U .. U A and Ai n Aj = 0 for all i, j = 1, 2, .. ., n (in other words, A is the union

of all the sets Al, A2 , .. ., An and no two of these sets have any elements in common)

12. the set of all ordered pairs (a, b), where a is in A and b is in B

13. the set of all ordered n-tuples (ai,a2 ,. . . ,an), where ai is in Ai for all i = 1,2,...n
14. x is any /particular but arbitrarily chosen] element of X

x is an element of Y
15. XCY;YCX
16. A, B, and C are any [particular but arbitrarily chosen] sets; the left-hand and right-hand sides

of the equation are equal for those sets
17. 0 C A
18. no elements; there is at least one element in X; a contradiction
19. show that there is an element of X that is not an element of Y
20. concrete sets A, B, and C for which the left-hand and right-hand sides of the equation are not

equal
21. use the set properties from Theorem 5.2.2 exactly as they are stated

22. V; A; U; n
23. the set of all sets that are not elements of themselves

24. execution of the algorithm terminates in a finite number of steps
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General Review Guide: Chapter 6

Probability

* What is the sample space of an experiment? (p. 299)
* What is an event in the sample space? (p. 299)
* What is the probability of an event when all the outcomes are equally likely? (p. 299)

Counting

* If m and n are integers with m < n, how many integers are there from m to n inclusive? (p.
302)

* How do you construct a possibility tree? (p. 306)
* What are the multiplication rule, the addition rule, and the difference rule? (pp. 308, 321,

322)
* When should you use the multiplication rule and when should you use the addition rule? (p.

345)
* What is the inclusion/exclusion formula? (p. 327)
* What is a permutation? an r-permutation? (p. 313, 315)
* What is P(n, r)? (p. 315)
* How does the multiplication rule give rise to P(n, r)? (p. 315)

* What is (n)? (p. 334)

* What is an recombination? (p. 334)

* What formulas are used to compute (a) by hand? (p. 337)

* What is an recombination with repetition allowed (or a multiset of size r)? (p. 349)
* How many r-combinations with repetition allowed can be selected from a set of n elements?

(p. 351)

Pascal's Formula and the Binomial Theorem

* What is Pascal's formula? Can you apply it in various situations? (p. 358)
* How is Pascal's formula proved? (p. 360)
* What is the binomial theorem? (p. 364)
* How is the binomial theorem proved? (p. 364-367)

Probability Axioms and Expected Value

* What is the range of values for the probability of an event? (p. 370)
* What is the probability of an entire sample space? (p. 370)
* What is the probability of the empty set? (p. 370)
* If A and B are disjoint events in a sample space S, what is P(A U B)? (p. 370)
* If A is an event in a sample space S, what is P(Ac)? (p. 371)
* If A and B are any events in a sample space S, what is P(A U B)? (p. 371)
* How do you compute the expected value of a random experiment or process, if the possible

outcomes are all real numbers and you know the probability of each outcome? (p. 373)
* What is the conditional probability of one event given another event? (p. 376)
* What is Bayes' theorem? (p. 379)
* What does it mean for two events to be independent? (p. 381)
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* What is the probability of an intersection of two independent events? (p. 385)
* What does it mean for events to be mutually independent? (p. 384)
* What is the probability of an intersection of mutually independent events? (p. 385)

Test Your Understanding: Chapter 6

Test yourself by filling in the blanks.

1. A sample space of a random process or experiment is

2. An event in a sample space is

3. To compute the probability of an event using the equally likely probability formula, you take
the ratio of the to the

4. If m < n, the number of integers from m to n inclusive is

5. The multiplication rule says that if an operation can be performed in k steps and, for each i
with 1 < i < k, the ith step can be performed in ni ways (regardless of how previous steps
were performed), then

6. A permutation of a set of elements is

7. The number of permutations of a set of n elements equals

8. An r-permutation of a set of n elements is

9. The number of r-permutations of a set of n elements is denoted

10. One formula for the number of r-permutations of a set of n elements is and another
formula is

11. The addition rule says that if a finite set A equals the union of k distinct mutually disjoint
subsets Al, A2 , .. ., Ak, then _.

12. The difference rule says that if A is a finite set and B is a subset of A, then -.

13. If S is a finite sample space and A is an event in S, then the probability of AC equals

14. The inclusion/exclusion rule for two sets says that if A and B are any finite sets, then

15. The inclusion/exclusion rule for three sets says that if A, B, and C are any finite sets, then

16. The number of subsets of size r that can be formed from a set with n elements is denoted
, which is read as

17. Alternative phrases used to describe a subset of size r that is formed from a set with n elements
are and __

18. Two ordered selections are said to be the same if and also if

19. Two unordered selections are said to be the same if , regardless of

20. The formula relating (a) and P(n, r) is

21. Additional formulas for (n) are - and
r
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22. The phrase "at least n" means _ , and the phrase "at most n" means

23. Suppose a collection consists of n objects of which, for each i with 1 < i < k, ni are of type i
and are indistinguishable from each other. Also suppose that n = n, + n2 + * + nk. Then
the number of distinct permutations of the n objects is

24. Given a set X = {xI,x 2 ,... xn}, an r-combination with repetition allowed, or a multiset of
size r, chosen from X is _ , which is denoted

25. If X = {x, x 2 ,... xn}, the number of r-combinations with repetition allowed (or multisets of
size r) chosen from X is

26. When choosing k elements from a set of n elements, order may or may not matter and repetition
may or may not be allowed.

* The number of ways to choose the k elements when repetition is allowed and order matters
is

* The number of ways to choose the k elements when repetition is not allowed and order
matters is

* The number of ways to choose the k elements when repetition is not allowed and order
does not matter is

* The number of ways to choose the k elements when repetition is allowed and order does
not matter is

27. If n is a nonnegative integer, then (n) = and (1)

28. If n and r are nonnegative integers with r < n, then the relation between (n) and (n )

is ___

29. Pascal's formula says that if n and r are positive integers with r < n, then

30. The crux of the algebraic proof of Pascal's formula is that to add two fractions you need to
express both of them with a

31. The crux of the combinatorial proof of Pascal's formula is that the set of subsets of size r of a
set {x1 ,x 2 , ... , Xn} can be partitioned into the set of subsets of size r that contain and
those that

32. The binomial theorem says that given any real numbers a and b and any nonnegative integer
n, -

33. The crux of the algebraic proof of the binomial theorem is that, after making a change of
variable so that two summations have the same lower and upper limits, you use the fact that

(7) +(km1)

34. The crux of the combinatorial proof of the binomial theorem is that the number of ways to
arrange k b's and (n -k) a's in order is

35. If A is an event in a sample space S, P(A) can take values between and . Moreover,
P(S) = , and P(0) =- .

36. If A and B are disjoint events in a sample space S, P(A U B)

37. If A is an event in a sample space S, P(AC) =
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38. If A and B are any events in a sample space S, P(A U B) =- _

39. If the possible outcomes of a random process or experiment are real numbers a,, a2 ,... an,

which occur with probabilities P1, P2, .. , Pn, then the expected value of the process is

40. If A and B are any events in a sample space S and P(A) $ 0, then the conditional probability
of B given A is P(BIA) = -.

41. Bayes' theorem says that if a sample space S is a union of mutually disjoint events B1, B 2 , ... , Bn

with nonzero probabilities, if A is an event in S with P(A) $ 0, and if k is an integer with
1 < k < n, then

42. Events A and B in a sample space S are independent if, and only if,

43. Events A, B, and C in a sample space S are mutually independent if, and only if,
_ , and

Answers

1. the set of all outcomes of the random process or experiment
2. a subset of the sample space
3. number of outcomes in the event; total number of outcomes

4. n - m + 1

5. the operation as a whole can be performed in n1n2 ... nk ways
6. an ordering of the elements of the set in a row
7. n!
8. an ordered selection of r of the elements of the set

9. P(n, r)

10. n(n - 1)(n - 2) ... (n - r + 1); (n)!

11. the number of elements in A equals N(A1 ) + N(A 2 ) + + N(Ak)

12. the number of elements in A - B is the difference between the number of elements in A minus
the number of elements in B

13. 1 - P(A)
14. N(A U B) = N(A) + N(B)- N(A n B)
15. N(AUBUC) =N(A)+N(B)+N(C)- N(AnB)- N(AnC) -N(BnC)+N(AnBnC)

16. ( );n choose r'rJ
17. an r-combination of the set of n elements; an unordered selection of r elements chosen from

the set of n elements
18. the elements chosen are the same; the elements are chosen in the same order
19. the elements chosen are the same; the order in which the elements are chosen

20. (n) = P(nr)
r r!

21. (n) - n(n - 1)(n - 2)... (n - r + 1) (n) - n!
rJ r! tr r! (n - r)!

22. n or more; n or fewer

23. n (n - ni)( n - n m - n2) ... n - ln - n - - _nk-_ n!

' nlJ n2 n3 J nk J nl!n2!n3! .. nk!

24. an unordered selection of elements taken from X with repetition allowed
[XIX2... .rir] where each xij is in X and some of the xi, may equal each other
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25. (k+n- 1)
k

26. nk; n(n - l)(n - 2) ..(n - k + 1); (k); ( k -)

27. 1; n

28. (n) ( )
(r) (n r

29. (n + 1)=(n)+ (n)

30. common denominator
31. Xn; do not contain x,

n

32. (a + b)n Z(n)an-kbk

k=O

33 (m + 1)
k

34. (n)
(k)

35. 0; 1; 1; 0
36. P(A) + P(B)

37. 1 - P(A)
38. P(A) + P(B) P(A n B)

39. alp, + a2p2 + + anpn

40 P(A n B)
P(A)

41. (BkI) -- P(AIBk)P(Bk)
41 (Bk) P(AIB1)P(B 1 ) + P(AIB 2 )P(B 2 ) + + P(AIBn)P(Bn)

42. P(A n B) = P(A) P(B)

43. P(A n B) = P(A) P(B); P(A n C) = P(A) P(C); P(B n C) = P(B) P(C);
P(A n B n C) = P(A) P(B) P(C)
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General Review Guide: Chapter 7

Definitions: How are the following terms defined?

* function f from a set X to a set Y (p. 390)

* If f is a function from a set X to a set Y, what are

- the domain, co-domain, and range of f (p. 390)

- the image of X under f (p. 390)

- the value of f at x, where x is in X (p. 390)

- the image of x under f, where x is in X (p. 390)

- the output of f for the input x, where x is in X (p. 390)

- an inverse image of y, where y is in Y (p. 390)

* logarithm with base b of a positive number x (p. 395)

* one-to-one function (p. 402)

* onto function (p. 407)

* exponential function with base b (p. 411)

* one-to-one correspondence (p. 413)

* inverse function (p. 415)

* composition of functions (p. 432)

* cardinality (p. 443)

* countable set and uncountable set. (p. 445)

General Function Facts

* How do you draw an arrow diagram for a function defined on a finite set? (p. 390)
* Given a function defined by an arrow diagram or by a formula, how do you find values of the

function, the range of the function, and the inverse image of an element in its co-domain? (p.
391, pp. 394-8)

* How do you show that two functions are equal? (p. 393)

* If the claim is made that a given formula defines a function from a set X to a set Y, how do
you determine that the "function" is not well-defined? (p. 398)

One-to-one and Onto

* How do you show that a function is not one-to-one? (p. 403, 404)
* How do you show that a function defined on an infinite set is one-to-one? (p. 404)

* How do you show that a function is not onto? (p. 407, 409)
* How do you show that a function defined on an infinite set is onto? (p. 409)

* How do you determine if a given function has an inverse function? (p. 415)

* How do you find an inverse function if it exists? (p. 415-6)

Exponents and Logarithms

* What are the four laws of exponents? (p. 411)
* What are the corresponding properties of logarithms? (p. 412 and 419-exercises 29-31)
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* How are the logarithmic function with base b and the exponential function with base b related?

(P. 415)

Composition of Functions

* How do you compute the composition of two functions? (p. 432)

* What kind of function do you obtain when you compose two one-to-one functions? (p. 437)
* What kind of function do you obtain when you compose two onto functions? (p. 438)
* What kind of function do you obtain when you compose a one-to-one function with a function

that is not one-to-one? (p. 442-exercise 18)

* What kind of function do you obtain when you compose an onto function with a function that
is not onto? (p. 442-exercise 19)

* What is the composition of a function with its inverse? (p. 436)

Applications of Functions

* What is the pigeonhole principle? (p. 420)
* What is the generalized pigeonhole principle? (p. 425)

* How do you show that one set has the same cardinality as another? (p. 443)

* How do you show that a given set is countably infinite? countable? (p. 446)

* How do you show that the set of all positive rational numbers is countable? (p. 448)

* How is the Cantor diagonalization process used to show that the set of real numbers between
o and 1 is uncountable? (p. 450)

Test Your Understanding: Chapter 7

Test yourself by filling in the blanks.

1. A function f from a set X to a set Y is a relation between elements of X (called inputs) and
elements of Y (called outputs) such that input element of X is related to output
element of Y

2. Given a function f from a set X to a set Y, f (x) is -.

3. Given a function f from a set X to a set Y, if f (x) = y, then y is called or - or
or

4. Given a function f from a set X to a set Y, the range of f (or the image of X under f) is

5. Given a function f from a set X to a set Y, if f (x) = y, then x is called - or

6. Given a function f from a set X to a set Y, if y e Y, then f 1 (y) = and is called

7. Given functions f and g from a set X to a set Y, f = g if, and only if,

8. Given positive real numbers x and b with b #7 1, log1b = - -

9. If F is a function from a set X to a set Y, then F is one-to-one if, and only if,

10. If F is a function from a set X to a set Y, then F is not one-to-one if, and only if,

11. If F is a function from a set X to a set Y, then F is onto if, and only if, _ .
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12. If F is a function from a set X to a set Y, then F is not onto if, and only if,

13. The following two statements are

V u,v E U, if H(u) = H(v) then u = v.

V u,v E U, if u 7 v then H(u) 5 H(v).

14. Given a function F: X -4 Y (where X is an infinite set or a large finite set), to prove that F
is one-to-one, you suppose that and then you show that

15. Given a function F: X -* Y) (where X is an infinite set or a large finite set), to prove that F
is onto, you suppose that and then you show that

16. Given a function F: X Y, to prove that F is not one-to-one, you

17. Given a function F: X Y, to prove that F is not onto, you __

18. A one-to-one correspondence from a set X to a set Y is a that is

19. If F is a one-to-one correspondence from a set X to a set Y and y is in Y, then F- 1 (y) is

20. The pigeonhole principle states that

21. The generalized pigeonhole principle states that

22. If X and Y are finite sets and f is a function from X to Y then f is one-to-one if, and only if,

23. If f is a function from X to Y and g is a function from Y to Z, then g o f is a function from
to , and (g o f)(x) for all x in X.

24. If f is a function from X to Y and ix and iy are the identity functions from X to X and Y
to Y, respectively, then f o ix = _ and iy o f = _ .

25. If f is a one-to-one correspondence from X to Y, then f 1 o f = and f o f 1 =

26. If f is a one-to-one function from X to Y and g is a one-to-one function from Y to Z, you
prove that g o f is one-to-one by supposing that and then showing that

27. If f is an onto function from X to Y and g is an onto function from Y to Z, you prove that
g o f is onto by supposing that - and then showing that

28. A set is finite if, and only if,

29. To prove that a set A has the same cardinality as a set B you must

30. Given a set A, the reflexive property of cardinality says that __

31. Given sets A and B, the symmetric property of cardinality says that

32. Given sets A, B, and C, the transitive property of cardinality says that

33. A set is called countably infinite if, and only if,

34. A set is called countable if, and only if, __

35. In each of the following, fill in the blank with the word countable or the word uncountable.

(a) The set of all integers is __

(b) The set of all rational numbers is -.
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(c) The set of all real numbers between 0 and 1 is -.

(d) The set of all real numbers is

(e) The set of all computer programs in a given computer language is

(f) The set of all functions from the set of all positive integers, Z+, to {0, 1, 2,3,4,5,6, 7,8, 9}
is -.

36. The Cantor diagonalization process is used to prove that

Answers

1. each, one and only one
2. the unique output element y in Y that is related to 2 by f
3. the value of f at x; the image of x under f; the output of f for the input x

4. the set of all y in Y such that f(x) = y
5. an inverse image of y under f; a preimage of y
6. {x c X I f(x) = y}; the inverse image of y

7. f(x) = g(x) for all x E X
8. the exponent to which b must be raised to obtain x

Or: logby = x 4=> by = x
9. for all xl and x2 in X, if F(x1 ) = F(x 2 ) then xl = x2

10. there exist elements xi and x2 in X such that F(xi) = F(x2 ) and xi 7# x2

11. for all y in Y, there exists at least one element 2 in X such that f(x) = y
12. there exists an element y in Y such that for all elements x in X, f(x) y
13. logically equivalent ways of expression what it means for H to be a one-to-one function (The

second way is the contrapositive of the first.)
14. xl and x2 are any [particular but arbitrarily chosen] elements in X with the property that

F(x£) = F(X 2 ); X1 = X2

15. y is any /particular but arbitrarily chosen] element in Y; there exists at least one element x in
X such that F(x) = y

16. show that there are concrete elements xi and x2 in X with the property that F(xi) = F(X2 )
and x£ 7& x2

17. show that there is a concrete element y in Y with the property that F(x) 5# y for any element
x in X

18. function from X to Y; one-to-one and onto
19. the unique element x in X such that F(x) = y (in other words, F- 1(y) is the unique preimage

of y in X)
20. if n pigeons fly into m pigeonholes and n > m, then at least two pigeons fly into the same

pigeonhole
Or: given any function from a finite set to a smaller finite set, there must be at least two
elements in the function's domain that have the same image in the function's co-domain
Or: a function from one finite set to a smaller finite set cannot be one-to-one

21. if n pigeons fly into m pigeonholes and, for some positive integer k, n > mk, the at least one
pigeonhole contains k + 1 or more pigeons
Or: for any function f from a finite set X to a finite set Y and for any positive integer k, if
N(X) > k. N(Y), then there is some y G Y such that y is the image of at least k + 1 distinct
elements of Y

22. f is onto
23. X; Z; g(f(£))
24. f; f
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25. ix; iy

26. x1 and £2 are any [particular but arbitrarily chosen] elements in X with the property that
(9 ° f)(X1 ) = (9 g f)(X2); xlI = X2

27. z is any /particular but arbitrarily chosen] element in Z; there exists at least one element x in
X such that (g o f)(x) = z

28. it is the empty set or there is a one-to-one correspondence from {1, 2,... , n} to it, where n is
a positive integer

29. show that there exists a function from A to B that is one-to-one and onto;
Or: show that there exists a one-to-one correspondence from A to B

30. A has the same cardinality as A
31. if A has the same cardinality as B, then B has the same cardinality as A
32. if A has the same cardinality as B and B has the same cardinality as C, then A has the same

cardinality as C
33. it has the same cardinality as the set of all positive integers
34. it is finite or countably infinite
35. countable; countable; uncountable; uncountable; countable; uncountable

36. the set of all real numbers between 0 and 1 is uncountable
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General Review Guide: Chapter 8

Recursion

* What is an explicit formula for a sequence? (p. 457)
* What does it mean to define a sequence recursively? (p. 457-8)

* What is a recurrence relation with initial conditions? (p. 458)
* How do you compute terms of a recursively defined sequence? (p. 458)

* Can different sequences satisfy the same recurrence relation? (p. 459)

* What is the "recursive paradigm"? (p. 460)
* How do you develop recurrence relations for sequences that are variations of the towers of

Hanoi sequence? (p. 460)
* How do you develop recurrence relations for sequences that are variations of the Fibonacci

sequence? (p. 464)
* How do you develop recurrence relations for sequences that involve compound interest? (p.

466-7)
* How do you develop recurrence relations for sequences that involve the number of bit, strings

with a certain property? (p. 467)
* How do you find a recurrence relation for the number of ways a set of size n can be partitioned

into r subsets? (p. 469)

Solving Recurrence Relations

* What is the method of iteration for solving a recurrence relation? (p. 475)
* How do you use the formula for the sum of the first n integers and the formula for the sum

of the first n powers of a real number r to simplify the answers you obtain when you solve
recurrence relations? (p. 480)

* How is mathematical induction used to check that the solution to a recurrence relation is
correct? (p. 483)

* What is a second-order linear homogeneous recurrence relation with constant coefficients? (p.
487)

* What is the characteristic equation for a second-order linear homogeneous recurrence relation
with constant coefficients? (p. 489)

* What is the distinct-roots theorem? If the characteristic equation of a relation has two distinct
roots, how do you solve the relation? (p. 491)

* What is the single-root theorem? If the characteristic equation of a relation has a single root,
how do you solve the relation? (p. 497)

General Recursive Definitions

* When a set is defined recursively, what are the three parts of the definition? (p. 500)
* Given a recursive definition for a set, how can you tell that a given element is in the set? (p.

500-1)
* What is structural induction? (p. 502)
* Given a recursive definition for a set, is there a way to tell that a given element is not in the

set? (p. 508, exercises 4, 6a, 8-14)
* What are the recursive definitions for sum, product, union, and intersection? (p. 503-5)
* What is a recursive function? (p. 505)
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Test Your Understanding: Chapter 8

Test yourself by filling in the blanks

1. The reason we can't always specify a sequence by giving its initial terms is that

2. For a sequence a0 , a,, a2 ,... to be defined by an explicit formula means that

3. A recurrence relation for a sequence ao, a1 , a 2 ,... is -. The initial conditions for such a
recurrence relation specify _ .

4. To solve the Tower of Hanoi puzzle, we imagine the first step as consisting of all the moves
needed to , the second step as moving _ , and the third step as _ .

5. The crucial observation used to solve the Fibonacci numbers problem is that the number of
rabbits born at the end of month k is the same as . Also because no rabbits die, all the
rabbits that are alive at the end of month k - 1 are still alive at . So the total number of
rabbits alive at the end of month k equals _ .

6. When interest is compounded periodically, the amount in the account at the end of period k
equals plus _ .

7. A bit string of length k that does not contain the pattern 11 either starts with a , which
is followed by a _ , or it starts with , which is followed by a

8. The Stirling number of the second kind, Snr, can be interpreted as

9. Because any partition of a set X = {x1 , X2 , .. , xn} either contains x, or does not, the number
of partitions of X into r subsets equals - plus

10. To find an explicit formula for a recurrence relation by the method of iteration, you start by
writing down and then you use the recurrence relation to

11. A sequence a1 , a2 , a 3 ,... is called an arithmetic sequence if, and only if, there is a constant d
such that , or, equivalently,

12. A sequence a1 , a2 , a3 ,... is called an geometric sequence if, and only if, there is a constant r
such that or, equivalently,

13. Two useful formulas for simplifying explicit formulas for recurrence relations that have been
obtained by iteration are and _ .

14. When an explicit formula for a recurrence relation has been obtained by iteration, the correct-
ness of the formula can be checked by

15. A second-order linear homogeneous recurrence relation with constant coefficients is a recurrence
relation of the form for all integers k > , where

16. Given a recurrence relation of the form ak - Aak-1 + Bak-2 for all integers k > 2, the
characteristic equation of the relation is

17. If a sequence a1, a2, a3, ... is defined by a second-order linear homogeneous recurrence relation
with constant coefficients and the characteristic equation for the relation has two distinct roots
r and s (which could be complex numbers), then the sequence satisfies an explicit formula of
the form -.

18. If a sequence a1 , a2 , a 3 ,... is defined by a second-order linear homogeneous recurrence relation
with constant coefficients and the characteristic equation for the relation has only a single root
r, then the sequence satisfies an explicit formula of the form
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19. The BASE for a recursive definition of a set is

20. The RECURSION for a recursive definition of a set is -.

21. The RESTRICTION for a recursive definition of a set is

22. One way to show that a given element is in a recursively defined set is to start with an element
or elements in the and apply the rules from the _ until you obtain the given element.

23. Another way to show that a given element is in a recursively defined set is to use to
characterize all the elements of the set and then observe that the given element satisfies the
characterization.

24. To prove that every element in a recursively defined set S satisfies a certain property, you show
that and that, for each rule in the RECURSION, if then-.

25. A function is said to be defined recursively if, and only if,

Answers

1. two sequences may have the same initial terms and yet have different terms later on
2. an equals an algebraic expression in the variable n
3. a formula that relates each term ak of the sequence to certain of its predecessors; enough

initial values of the sequence to enable subsequent values to be computed using the recurrence
relation

4. transfer the top k -1 disks from the initial pole to the pole that is not the ultimate target
pole;
the bottom disk from the initial pole to the target pole;
consisting of all the moves needed to transfer the top k -1 disks from the pole that is not the
ultimate target pole to the target pole

5. the number of rabbits alive at the end of month k- 2;
the end of month k;
the sum of the number of rabbits alive at the end of month k - 1 plus the number alive at the
end of month k- 2

6. the amount in the account at the end of period k- 1;
the interest earned during period k

7. 0; bit string of length k- 1 that does not contain the pattern 11;
01; bit string of length k- 2 that does not contain the pattern 11

8. the number of ways a set of size n can be partitioned into r subsets
9. the number of partitions of X into r subsets of which {Ix} is one; the number of partitions of

X into r subsets, none of which is {jx}

10. as many terms of the sequence as are specified in the initial conditions; compute subsequent
terms of the sequence by successive substitution

11. ak = ak-1 + d, for all integers k > 1;
an = ao + dn, for all integers n > 0

12. ak = rakt1, for all integers k > 1;
an = aor', for all integers n > 0

13. the formula for the sum of the terms of a geometric sequence;
the formula for the sum of the first n positive integers

14. mathematical induction

15. ak = Aak-1 + Bak-2; 2; A and B are fixed real numbers with B $ 0
16. t2 - At-B = 0
17. an = Crn + Ds"l, where C and D are real or complex numbers
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18. an = Cr' + Dnr', where C and D are real numbers
19. a statement that certain objects belong to the set
20. a collection of rules indicating how to form new set objects from those already known to be in

the set
21. a statement that no objects belong to the set other than those coming from either the BASE

or the RECURSION
22. BASE; RECURSION
23. structural induction
24. each object in the BASE satisfies the property

the rule is applied to an object or objects in the BASE
the object defined by the rule also satisfies the property

25. its rule of definition refers to itself
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General Review Guide: Chapter 9

Definitions: How are the following terms defined?

* real-valued function of a real variable (p. 510)

* graph of a real-valued function of a real variable (p. 511)

* power function with exponent a (p. 511)

* floor function (p. 512)

* multiple of a real-valued function of a real variable (p. 514)

* increasing function (pp. 515-6)

* decreasing function (pp. 515-6)

* f (x) is Q(g(x), where f and g are real-valued functions of a real variable defined on the same
set of nonnegative real numbers (p. 519)

. f(x) is O(g(x), where f and g are real-valued functions of a real variable defined on the same
set of nonnegative real numbers (p. 519)

* t(x) is E{(g(x), where f and g are real-valued functions of a real variable defined on the same
set of nonnegative real numbers (p. 519)

* algorithm A is E(g(n) (or A has order g(n)) (p. 533)

* algorithm A is Q(g(n) (or A has a best case order g(n)) (p. 533)

* algorithm A is O(g(n) (or A has a worst case order g(n)) (p. 533)

Polynomial and Rational Functions and Their Orders

* What is the difference between the graph of a function defined on an interval of real numbers
and the graph of a function defined on a set of integers? (p. 513)

* How do you graph a multiple of a real-valued function of a real variable? (p. 514)

* How do you prove that a function is increasing (decreasing)? (p. 516)

* What are some properties of 0-, Q-, and e-notation? Can you prove them? (p. 521)

* If x > 1, what is the relationship between xr and x8 , where r and s are rational numbers and
r < s? (p. 522)

* Given a polynomial, how do you use the definition of 1-notation to show that the polynomial
has order xrc, where n is the degree of the polynomial? (pp. 523-5)

* What is the theorem on polynomial orders? (p. 526)

* What is an order for the sum of the first n integers? (p. 527)

Efficiency of Algorithms

* How do you compute the order of an algorithm segment that contains a loop? a nested loop?
(pp. 533-35)

* How do you find the number of times a loop will iterate when an algorithm segment is executed?
(p. 534)

* How do you use the theorem on polynomial orders to help find the order of an algorithm
segment? (p. 535)

* What is the sequential search algorithm? How do you compute its worst case order? its average
case order? (p. 536)

* What is the insertion sort algorithm? How do you compute its best and worst case orders?
(p. 536)

Logarithmic and Exponential Orders

* What do the graphs of logarithmic and exponential functions look like? (pp. 544-5)
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* What can you say about the base 2 logarithm of a number that is between two consecutive
powers of 2? (p. 546)

* How do you compute the number of bits needed to represent a positive integer in binary
notation? (p. 547)

* How are logarithms used to solve recurrence relations? (p. 548)

* If b > 1, what can you say about the relation among log bX, xr, and X log bX? (p. 550)
* If b > 1 and c > 1, how are orders of logb x and loge x related? (p. 552)

* What is an order for a harmonic sum? (p. 553)

* What is a divide-and-conquer algorithm? (p. 557)
* What is the binary search algorithm? (p. 557)
* What is the worst case order for the binary search algorithm, and how do you find it? (p.

560)
* What is the merge sort algorithm? (p. 564)
* What is the worst case order for the merge sort algorithm, and how do you find it? (p. 567)

Test Your Understanding: Chapter 9

Test yourself by filling in the blanks.

1. If f is a real-valued function of a real variable, then the domain and co-domain of f are both

2. A point (X, y) lies on the graph of a real-valued function of a real variable f if, and only if,

3. If a is any nonnegative real number, then the power function with exponent a, p,, is defined
by __

4. Given a function f: R R and a real number M, the function Mf is defined by

5. Given a function f: R R, to prove that f is increasing, you suppose that and then
you show that

6. Given a function f: R R, to prove that f is decreasing, you suppose that and then
you show that

7. A sentence of the form "A Ig(x)j < If(x)l for all x > a," translates into Q-notation as

8. A sentence of the form "If(x)| < B Ig(x)| for all x > b," translates into O-notation as

9. A sentence of the form "A Ig(x)I < If(x)I < B Ig(x)I for all x > k," translates into e-notation
as

10. When x > 1, x 2
2 2 and 25 .2

11. According to the theorem on polynomial orders, if p(x) is a polynomial in XI then p(.r) is
3(Xn), where n is

12. If n is a positive integer, then 1 + 2 + 3 + + n has order

13. When an algorithm segment contains a nested for-next loop, you can find the number of
times the loop will iterate by constructing a table in which each column represents __

14. In the worst case, the sequential search algorithm has to look through elements of the
input array before it terminates
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15. The worst case order of the insertion sort algorithm is - , and its average case order is

16. The domain of the exponential function is , and its range is

17. The domain of the logarithmic function is , and its range is

18. If k is an integer and 2 k < 2 < 2 k , then [log2 xj

19. If b is a real number with b > 1 and if x is a sufficiently large real number, then when the
quantities x, x2, logb x, and x logb x are arranged in order of increasing size, the result is

20. If n is a positive integer, then 1 + 2 + I + + 71 has order

21. To solve a problem using a divide-and-conquer algorithm, you reduce it to _ , which
and so forth until

22. To search an array using the binary search algorithm in each step, you compare a middle
element of the array to . If the middle element is less than _ , you _ , and if the
middle element is greater than _ , you

23. The worst case order of the binary search algorithm is

24. To sort an array using the merge sort algorithm, in each step until the last one you split the
array into approximately two equal sections and sort each section using . Then you -
the two sorted sections.

25. The worst case order of the merge sort algorithm is

Answers

1. sets of real numbers
2. y = f(x)
3. pa (x) = xa for all real numbers x
4. (Mf)(x) = M f(x) for x C R
5. x1 and x2 are any real numbers such that x1 < x2

f(xI) < f(X2)

6. x1 and x2 are any real numbers such that x] < x2

7f(x) > f(x2)
7. f (x) is Q(g(x))
8. f (x) is e(g(x))
9. f (x) is )(3 (9x))

10. >,>
11. the degree of p(X)
12. n2

13. one iteration of the innermost loop
14. n
15. n2 , n2

16. the set of all real numbers, the set of all positive real numbers
17. the set of all positive real numbers, the set of all real numbers
18. k

19. logbKX < X < XKlogbX < X
2

20. In x (or, equivalently, log2 x)
21. a fixed number of smaller problems of the same kind

can themselves be reduced to the same finite number of smaller problems of the same kind
easily resolved problems are obtained
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22. the element you are looking for
the element you are looking for
apply the binary search algorithm to the lower half of the array
the element you are looking for
apply the binary search algorithm to the upper half of the array

23. log2 n, where n is the length of the array
24. merge sort; merge
25. n 1og 2 n
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General Review Guide: Chapter 10

Definitions: How are the following terms defined?

* binary relation from a set A to a set B (p. 572)

* inverse of a binary relation from a set A to a set B (p. 578)

* n-ary relation R on Al x A2 x ... x An (p. 581)
* reflexive, symmetric, and transitive properties of a binary relation (p. 584)

* transitive closure of a relation (p. 588)
* equivalence relation on a set(p. 597)

* equivalence class(p. 599)
* a is congruent to b modulo d (p. 597)

* plaintext and cyphertext (p. 611)

* residue of a modulo n (p. 614)
* d is a linear combination of a and b (p. 619)

* a and b are relatively prime (p. 621)

* an inverse of a modulo n (p. 622)
* antisymmetric binary relation (p. 632)

* partial order relation (p. 634)

* a and b are comparable (p. 639)

* total order relation (p. 639)

* chain, length of a chain (p. 640)
* maximal element, greatest element, minimal element, least element (p. 641)

* topological sorting (p. 642)

General Binary Relations

* Given the definition of a binary relation as a subset of a Cartesian product, what does it mean
for one element to be related to another? (p. 572)

* How do you draw an arrow diagram for a binary relation? (p. 574)

* A function f from A to B is a binary relation from A to B that satisfies what special properties?
(p. 575)

* Given a binary relation on a set, how do you draw a directed graph for the relation? (p. 580)

Properties of Binary Relations and Equivalence Relations

* How do you show that a binary relation on a finite set is reflexive? symmetric? transitive? (p.
585)

* How do you show that a binary relation on an infinite set is reflexive? symmetric? transitive?
(p. 589-92)

* How do you show that a binary relation on a set is not reflexive? not symmetric? not transitive?
(p. 585, p. 590)

* How do you find the transitive closure of a relation? (p. 588)

* What is the binary relation induced by a partition of a set? (p. 595)
* How do you prove basic properties of equivalence classes? (p. 602)

* Given an equivalence relation on a set A, what is the relationship between the distinct equiv-
alence classes of the relation and the set A? (p. 603)

* In what way are rational numbers equivalence classes? (p. 607)
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Cryptography

* How does the Caesar cipher work? (p. 611)

* If a, b, and n are integers with n > 1, what are some different ways of expressing the fact that
n I (a - b)? (p. 613)

* If n is an integer with n > 1, is congruence modulo n an equivalence relation on the set of all
integers? (p. 614)

* How do you add, subtract, and multiply integers modulo an integer n > 1? (p. 615)

* What is an efficient way to compute ak where a is an integer with a > 1 and k is a large
integer? (p. 618)

* How do you express the greatest common divisor of two integers as a linear combination of
the integers? (p. 620)

* When can you find an inverse modulo n for a positive integer a, and how do you find it? (p.
621)

* How do you encrypt and decrypt messages using RSA cryptography? (p. 624)

* What is Euclid's lemma? How is it proved? (p. 625)

* What is Fermat's little theorem? How is it proved? (p. 626)

* What is the Chinese remainder theorem? How is it proved? (p. 627)

* Why does the RSA cipher work? (p. 628)

Partial Order Relations

* How do you show that a relation on a set is or is not antisymmetric? (pp. 632-4)

* If A is a set with a partial order relation R, S is a set of strings over A, and a and b are in S,
how do you show that a -< b, where -< denotes the lexicographic ordering of S? (p. 636)

* How do you construct the Hasse diagram for a partial order relation? (p. 637)

* How do you find a chain in a partially ordered set? (p. 640)

* Given a set with a partial order, how do you construct a topological sorting for the elements
of the set? (p. 642)

* Given a job scheduling problem consisting of a number of tasks, some of which must be
completed before others can be begun, how can you use a partial order relation to determine
the minimum time needed to complete the job? (p. 644)

Test Your Understanding: Chapter 10

Test yourself by filling in the blanks.

1. A binary relation R from A to B is

2. If R is a binary relation, the notation xRy means that

3. If R is a binary relation, the notation .r fi y means that

4. For a binary relation R on a set A to be reflexive means that -.

5. For a binary relation R on a set A to be symmetric means that -.

6. For a binary relation R on a set A to be transitive means that

7. To show that a binary relation R on an infinite set A is reflexive, you suppose that and
you show that
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8. To show that a binary relation R on an infinite set A is symmetric, you suppose that
and you show that -.

9. To show that a binary relation R on an infinite set A is transitive, you suppose that and
you show that

10. To show that a binary relation R on a set A is not reflexive, you

11. To show that a binary relation R on a set A is not symmetric, you

12. To show that a binary relation R on a set A is not transitive, you -

13. Given a binary relation R on a set A, the transitive closure of R is the binary relation Rt on
A that satisfies the following three properties: _ , , and

14. For a binary relation on a set to be an equivalence relation, it must be

15. The notation m - n (mod d) is read and means that -.

16. Given an equivalence relation R on a set A and given an element a in A, the equivalence class
of a is denoted and is defined to be

17. If A is a set, R is an equivalence relation on A, and a and b are elements of A, then either
[a] = [b] or

18. If A is a set and R is an equivalence relation on A, then the distinct equivalence classes of R
form

19. Let A = Z x (Z -{0}), and define a binary relation R on A by specifying that for all (a,b)
and (c, d) in A, (a, b)R(c, d) if, and only if, ad = be. Then there is exactly one equivalence
class of R for each -.

20. When letters of the alphabet are encrypted using the Caesar cipher, the encrypted version of
a letter is

21. If a, b, and n are integers with n > 1, the following are all different ways of expressing the fact
that n I (a -b): -, ,

22. If a, b, c, d, m and n are integers with n > 1 and if a - c (mod n) and b -- d (mod n), then
a + b _ , a- b =_, ab =_, and a' --

23. If a, n, and k are positive integers with n > 1, an efficient way to compute ak (mod n) is to
write k as a and use the facts about computing products and powers modulo n.

24. To express a greatest common divisor of two integers as a linear combination of the integers,
you use the extended algorithm.

25. To find an inverse for a positive integer a modulo an integer n with n > 1, you express the
number 1 as -.

26. To encrypt a message M using RSA cryptography with public key pq and e, you use the
formula , and to decrypt a message C, you use the formula _ , where -

27. Euclid's lemma says that for all integers a, b, and c if gcd(a, c) = 1 and a I be, then -.

28. Fermat's little theorem says that if p is any prime number and a is any integer such that p f a
then

29. The Chinese remainder theorem says that if na, n2,... ., nk are pairwise relatively prime positive
integers and a1 , a 2 ,., ak are any integers, then the congruences x - ai (mod ni) for i -

1,2,...,k,havea

http://pakimonda.blog.com 
paki.monda@gmail.com 
paki.monda@yahoo.com



Chapter 10 Review 415

30. The crux of the proof that the RSA cipher works is that if (1) p and q are large prime numbers,
(2) M < pq, (3) M is relatively prime to pq, (4) e is relatively prime to (p- 1)(q -1), and (5)
d is a positive inverse for e modulo (p -1)(q -1), then M =--.

31. For a binary relation R on a set A to be antisymmetric means that

32. To show that a binary relation R on an infinite set A is antisymmetric, you suppose that
and you show that

33. To show that a binary relation R on a set A is not antisymmetric, you

34. To construct a Hasse diagram for a partial order relation, you start with a directed graph of
the relation in which all arrows point upward and you eliminate , _ , and

35. If A is a set that is partially ordered with respect to a relation -< and if a and b are elements
of A, we say that a and b are comparable if, and only if, or -.

36. A relation -< on a set A is a total order if, and only if,

37. If A is a set that is partially ordered with respect to a relation -<, and if B is a subset of A,
then B is a chain if, and only if, for all a and b in B, _ .

38. Let A be a set that is partially ordered with respect to a relation -, and let a be an element
of A.

(a) a is maximal if, and only if,

(b) a is a greatest element of A if, and only if,

(c) a is called minimal if, and only if, __

(d) a is called a least element of A if, and only if,

39. Given a set A that is partially ordered with respect to a relation -<, the relation -<' is a
topological sorting for --(, if, and only if, -<' is a and for all a and b in A if a - b then

40. PERT and CPM are used to produce efficient

Answers

1. a subset of A x B

2. x is related to y by R
3. x is not related to y by R

4. for all x in A; x R x
5. for all x and y in A, if x R y then y R x
6. for all r, y, and z in A, if x R y and y R z then x R z

7. x is any element of A; x R x
8. x and y are any elements of A such that x R y; y R x

9. x, y, and z are any elements of A such that x R y and y R z; x R z
10. show the existence of an element x in A such that x x 2

11. show the existence of elements x and y in A such that x R y but y 0 x
12. show the existence of elements x, y, and z in A such that xf R y and y R z but x z

13. Rt is transitive; R C Rt; If S is any other transitive relation that contains R, then Rt C S
14. reflexive, symmetric, and transitive

15. m is congruent to n modulo d; d divides m- n

16. [a]; the set of all x in A such that x R a
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17. [a] n [b] = 0
18. a partition of A
19. rational number

20. three places in the alphabet to the right of the letter, with X wrapped around to A, Y to B,
and Z to C

21. a - b (mod n)
a b + kn for some integer k
a and b have the same nonnegative remainder when divided by n
a mod n= b mod n

22. (c + d) (mod n); (c -d) (mod n); (cd) (mod n); cm (mod n)
23. sum of powers of 2

24. version of the Euclidean
25. a linear combination of a and n
26. C = Me mod pq; M = Cd mod pq; d is a positive inverse for e modulo (p- 1)(q -1)

27. a I b
28. aPe -1 (mod p)
29. simultaneous solution x that is unique modulo n, where n = n1n 2 ... nk

30. Mcd (mod pq)
31. for all a and b in A, if a R b and b R a then a = b

32. a and b are any elements of A with a R b and b R a; a = b

33. show the existence of elements a and b in A such that a R b and b R a and a 0 b

34. all loops; all arrows whose existence is implied by the transitive property; the direction indi-
cators on the arrows

35. a -< b; b -< a
36. for any two elements a and b in A; either a -< b or b -< a

37. a and b are comparable

38.
(a) for all b in A either b < a or b and a are not comparable
(b) for all b in A, b -< a
(c) for all b in A either a - b or b and a are not comparable
(d) for all b in A, a -< b

39. total order; a - b
40. scheduling of tasks
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General Review Guide: Chapter 11

Definitions: How are the following terms defined?

* graph (p. 650)

* directed graph (p. 653)
• simple graph (p. 656)

* complete graph on n vertices (p. 656)
* complete bipartite graph on (m, n) vertices (p. 657)

* subgraph (p. 657)

* degree of a vertex in a graph, total degree of a graph (p. 658)

* walk, path, simple path, closed walk, circuit, simple circuit (p. 667)
* trivial circuit, nontrivial circuit (p. 669)
* connected vertices, connected graph (p. 669)
* connected component of a graph (p. 670)

* Euler circuit in a graph (p. 671)

* Euler path in a graph (p. 675)
* Hamiltonian circuit in a graph (p. 677)
* adjacency matrix of a directed (or undirected) graph (pp. 685-6)
* symmetric matrix (p. 687)

* isomorphic graphs (p. 698)

* isomorphic invariant for graphs (p. 701)
* circuit-free graph (p. 705)

* tree (p. 705)
* terminal vertex (or leaf), internal vertex (or branch vertex) (p. 710)
* rooted tree, level of a vertex in a rooted tree, height of a rooted tree (p. 715)
* parents, children, siblings, descendants, and ancestors in a rooted tree (p. 715)

* binary tree, full binary tree (p. 716)

* spanning tree (p. 724)
* weighted graph, minimum spanning tree (p. 725)

Graphs

* What does the handshake theorem say? In other words, how is the total degree of a graph
related to the number of edges of the graph? (p. 659)

* How can you use the handshake theorem to determine whether graphs with specified properties
exist? (pp. 660, 662)

* If an edge is removed from a nontrivial circuit in a graph, does the graph remain connected?
(p. 670)

* A graph has an Euler circuit if, and only if, it satisfies what two conditions? (p. 675)

* A graph has a Hamiltonian circuit if, and only if, it satisfies what four conditions? (p. 678)

* What is the traveling salesman problem? (p. 679)
* How do you find the adjacency matrix of a directed (or undirected) graph? How do you find

the graph that corresponds to a given adjacency matrix? (pp. 685-6)

* How can you determine the connected components of a graph by examining the adjacency
matrix of the graph? (p. 688)

* How do you multiply two matrices? (p. 689)
* How do you use matrix multiplication to compute the number of walks from one vertex to

another in a graph? (p. 694)
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* How do you show that two graphs are isomorphic? (p. 698)

* What are some invariants for graph isomorphisms? (p. 701)

Trees

* If a tree has at least two vertices, how many vertices of degree 1 does it have? (p. 709)

* If a tree has n vertices, how many edges does it have? (p. 710)
* If a connected graph has n vertices, what additional property guarantees that it will be a tree?

(p. 714)
* Given a full binary tree, what is the relation among the number of its internal vertices, terminal

vertices, and total number of vertices? (p. 717)
* Given a binary tree, what is the relation between the number of its terminal vertices and its

height? (p. 718)
* How does Kruskal's algorithm work? (p. 726)

* How do you know that Kruskal's algorithm produces a minimum spanning tree? (p. 727)
* How does Prim's algorithm work? (p. 729)

* How do you know that Prim's algorithm produces a minimum spanning tree? (p. 730)

Test Your Understanding: Chapter 11

Test yourself by filling in the blanks.

1. A graph consists of two finite sets: and , where each edge is associated with a set
consisting of

2. A loop in a graph is

3. Two distinct edges in a graph are parallel if, and only if,

4. An edge is said to its endpoints.

5. Two vertices are called adjacent if, and only if, -.

6. An edge is incident on

7. Two edges incident on the same endpoint are

8. A vertex on which no edges are incident is

9. A graph with no vertices is

10. In a directed graph, each edge is associated with

11. A simple graph is -.

12. A complete graph on n vertices is a

13. A complete bipartite graph on (m, n) vertices is a simple graph whose vertices can be divided
into two distinct sets V1 and V2 in such a way that (1) each of the m vertices in VI is -
to each of the n vertices in V2 , no vertex in V1 is connected to _ , and no vertex in V2 is
connected to

14. A graph H is a subgraph of a graph G if, and only if, (1) , (2) _ , and (3)

15. The degree of a vertex in a graph is
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16. The total degree of a graph is

17. The handshake theorem says that the total degree of a graph is

18. In any graph the number of vertices of odd degree is

19. Let G be a graph and let v and w be vertices in G.

(a) A walk from v to w is

(b) A path from v to w is

(c) A simple path from v to w is

(d) A closed walk is

(e) A circuit is

(f) A simple circuit is

(g) A trivial circuit is

(h) Vertices v and w are connected if, and only if,

20. A graph is connected if, and only if,

21. Removing an edge from a nontrivial circuit in a graph does not

22. An Euler circuit in a graph is __

23. A graph has an Euler circuit if, and only if,

24. Given vertices v and w in a graph, there is an Euler path from v to w if, and only if,

25. A Hamiltonian circuit in a graph is

26. If a graph G has a nontrivial Hamiltonian circuit, then G has a subgraph H with the following
properties: , , , and

27. A traveling salesman problem involves finding a that minimizes the total distance traveled
for a graph in which each edge is marked with a distance.

28. In an adjacency matrix for a directed graph, the entry in the ith row and jth column is

29. In an adjacency matrix for a (undirected) graph, the entry in the ith row and jth column is

30. An n x n square matrix is called symmetric if, and only if, for all integers i and j from 1 to n,
the entry in row and column equals the entry in row and column

31. The ijth entry in the product of two matrices A and B is obtained by multiplying row
of A by row of B.

32. In an n x n identity matrix the entries along the diagonal are all and the off-diagonal
entries are all-.

33. If G is a graph with vertices vI, v2,.. .., v and A is the adjacency matrix of G, for each positive
integer n and for all integers i and j with i, j = 1, 2, ... , m, the ijth entry of A' =

34. If G and G' are graphs, then G is isomorphic to G' if, and only if, there exist a one-to-one
correspondence g from the vertex set of G to the vertex set of G' and a one-to-one correspon-
dence h from the edge set of G to the edge set of G' such that for all vertices v and edges e in
G, v is an endpoint of e if, and only if,

35. A property P is an isomorphic invariant for graphs if, and only if, given any graphs G and G',
if G has property P and G' is isomorphic to G then -.
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36. Some invariant properties for graph isomorphisms are , . . . .
__ , , and

37. A circuit-free graph is a graph with

38. A forest is a graph that is , and a tree is a graph that is

39. A trivial tree is a graph that consists , and an empty tree is a tree that

40. Any tree with at least two vertices has at least one vertex of degree

41. If a tree T has at least two vertices, then a terminal vertex (or leaf) in T is a vertex of degree
and an internal vertex (or branch vertex) in T is a vertex of degree

42. For any positive integer n, any tree with n vertices has

43. For any positive integer n, if G is a connected graph with n vertices and n -1 edges then

44. A rooted tree is a tree in which _ . The level of a vertex in a rooted tree is . The
height of a rooted tree is _

45. A binary tree is a rooted tree in which

46. A full binary tree is a rooted tree in which

47. If k is a positive integer and T is a full binary tree with k internal vertices, then T has a total
of vertices and has terminal vertices.

48. If T is a binary tree that has t terminal vertices and height h, then t and h are related by the
inequality

49. A spanning tree for a graph G is

50. A weighted graph is a graph for which , and the total weight of the graph is

51. A minimum spanning tree for a connected weighted graph is __

52. In Kruskal's algorithm, the edges of a connected, weighted graph are examined one by one in
order of

53. In Prim's algorithm, a minimum spanning tree is built by expanding outward

Answers

1. a finite set of vertices, a finite set of edges, either one or two vertices called its endpoints

2. an edge with a single endpoint

3. they have the same set of endpoints
4. connect
5. they are connected by an edge

6. each of its endpoints

7. adjacent
8. isolated
9. empty

10. an ordered pair of vertices called its endpoints

11. a graph with no loops or parallel edges

12. simple graph with n vertices whose set of edges contains exactly one edge for each pair of
vertices
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13. connected by an edge, any other vertex in V1, any other vertex in V2
14. every vertex in H is also a vertex in G, every edge in H is also a vertex in G, every edge in H

has the same endpoints as it has in G
15. the number of edges that are incident on the vertex, with an edge that is a loop counted twice
16. the sum of the degrees of all the vertices of the graph
17. equal to twice the number of edges of the graph
18. an even number
19.

(a) a finite alternating sequence of adjacent vertices and edges of G
(b) a walk that does not contain a repeated edge
(c) a path that does not contain a repeated vertex
(d) a walk that starts and ends at the same vertex
(e) a closed walk that does not contain a repeated edge
(f) a circuit that does not have any repeated vertex other than the first and the last
(g) a walk consisting of a single vertex and no edge
(h) there is a walk from v to w

20. given any two vertices in the graph there is a walk from one to the other
21. disconnect the graph
22. a circuit that contains every vertex and every edge of the graph
23. the graph is connected and every vertex has even degree
24. the graph is connected, v and w have odd degree, and all other vertices have even degree
25. a simple circuit that includes every vertex of the graph
26. H contains every vertex of G; H is connected; H has the same number of edges as vertices;

every vertex of H has degree 2
27. Hamiltonian circuit
28. the number of arrows from vi (the ith vertex) to vj (the jth vertex)
29. the number of edges connecting vi (the ith vertex) and vj (the jth vertex)
30. i; j; j; i
31. i; j
32. 1; 0
33. the number of walks of length n from vi to vj
34. g(v) is an endpoint of h(e)
35. G' has property P
36. has n vertices; has m edges; has a vertex of degree k; has mn vertices of degree k; has a circuit

of length k; has a simple circuit of length k; has m simple circuits of length k; is connected;
has an Euler circuit; has a Hamiltonian circuit

37. no nontrivial circuits
38. circuit-free; connected and circuit-free
39. of a single vertex and no edges; has no vertices or edges
40. 1
41. 1; at least 2
42. n - 1 edges
43. G is a tree
44. one vertex is distinguished from the others and is called the root

the number of edges along the unique path between it and the root
the maximum level of any vertex of the tree

45. every parent has at most two children
46. every parent has exactly two children
47. 2k+1; k+1
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48. t < 2 , or, equivalently, log2 t < h
49. a subgraph of G that contains every vertex of G and is a tree

50. each edge has an associated real number weight
the sum of the weights of all the edges of the graph

51. a spanning tree that has the least possible total weight compared to all other spanning trees
for the graph

52. weight, starting with an edge of least weight
53. in a sequence of adjacent edges starting from some vertex
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General Review Guide: Chapter 12

Definitions: How are the following terms defined?

* alphabet, string over an alphabet, formal language over an alphabet (p. 736)

* En, E* (the Kleene closure of Z), and E+ (the positive closure of E), where E is an alphabet
(p. 736)

* concatenation of xr and y, where x and y are strings (p. 738)
* concatenation of L and L', where L and L' are languages (p. 738)

* union of L and L', where L and L' are languages (p. 738)

* Kleene closure of L , where L is a language (p. 738)

* regular expression over an alphabet (p. 738)

* language defined by a regular expression (p. 739)

* finite-state automaton (p. 748)

* language accepted by a finite-state automaton (p. 750)

* eventual-state function for a finite-state automaton (p. 751)
* regular language (p. 759)
* *-equivalence of states in a finite-state automaton (p. 764)

* k-equivalence of states in a finite-state automaton (p. 765)

* quotient automaton (p. 769)
* equivalent automata (p. 771)

Regular Expressions

* What is the order of precedence for the operations in a regular expression? (p. 737)

* How do you find the language defined by a regular expression? (p. 740)
* Given a language, how do you find a regular expression that defines the language? (p. 741)
* What are some practical uses of regular expressions? (p. 742)

Finite-State Automata

* How do you construct an annotated next-state table for a finite-state automaton given the
transition diagram for the automaton? (p. 748)

* How do you construct a transition diagram for a finite-state automaton given its next-state
table? (p. 749)

* How do you find the state to which a finite-state automaton goes if the characters of a string
are input to it? (p. 750)

* How do you find the language accepted by a finite-state automaton? (p. 750)
* Given a simple formal language, how do you construct a finite-state automaton to accept the

language? (p. 752)
* How can you use software to simulate the action of a finite-state automaton? (p. 754)
* What do the two parts of Kleene's theorem say about the relation between the language

accepted by a finite-state automaton and the language defined by a regular expression? (pp.
756, 758)

* How can the pigeonhole principle be used to show that a language is not regular? (p. 759)

* How do you find the k-equivalence classes for a finite-state automaton? (p. 766)

* How do you find the *-equivalence classes for a finite-state automaton? (p. 767)

* How do you construct the quotient automaton for a finite-state automaton? (p. 769)
* What is the relation between the language accepted by a finite-state automaton and the lan-

guage accepted by the corresponding quotient automaton? (p. 769)
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Test Your Understanding: Chapter 12

Test yourself by filling in the blanks.

1. If x and y are strings, the concatenation of x and y is

2. If L and L' are languages, the concatenation of L and L' is

3. If L and L' are languages, the union of L and L' is -.

4. If L is a language, the Kleene closure of L is

5. The set of regular expressions over a finite alphabet E is defined recursively. The BASE for
the definition is the statement that . The RECURSION for the definition specifies that if
r and s are any regular expressions in the set, then the following are also regular expressions
in the set: _ , _ , and

6. The function that associates a language to each regular expression over an alphabet E is defined
recursively. The BASE for the definition is the statement that L(0) = , L(e) =
and L(a) =_- for every a e E. The RECURSION for the definition specifies that if L(r)
and L(ri) are the languages defined by the regular expressions r and r' over E, then L(rr')

, L(r I r') = , and L(r*) =__

7. The notation [A -C r -z] is an example of a - and denotes the regular expression

8. Use of a single dot in a regular expression stands for

9. The symbol A, placed at the beginning of a character class, indicates

10. The symbol + following a regular expression r means that

11. If r is a regular expression, the notation r? denotes

12. If r is a regular expression, the notation ran} means that and the notation r{m,n}
means that

13. The five objects that make up a finite-state automaton are , , , , and

14. The next-state table for an automaton shows the values of

15. In the annotated next-state table, the initial state is indicated with an and the accepting
states are marked by -.

16. A string w consisting of input symbols is accepted by a finite-state automaton A if, and only
if, __

17. The language accepted by a finite-state automaton A is

18. If N is the next-state function for a finite-state automaton A, the eventual-state function N*
is defined as follows: for each state s of A and for each string w that consists of input symbols
of A, N*(s,w) =

19. One part of Kleene's theorem says that given any language that is accepted by a finite-state
automaton, there is -_

20. The second part of Kleene's theorem says that given any language defined by a regular expres-
sion, there is

21. A regular language is -.
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22. Given the language consisting of all strings of the form akbk, where k is a positive integer, the
pigeonhole principle can be used to show that the language is __

23. Given a finite-state automaton A with eventual-state function N* and given any states s and
t in A, we say that s and t are *-equivalent if, and only if, _ .

24. Given a finite-state automaton A with eventual-state function N* and given any states s and
t in A, we say that s and t are k-equivalent if, and only if,

25. Given states s and t in a finite-state automaton A, s is 0-equivalent to t if, and only if, either
both s and t are _ or both are __. Moreover, for every integer k > 1, s is k-equivalent
to t if, and only if, (1) s and t are (k - 1)-equivalent and (2)

26. If A is a finite-state automaton, then for some integer K > 0, the set of K-equivalence classes
of states of A equals the set of -equivalence classes of A, and for all such K these are both
equal to the set of ___

27. Given a finite-state automaton A, the set of states of the quotient automaton A is

Answers

1. the string obtained by juxtaposing the characters of x and y
2. {xy I x E L and y C L'}
3. {sI s L or s c L'}
4. {t I t is a concatenation of any finite number of strings in L}
5. 0, e, and each individual symbol in E are regular expressions over E; (rs); (r I s); (r*)
6. 0; {e}; {a}; L(r)L(r'); L(r) U L(r'); (L(r))*
7. character class; (A I B I C I x I y I z)
8. an arbitrary character
9. a character of the same type as those in the range of the class, but not any of the characters

following the A, is to occur at that point in the string
10. the string contains at least one occurrence of r
11. (e I r)
12. r can be concatenated with itself n times; r can be concatenated with itself from m through

n times
13. a finite set of states; a finite set of input symbols; a designated initial state; a designated set

of accepting states; a next-state function that associates a "next-state" with each state and
input symbol of the automaton

14. the next-state function for each state and input symbol of the automaton
15. arrow; double circles
16. when the symbols in the string are input to the automaton in sequence from left to right,

starting from the initial state, the automaton ends up in an accepting state
17. the set of strings that are accepted by A
18. the state to which A goes if it is in state s and the characters of w are input to it in sequence
19. a regular expression that defines the same language
20. a finite-state automaton that accepts the same language
21. a language defined by a regular expression
22. not regular
23. for all input strings w, either N*(s, w) and N*(t, w) are both accepting states or both are

nonaccepting states
24. for all input strings w of length less than or equal to k, either N* (s, w) and N* (t, w) are both

accepting states or both are nonaccepting states
25. accepting states, nonaccepting states; for any input symbol m, N(s, m) and N(t, m) are also

(k - 1)-equivalent
26. (K + 1); *-equivalence classes of states of A
27. the set of *-equivalence classes of states of A
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Tips for Success with Proofs and Disproofs

Make sure your proofs are genuinely convincing. Express yourself carefully and completely - but
concisely! Write in complete sentences, but don't use an unnecessary number of words.

Disproof by Counterexample

* To disprove a universal statement, give a counterexample.
* Write the word "Counterexample" at the beginning of a counterexample.
* Write counterexamples in complete sentences.
* Give values of the variables that you believe show the property is false.
* Include the computations that prove beyond any doubt that these values really do make the

property false.

All Proofs

* Write the word "Proof' at the beginning of a proof.
* Write proofs in complete sentences.
* Start each sentence with a capital letter and finish with a period.

Direct Proof

* Begin each direct proof with the word "Suppose."
* In the "Suppose" sentence:

-Introduce a variable or variables (indicating the general set they belong to - e.g., integers,
real numbers etc.), and

- Include the hypothesis that the variables satisfy.

* Identify the conclusion that you will need to show in order to complete the proof.
* Reason carefully from the "suppose" to the "conclusion to be shown."
* Include the little words (like "Then," "Thus," "So," "It follows that") that make your reasoning

clear.
* Give a reason to support each assertion you make in your proof.

Proof by Contradiction

* Begin each proof by contradiction by writing "Suppose not. That is, suppose...," and continue
this sentence by carefully writing the negation of the statement to be proved.

* After you have written the "suppose," you need to show that this supposition leads logically
to a contradiction.

* Once you have derived a contradiction, you can conclude that the think you supposed is false.
Since you supposed that the given statement was false, you now know that the given statement
is true.

Proof by Contraposition

* Look to see if the statement to be proved is a universal conditional statement.
* If so, you can prove it by writing a direct proof of its contrapositive.
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Formats for Proving Formulas by Mathematical Induction

When using mathematical induction to prove a formula, students are sometimes tempted to present
their proofs in a way that assumes what is to be proved. There are several formats you can use,
besides the one shown most frequently in the textbook, to avoid this fallacy. A crucial point is this:

If you are hoping to prove that an equation is true but you haven't yet done so, either preface
it with the words "We must show that" or put a question mark above the equal sign.

Format 1 (the format used most often in the textbook for the inductive step): Start with
the left-hand side (LHS) of the equation to be proved and successively transform it using definitions,
known facts from basic algebra, and (for the inductive step) the inductive hypothesis until you obtain
the right-hand side (RHS) of the equation.

Format 2 (the format used most often in the textbook for the basis step): Transform the
LHS and the RHS of the equation to be proved independently, one after the other, until both sides
are shown to equal the same expression. Because two quantities equal to the same quantity are
equal to each other, you can conclude that the two sides of the equation are equal to each other.

Format 3: This format is just like Format 2 except that the computations are done in parallel. But
in order to avoid the fallacy of assuming what is to be proved, do NOT put an equal sign between
the two sides of the equation until the very last step. Separate the two sides of the equation with a
vertical line.

Format 4: This format is just like Format 3 except that the two sides of the equation are separated

by an equal sign with a question mark on top:

Format 5: Start by writing something like "We must show that" and the equation you want to
prove true. In successive steps, indicate that this equation is true if, and only if, (4#-) various other
equations are true. But be sure that both the directions of your "if and only if' claims are correct.
In other words, be sure that the .= direction is just as true as the => direction. If you finally get
down to an equation that is known to be true, then because each subsequent equation is true if, and
only if, the previous equation is true, you will have shown that the original equation is true.

Example: Prove that for each integer n > 1,

I1 + 3 + 5 + -+ (2n -1) - n2  -This is the equation.

Proof that the equation is true for n = 1:

Solution (Format 2):
When n = 1, the LHS of the equation equals 1, and the RHS equals 12 which also equals 1. So the
equation is true for n = 1.

Solution (Format 5):
When n = 2, we must show that 1 = 12. Because this is true, the equation is true for n = 1.
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Proof that if the equation is true for n = k then it is true for n = k + 1:

Solution (Format 2):
Suppose that for some integer k > 1, 1 + 3 + 5±... + (2k -1) = k2 . This is the inductive hypothesis.]
We must show that 1 + 3 + 5 + + (2k + 1) = (k + 1)

2
.

But the LHS of the equation to be shown is

1+3±+5+ -+(2k+1) 1 + 3 + 5 + + (2k-1) + (2k + 1)
by making the next-to-last term explicit

k2 + (2k + 1) by inductive hypothesis.

And the RHS of the equation to be shown is

(k + 1)2 k2 +2k+ 1 by basic algebra.

So the LHS and the RHS are equal to the same quantity, and thus they are equal to each other [as
was to be shown].

Solution (Format 3):
Suppose that for some integer k > 1, 1 + 3 + 5 + + (2k -1) = k2 . [This is the inductive hypothesis.]
We must showthat 1+3+5+ +(2k+1)=(k+1) 2 .
But

1±+3+5+ +(2k+ 1) I
=1+3+5+ .. +(2k -1)+(2k+1) I

by making the next-to-last term explicit I
= k 2 + (2k + 1) I

by inductive hypothesis I

(k + 1)2

= k2 +2k+ 1 1 =k 2 +2k+1
by basic algebra I by basic algebra

So the LHS and the RHS are equal to the same quantity, and thus they are equal to each other [as
was to be shown].

Solution (Format 4):
Suppose that for some integer k > 1, 1 + 3 + 5 + (2k -1) = k2

. [This is the inductive hypothesis.]
We must showthat 1+3+5+-. +(2k+1)=(k+1) 2 .
But

1+3+5+ ... (2k+1)

1+3+5+... +(2k- 1)+(2k+1)
by making the next-to-last term explicit

k2 
+ (2k + 1)

by inductive hypothesis
k2 + 2k + 1

(k + 1)2

- k 2 +2k-

- k 2 +2k-

= k2+2k-

by basic algebra

by basic algebra

So the LHS and the RHS are equal to the same quantity, and thus they are equal to each other [as
was to be shown].

Solution (Format 5):
Suppose that for some integer k > 1, 1+3+ 5+ + (2k- 1) = k 2 [This is the inductive hypothesis.]
We must show that 1+3+5+-- +(2k+1)= (k+1)2 .
But this equation is true if, and only if, (->)

1 +3+5±+ -+ (2k-1) + (2k+ 1)
k2 + (2k + 1)

k2 + 2k + 1

(k + 1)2

(k + 1)2

(k + 1)2

by making the next-to-last term explicit
by inductive hypothesis

which is true by basic algebra. Thus the equation to be shown is also true.
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Chapter 1

1. Which of the following is a negation for "Jim is inside and Jan is at the pool."

(a) Jim is inside or Jan is not at the pool.
(b) Jim is inside or Jan is at the pool.
(c) Jim is not inside or Jan is at the pool.
(d) Jim is not inside and Jan is not at the pool.
(e) Jim is not inside or Jan is not at the pool.

2. Which of the following is a negation for "Jim has grown or Joan has shrunk."

(a) Jim has grown or Joan has shrunk.
(b) Jim has grown or Joan has not shrunk.
(c) Jim has not grown or Joan has not shrunk.
(d) Jim has grown and Joan has shrunk.
(e) Jim has not grown and Joan has not shrunk.
(f) Jim has grown and Joan has not shrunk.

3. Write a negation for each of the following statements:

(a) The variable S is undeclared and the data are out of order.
(b) The variable S is undeclared or the data are out of order.
(c) If Al was with Bob on the first, then Al is innocent.
(d) -5 < x < 2 (where x is a particular real number)

4. Are the following statement forms logically equivalent: p V q - p and p V (a p A q)? Include a
truth table and a few words explaining how the truth table supports your answer.

5. State precisely (but concisely) what it means for two statement forms to be logically equivalent.

6. Write the following two statements in symbolic form and determine whether they are logically
equivalent. Include a truth table and a few words explaining how the truth table supports
your answer.

If Sam bought it at Crown Books, then Sam didn't pay full price.

Sam bought it at Crown Books or Sam paid full price.

7. Write the following two statements in symbolic form and determine whether they are logically
equivalent. Include a truth table and a few words explaining how the truth table supports
your answer.

If Sam is out of Schlitz, then Sam is out of beer.

Sam is not out of beer or Sam is not out of Schlitz.

8. Write the converse, inverse, and contrapositive of "If Ann is Jan's mother, then Jose is Jan's
cousin."
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9. Write the converse, inverse, and contrapositive of " If Ed is Sue's father, then Liu is Sue's
cousin."

10. Write the converse, inverse, and contrapositive of "If Al is Tom's cousin, then Jim is Tom's
grandfather."

11. Rewrite the following statement in if-then form without using the word "necessary": Getting
an answer of 10 for problem 16 is a necessary condition for solving problem 16 correctly.

12. State precisely (but concisely) what it means for a form of argument to be valid.

13. Consider the argument form:

p - q
q COp
.pVq

Use the truth table below to determine whether this form of argument is valid or invalid.
Include a truth table and a few words explaining how the truth table supports your answer.

p q 1-p Pq Ip--q q--p pVq
T T F F F F T
T F F T T T T
F T T F T T T
FF .. T T T T F

14. Consider the argument form:

pA q - r
p V q

Therefore r.

Use the truth table below to determine whether this argument form is valid or invalid. Annotate
the table (as appropriate) and include a few words explaining how the truth table supports
your answer.

Ip |Iq |Ir || q |IpA -q |IpA -q -r |IpVq |Iq p |Ir I
T T T F F T T T T
T T FF F T T T F
T F T T T T T T T
T F F T T F T T F
F T T F F T T F T
F T F F F T T F F
F F T F T F T T
FFFT F T F T F

15. Determine whether the following argument is valid or invalid. Include a truth table and a few
words explaining why the truth table shows validity or invalidity.

If Hugo is a physics major or if Hugo is a math major, then he needs to take calculus.

Hugo needs to take calculus or Hugo is a math major.

Therefore, Hugo is a physics major or Hugo is a math major.
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16. Determine whether the following argument is valid or invalid. Include a truth table and a few
words explaining why the truth table shows validity or invalidity.

If 12 divides 709,438 then 3 divides 709,438.
If the sum of the digits of 709,438 is divisible by 9 then 3 divides 709,438.
The sum of the digits of 709,438 is not divisible by 9.

Therefore, 12 does not divide 709,438.

17. Write the form of the following argument. Is the argument valid or invalid? Justify your
answer.

If 54,587 is a prime number, then 17 is not a divisor of 54,587.
17 is a divisor of 54,587.

Therefore, 54,587 is not a prime number.

18. Write the form of the following argument. Is the argument valid or invalid? Justify your
answer.

If Ann has the flu, then Ann has a fever.
Ann has a fever.

Therefore, Ann has the flu.

19. On the island of knights and knaves, you meet three natives, A, B, and C, who address you
as follows:

A: At least one of us is a knave.

B: At most two of us are knaves.

What are A, B, and C?

20. Consider the following circuit.

P

Q

R

S

(a) Find the output of the circuit corresponding to the input P = 1, Q = 0, and R = 1.

(b) Write the Boolean expression corresponding to the circuit.

21. Write 1101012 in decimal form.

22. Write 75 in binary notation.

23. Draw the circuit that corresponds to the following Boolean expression: (P A Q) V (P A PA
Q).(Note for students who have studied some circuit design: Do not simplify the circuit; just
draw the one that exactly corresponds to the expression.)

24. Find a circuit with the following input/output table.
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PQ R I S |

1 110 0

1 0 1 1
1 00 0
0 11 1
0 10 0

25. Find 101112 + 10112.

26. Write 1001102 in decimal form.

27. Write the 8-bit two's complement for 49.

Chapter 2

1. Rewrite the following statement in the form V 2, if then (where each of
the second two blanks are sentences involving the variable x)

Every valid argument with true premises has a true conclusion.

2. Consider the statement "The square of any odd integer is odd."

(a) Rewrite the statement in the form V_ n, . (Do not use the words "if' or
"then.")

(b) Rewrite the statement in the form V n, if then _ . (Make sure you use
the variable n when you fill in each of the second two blanks.)

(c) Write a negation for the statement.

3. Rewrite the following statement formally. Use variables and include both quantifiers V and 3
in your answer.

Every rational number can be written as a ratio of some two integers.

4. Rewrite the following statement formally. Use variables and include both quantifiers V and 3
in your answer.

Every even integer greater than 2 can be written as a sum of two prime numbers.

5. Write a negation for each of the following statements:

(a) For all integers n, if n is prime then n is odd.

(b) V real numbers x, if x < 1 then - > 1.
x

(c) For all integers a and b, if a2 divides b2 then a divides b.

(d) For all real numbers x and y with x < y, there exists an integer n such that x < n < y.

(e) V real numbers x, if x(x -2) > O then x > 2 or x < 0.

(f) V real numbers x, if x(x -2) < O then O < x < 2.

6. Which of the following is a negation for "Given any real numbers a and b, if a and b are rational
then a/b is rational."

http://pakimonda.blog.com 
paki.monda@gmail.com 
paki.monda@yahoo.com



Chapter 2 433

(a) There exist real numbers a and b such that a and b are not rational and a/b is not rational.

(b) Given any real numbers a and b, if a and b are not rational then a/b is not rational.

(c) There exist real numbers a and b such that a and b are not rational and a/b is rational.

(d) Given any real numbers a and b, if a and b are rational then a/b is not rational.

(e) There exist real numbers a and b such that a and b are rational and a/b is not rational.

(f) Given any real numbers a and b, if a and b are not rational then a/b is rational.

7. Which of the following is a negation for "For all real numbers r, there exists a number s such
that rs > 10."

(a) There exists a real number r such that for all real numbers s, rs / 10.

(b) For all real numbers r, there does not exist a number s such that rs > 10.

(c) There exists real numbers r and s such that rs / 10.

(d) For all real numbers r and s, rs ;i 10.

(e) There exists a real number r and there does not exist a real number s such that rs ? 10.

(f) For all real numbers r, there exists a number s such that rs / 10.

(g) There exists a real number r such that there does not exist a real number s with rs + 1.

8. Which of the following is a negation for "There exists a real number x such that for all real
numbers y, xy > y."

(a) There exists a real number x such that for all real numbers y, xy < y.

(b) There exists a real number y such that for all real numbers x, xy < y.

(c) There exist real numbers x and y such that xy < y.

(d) For all real numbers x there exists a real number y such that xy < y.

(e) For all real numbers y there exists a real number x such that xy < y.

(f) For all real numbers x and y, xy < y.

9. Which of the following is a negation for "For any integer n, if n is composite, then n is even
or n > 2."

(a) For any integer n, if n is composite, then n is not even or n < 2.

(b) For any integer n, if n is not composite, then n is not even or n < 2.

(c) For any integer n, if n is not composite, then n is not even and n < 2.

(d) For any integer n, if n is not composite, then n is even and n < 2.

(e) For any integer n, if n is not composite, then n is not even and n < 2.

(f) There exists an integer n such that if n is composite, then n is not even and n < 2.

(g) There exists an integer n such that n is composite and n is not even and n < 2.

(h) There exists an integer n such that if n is not composite, then n is not even and n < 2.

(i) There exists an integer n such that n is composite and n is even and n < 2.

(j) There exists an integer n such that if n is not composite, then n is not even or n < 2.

10. Let T be the statement

V real numbers x, if -1 < x < O then x + 1 > 0.

(a) Write the converse of T.
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(b) Write the contrapositive of T.

11. Rewrite the following statement in if-then form without using the word "only": A graph with
n vertices is a tree only if it has n -1 edges.

12. Are the following two statements logically equivalent? Justify your answer.

(a) A real number is less than 1 only if its reciprocal is greater than 1.

(b) Having a reciprocal greater than 1 is a sufficient condition for a real number to be less
than 1.

13. For each of the following statements, (1) write the statement informally without using variables
or the symbols V or 3, and (2) indicate whether the statement is true or false and briefly justify
your answer.

(a) V integers a, 3 an integer b such that a + b = 0.

(b) 3 an integer a such that V integers b, a + b = 0.

14. For each of the following statements, (1) write the statement informally without using variables
or the symbols V or 3, and (2) indicate whether the statement is true or false and briefly justify
your answer.

(a) V real numbers x, 3 a real number y such that 2 < y.

(b) 3 a real number y such that V real numbers x, x < y.

15. Is the following argument valid or invalid? Justify your answer.

All real numbers have nonnegative squares.
The number i has a negative square.

Therefore, the number i is not a real number.

16. Is the following argument valid or invalid? Justify your answer.

All prime numbers greater than 2 are odd.
The number a is not prime.

Therefore, the number a is not odd.

Chapter 3

1. State precisely (but concisely) what it means for an integer n to be odd.

2. Find a counterexample to show that the following statement is false:

a c a+c
For all nonzero real numbers a, b, c and d,.b + d

b d b +d'

3. Consider the following statement:

Statement A: V integers m and n, if 2m + n is odd then m and n are both
odd.

(a) Write a negation for Statement A.
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(b) Disprove Statement A. That is, show that Statement A is false.

4. If m and n are integers, is 6m2 + 34n -18 an even integer? Justify your answer.

5. Show that the following statement is false: The product of any two irrational numbers is
irrational.

6. State precisely (but concisely) what it means for a number r to be rational.

7. Is 605.83 a rational number? Justify your answer.

8. Is 56.745 a rational number? Justify your answer.

9. State precisely (but concisely) what it means for an integer n to be divisible by an integer d.

10. Is 0 divisible by 3? Justify your answer.

11. Does 12 divide 72? Justify your answer.

12. Outline a proof of the following statement by writing the "starting point" and the "conclusion
to be shown" in a proof of the statement.

V real numbers r and s, if r and s are rational then r -s is rational.

That is, complete the sentences below.

Proof: Suppose

We must show that

13. Prove the following statement directly from the definitions of the terms. Do not use any other
facts previously proved in class or in the text or in the exercises.

2r
For all rational numbers r, and s, if s $4 0, then - is a rational number.

14. Prove the following statement directly from the definitions of the terms. Do not use any other
facts previously proved in class or in the text or in the exercises.

For all integers a, b, and c, if a I b and a I c, then a I (5b + 3c).

15. Use the definition of divisibility to prove: For all integers a, and b, if a divides b then a' divides
b3 .

16. Prove the statement below directly from the definitions of the terms. Do not use any other
facts previously proved in class or in the text or in the exercises.

For all integers n, n2 + n + 1 is odd.

17. Prove the following statement: The sum of any two consecutive integers can be written in the
form 4n + 1 for some integer n.

18. Prove the following statement: For all real numbers x, [x -2] = [xj - 2.

19. Prove the following statement: There is no smallest positive rational number.

20. Prove the following statement by contradiction: For all real numbers r and s, if r is rational
and s is irrational, then r + 2s is irrational.

21. Consider the following statement: For all integers n, if n3 is even then n is even.
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(a) Prove the statement either by contradiction or by contraposition. Clearly indicate which
method you are using.

(b) If you used proof by contradiction in part (a), write what you would "suppose" and
what you would "show" to prove the statement by contraposition. If you used proof by
contraposition. in part (a), write what you would "suppose" and what you would "show"
to prove the statement by contradiction.

22. Consider the following statement: For all real numbers r, if r3 is irrational then r is irrational.

(a) Prove the statement either by contradiction or by contraposition. Clearly indicate which
method you are using.

(b) If you used proof by contradiction in part (a), write what you would "suppose" and
what you would "show" to prove the statement by contraposition. If you used proof by
contraposition in part (a), write what you would "suppose" and what you would "show"
to prove the statement by contradiction.

23. Consider the following statement: For all integers n, if n 3 is odd then n is odd.

(a) Prove the statement either by contradiction or by contraposition. Clearly indicate which
method you are using.

(b) If you used proof by contradiction in part (a), write what you would "suppose" and
what you would "show" to prove the statement by contraposition. If you used proof by
contraposition in part (a), write what you would "suppose" and what you would "show"
to prove the statement by contradiction.

24. True or false? For any irrational number r, r2 is irrational. Justify your answer.

25. Fill in the blanks of the following proof by contradiction that 7 + 4v"2 is an irrational number.
(You may use the fact that VX is irrational.)

Proof: Suppose not. Suppose that 7 + 4v-2 is . By definition of rational, 7 + 4 - b '
where . Multiplying both sides by b gives

7b + 4bxv/- a,

so if we subtract 7b from both sides we have

4bv/ =

Dividing both sides by 4b gives

But then V/2 would be a rational number because . This contradicts our knowledge that
v 2 is irrational. Hence -.

26. Prove by contradiction that 4 + 3V/2 is an irrational number. (You may use the fact that vX
is irrational.)

27. Use the Euclidean algorithm to find the greatest common divisor of 284 and 168. Show your
work.

28. Use the Euclidean algorithm to calculate the greatest common divisor of 10,673 and 11,284.
Show your work.

,.
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Chapter 4

1. Compute Ek=O 2 1k

2. Compute E k2.

3. Use summation notation to rewrite the following: 13- 2 + 33 -43 + 53.

1 11 1 1
4. Use a summation symbol to rewrite the following: 1-2 + 3-- 4 + I6

5. Transform the following summation by making the change of variable j = k + 1:

E k2

k=l

6. Transform the following summation by making the change of variable i = k + 1:

E k2

Z k + n

7. Use repeated division by 2 to find the binary representation of the number 1032. Show your
work.

8. Use the formula
rn+l-1

1+r +r 2 
+. +rn=r 1

(for all real numbers r ? 1 and for all integers n > 0) to find

2 + 22 + 23 + + 2m

where m is an integer that is at least 1.

9. For each integer n > 3, let P(n) be the equation

13+4+5+ .+n= (n-2)(n+3)

n

(Recall that by definition 3 + 4 + 5 + + n = Zi.)
i=3

(a) Is the equation true for n = 3? Justify your answer.

(b) In the inductive step of a proof that this formula is true for all integers n > 3, we suppose
the formula is true when k is substituted in place of n (this is the inductive hypothesis),
and then we show that the equation is true when k + 1 is substituted in place of n. Fill
in the blanks below to write what we suppose and what we must show for this particular
formula.

Proof that for all integers k > 3, if the equation is true for n = k then it is true for
n = k + 1:

Let k be any integer that is greater than or equal to 3, and suppose that

We must show that

(c) Finish the proof started in (b) above.
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10. For each integer n > 3, let P(n) be the equation

2 3+3 4±+ +(n 1). (n -2)(n 2 +2n+3)
3

n

(Recall that by definition 2 3 + 3. 4 + + (n -1)n 1)i.)
i13

(a) Is the equation true for n = 3? Justify your answer.

(b) In the inductive step of a proof that this formula is true for all integers n > 3, we suppose
the formula is true for when k is substituted in place of n (this is the inductive hypothesis),
and then we show that the formula is true when k + 1 is substituted in place of n. Fill
in the blanks below to write what we suppose and what we must show for this particular
formula.

Proof that for all integers k > 3, if the equation is true for n = k then it is true for
n = k + 1:

Let k be any integer that is greater than or equal to 3, and suppose that
We must show that

(c) Finish the proof started in (b) above.

11. For each integer n > 0, let P(n) be the equation

3fln+1 1
1 + 3 + 32 +... + 3n

n

(Recall that by definition 1 + 3 + 32 + + 311 = 3n')
i=)

(a) Is the equation true for n = O? Justify your answer.

(b) In the inductive step of a proof that this formula is true for all integers n > 0, we suppose
the formula is true for when k is substituted in place of n (this is the inductive hypothesis),
and then we show that the formula is true when k + 1 is substituted in place of n. Fill
in the blanks below to write what we suppose and what we must show for this particular
formula.

Proof that for all integers k > 0, if the equation is true for n = k then it is true for
n = k+ 1:

Let k be any integer that is greater than or equal to 0, and suppose that
We must show that

(c) Finish the proof started in (b) above.

12. Use mathematical induction to prove that for all integers n > 1,

4+8+12+ .. +4n=2n2 +2n.

13. Use mathematical induction to prove that for all integers n > 3, 3 + 4 + 5 + + n
(n-2)(n + 3)

2

14. Use mathematical induction to prove that for all integers n > 3, 2. 3 + 3.4 + + (n -1) n
(n -2)(n 2 + 2n + 3)

3
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3n+1 -i
15. Use mathematical induction to prove that for all integers n > 0, 1+3 +32 ±.+3n = 2

16. Use mathematical induction to prove that for all integers n > 0, 8n- 1 is divisible by 7.

17. Use mathematical induction to prove that for all integers n > 5, 1 + 4n < 2'.

18. Use strong mathematical induction to prove that for all integers n > 2, either n is prime or n
is a product of prime numbers.

19. A sequence ao, a,,a2,... is defined recursively as follows:

ao = 2, ai = 9

ak = 5ak-1 - 6
ak-2 for all integers k > 2.

Use strong mathematical induction to prove that for all integers n > 0, an = 5 3' - 3. 2n.

20. A sequence S 1 , S2, S3, ... is defined recursively as follows:

Sk 5
8k-1 + (Sk-2)2 for all integers k > 3

si 4
S2 = 8

Use (strong) mathematical induction to prove that Sn is divisible by 4 for all integers n > 1.

21. The following while loop is annotated with a pre- and post-condition and also a loop invariant.
Use the loop invariant theorem to prove the correctness of the loop with respect to the pre-
and post-conditions.

[Pre-condition: product = A[1] and i = 1]

while (i # m)

1. i := i + 1

2. product := productA [i]

end while

[Post-condition: product - A[1] * A[2] ... A[m]]

loop invariant: I(n) is "i n + 1 and product := A[1] . A[2] ... A[n + 1]"

Chapter 5

1. Let A and B be sets. Define precisely (but concisely) what it means for A to be a subset of B.

2. Write a negation for the following statement:

For all x, if x e A n B then x G B.

3. Fill in the blanks in the following sentence: If A, B and C are any sets, then by definition of
set difference x E A - (B n C) if, and only if, x and x

4.

(a) Is 2 C {2,4,6}?

(b) Is {3} E {1,3,5}?

5. If X = {u, v}, what is the power set of X?

6. Fill in the blanks:
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(a) Given sets A and B, to prove that (A - B) U (A n B) C A, we suppose that x C
and we must show that x c

(b) By definition of union, to say that x e (A - B) U (A n B) means that

7. Define sets A and B as follows: A = {n E Z I n = 8r - 3 for some integer r} and

B = {m E Z I m = 4s + 1 for some integer s}.

(a) Is A C B?

(b) Is B C A?

Justify your answers carefully. (In other words, provide a proof if the statement is true or a
disproof if the statement is false.)

8. Let X = {I C Z 1 = 5a + 2 for some integer a}, Y = {m E Z I m = 4b + 3 for some integer
b}, and Z = {n EZ I n = 4c -for some integer c}.

(a) Is X C Y?

(b) Is Y CZ?

Justify your answers carefully. (In other words, provide a proof if the statement is true or a
disproof if the statement is false.)

9. The following is an outline of a proof that (A U B)C c Ac n Bc. Fill in the blanks.

Proof: Given sets A and B, to prove that (A U B)C c Ac n BC, we suppose x E ( ') and
then we show that x C (b) . So suppose that (c) Then by definition of complement,

(d) . So by definition of union, it is not the case that (x is in A or x is in B). Consequently,
x is not in A (e) x is not in B because of De Morgan's law of logic. In symbols, this says
that x 0 A and x ¢ B. So by definition of complement, x C (f) and x c (g) . Thus, by
definition of intersection, x E (h) . [as was to be shown].

10. Prove the following statement using an element argument and reasoning directly from the
definitions of union, intersection, set difference.

For all sets A, B, and C, (A U B) n C C A U (B n C).

11. Disprove the following statement by finding a counterexample.

For all sets A, B, and C, A U (B n C) C (A U B) n C.

12. Consider the statement

For all sets A and B, (A -B) n B =0.

The proof below is the beginning of a proof using the element method for prove that a set
equals the empty set. Complete the proof without using any of the set properties from Theorem
5.2.2.

Proof: Suppose the given statement is false. Then there exist sets A and B such that (A-
B) n B + 0. Thus there is an element x in (A -B) n B. By definition of intersection,....

13. Consider the statement

For all sets A and B, (A - B) n B = 0.

Complete the proof begun below in which the given statement is derived algebraically from the
properties on the attached sheet. Be sure to give a reason for every step that exactly justifies
what was done in the step:
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Proof:

Let A and B be any sets. Then the left-hand side of the equation to be shown is

(A-B)nB (AfnBC)nB bythe - law

= _-_by the law

= by the - law

by the law

- by the law

which is the right-hand side of the equation to be shown. [Hence the given statement is true.]

(The number of lines in the outline shown above are just meant to be suggestive. To complete
the proof you may need more lines or you may be able to do it with fewer lines. Use however
many lines as you need.)

14.

(a) Prove the following statement using the element method for prove that a set equals the
empty set: For all sets A and B, A n (B -A) = 0.

(b) Use the properties in Theorem 5.2.2 to prove the statement in part (a). Be sure to give
a reason for every step.

15. Derive the following result "algebraically" using the properties listed in Theorem 5.2.2 (and
reproduced on the attached sheet). Give a reason for every step.

For all sets A, B, and C, (A U C) -B = (A - B) u (C - B).

16. Derive the following result. You may do so either "algebraically" using the properties listed in
Theorem 5.2.2, being sure to give a reason for every step, or you may use the element method
for proving a set equals the empty set.

For all sets B and C, (B -C) -B = 0.

17. Use the element method for proving a set equals the empty set to prove that

For all sets A and C, (A -C) n (C -A) =0.

18. Is the following sentence a statement: This sentence is false or -22 = 4. Justify your answer.

Chapter 6

1. On each of three consecutive days the National Weather Service announces that there is a 50-50
chance of rain. Assuming that the National Weather Service is correct, what is the probability
that it rains on at most one of the three days? Justify your answer. (Hint: Represent the
outcome that it rains on day 1 and doesn't rain on days 2 and 3 as RNN.)

2. How many elements are in the one-dimensional array shown below?

A[7], A[8], .. .,]
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3. In a certain state, license plates each consist of 2 letters followed by 3 digits.

(a) How many different license plates are there?

(b) How many different license plates are there that have no repeated letters or digits?

4. In a certain state, license plates each consist of 2 letters followed by either 3 or 4 digits. How
many different license plates are there that have no repeated letters or digits?

5. Suppose there are three routes from Byrne Hall to McGaw Hall and five routes from McGaw
Hall to Monroe Hall. How many ways is it possible to travel from Byrne Hall to Monroe Hall
by way of McGaw Hall?

6. In a certain discrete math class, three quizzes were given. Out of the 30 students in the class:

15 scored 12 or above on quiz #1,
12 scored 12 or above on quiz #2,
18 scored 12 or above on quiz #3,
7 scored 12 or above on quizzes #1 and #2,
11 scored 12 or above on quizzes #1 and #3,
8 scored 12 or above on quizzes #2 and #3,
4 scored 12 or above on quizzes #1, #2, and #3.

(a) How many scored 12 or above on at least one quiz?

(b) How many scored 12 or above on quizzes 1 and 2 but not 3?

7. A club has seven members. Three are to be chosen to go as a group to a national meeting.

(a) How many distinct groups of three can be chosen?

(b) If the club contains four men and three women, how many distinct groups of three contain
two men and one woman?

(c) If the club contains four men and three women, how many distinct groups of three contain
at most two men?

(d) If the club contains four men and three women, how many distinct groups of three contain
at least one woman?

(e) If the club contains four men and three women, what is the probability that a distinct
group of three will contain at least one woman?

(f) If two members of the club refuse to travel together as part of the group (but each is
willing to go if the other does not), how many distinct groups of three can be chosen?

(g) If two members of the club insists on either traveling together or not going at all, How
many distinct groups of three can be chosen?

8. Suppose that a fair coin is tossed ten times.

(a) How many ways can at least eight heads be obtained?

(b) What is the probability of obtaining at least eight heads?

9. A large pile of coins consists of pennies, nickels, dimes, and quarters (at least 20 of each).

(a) How many different collections of 20 coins can be chosen?

(b) How many different collections of 20 coins chosen at random will contain at least 3 coins
of each type?

(c) What is the probability that a collection of 20 coins chosen at random will contain at
least 3 coins of each type?
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10. Prove for all integers n, k, and r with n > k > r that (n) (k) = (n) (n r)

11. The binomial theorem states that for any real numbers a and b,

(a + b)n ()an abk for any integer n > 0.
kO

Use this theorem to compute (2x- 1)5.

12. The binomial theorem states that for any real numbers a and b,

(a + b)n = (n)an kbk for any integer n > 0.
kO

Use this theorem to show that for any integer n > 0, E n=(_ 1)k(kn)3n-k 2 k 1.

13. Express the following sum in closed form (without using a summation symbol and without
using an ellipsis ... ): EZn0 (kn)7k.

14. Let A, B, and C be events in a sample space S such that S = A U B U C. Suppose that
P(A) = 0.3, P(B) - 0.6, and P(A n B) = 0.2. Find each of the following.

(a) P(A U B)

(b) P(C)

(c) P(AC U Bc)

15. An urn contains four balls numbered 1, 3, 4, and 6. If a person selects a set of two balls at
random, what is the expected value of the product of the numbers on the balls?

16. Suppose A and B are events in a sample space S, and P(AIB) = 1/2 and P(B) = 1/3. What
is P(A n B)?

17. A teacher offers ten possible assignments for extra credit in a course but requires students to
choose them, without looking, from a hat. Six assignments involve library research and four
are computer programming exercises. Suppose that a student chooses two assignments, one
after the other, at random without replacement.

(a) What is the probability that both assignments are computer programming exercises?

(b) What is the probability that at least one of the assignments is a computer programming
exercise?

18. A screening test for a certain disease is used in a large population of people of whom 1 in 1000
actually have the disease. Suppose that the false positive rate is 1% and the false negative
rate is 0.5%. Thus a person who has the disease tests positive for it 99.5% of the time, and a
person who does not have the disease tests negative for it 99% of the time.

(a) What is the probability that a randomly chosen person who tests positive for the disease
actually has the disease?

(b) What is the probability that a randomly chosen person who tests negative for the disease
actually has the disease?

19. A coin is loaded so that the probability of heads is 0.55 and the probability of tails is 0.45.
Suppose the coin is tossed twice and the results of the tosses are independent.

(a) What is the probability of obtaining exactly two heads?
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(b) What is the probability of obtaining exactly one head?

(c) What is the probability of obtaining no heads?

(d) What is the probability of obtaining at least one head?

Chapter 7

1. Let X = {a, b, c} and Y = {u, v}. Which of the following arrow diagrams define functions from
X to Y?

a. b. C.

2. 1og 3 ( 1 ) = --- because

3. Is lg 2 5 = log1 6 625? Why or why not?

4. Define precisely (but concisely) what it means for a function f to be one-to-one.

5. Let f be a function from a set X to a set Y. Define precisely (but concisely) what it means for
f to be onto.

6. Let A = B = {1,2,3}, and consider the function f: A -÷ B defined as follows: f(1) = 3,
f(2) = 1, f(3) = 3. Is f onto? Why or why not?

7.

(a) Draw an arrow diagram for a function that is onto but not one-to-one.

(b) Define a function f:R-{0} -- R by the formula f(x) = - for all nonzero real

numbers x. Prove that f is one-to-one.

8. Let S be the set of all strings in O's and I's, and define a function g: S -÷ Z as follows: for
each string s in S,

g(s) = the number of I's in s minus the number of O's in s.

(a) What is g(101011)? g(00100)?

(b) Is g one-to-one? Prove or give a counterexample.

(c) Is g onto? Prove or give a counterexample.

9. Let S be the set of all strings in O's and I's, and define a function g: S Z as follows: for
each string s in S,

g(s) = the number of O's in s.

(a) What is g(101011)? 9(00100)?

(b) Is g one-to-one? Prove or give a counterexample.

(c) Is g onto? Prove or give a counterexample.
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10. Let S be the set of all strings in O's and l's, and define a function

F : S znonneg as follows: for all strings s in S,

F(s) = the number of I's in s.

(a) What is F(001000)? F(111001)? F(10101)? F(0100)?

(b) Is F one-to-one? Prove or give a counterexample.

(c) Is F onto? Prove or give a counterexample.

(d) Is F a one-to-one correspondence? If so, find F'.

11. Let S be the set of all nonzero real numbers. Define a function g from S to S by the formula
1

g(x) -,for all nonzero real numbers x.
x

(a) Show that g is a one-to-one correspondence from S to S.

(b) Find g-1.

12. Let S be the set of all even integers, and define a function f: Z - S as follows:

f(n) = 2n for all integers n.

(a) Prove that f is one-to-one and onto

(b) Find a formula for the inverse function f

(c) Does the set of all even integers have the same cardinality as the set of all integers? Why
or why not?

13. Define a function f: R -* R as follows: for all real numbers x,

f (x) = 16x - 5.

Then f is both one-to-one and onto. Find the inverse function f 1

14. If five integers are chosen from the set {1, 2,3,4,5,6,7, 8}, must there be at least two integers
with the property that the larger minus the smaller is 2? Explain your answer clearly.

15. Given any set of 30 integers, must there be two that have the same remainder when they are
divided by 25? Explain your answer clearly.

16. Given any set of 15 integers, must there be two that have the same remainder when divided
by 12? Explain your answer clearly.

17. Let T be the set {3, 4, 5, 6, 7, 8, 9,101 and suppose five integers are chosen from T. Must two
of these integers have the property that the difference of the larger minus the smaller equals
2? Why or why not? Explain clearly. (You will not receive credit for this problem unless
you explain your reasoning clearly. Try to write an answer that would convince a good but
skeptical student who missed the last few weeks of this class.)

18. If six integers are chosen from the set {1,2,3,4,5,6,7,8,9,10}, must there be at least two
integers with the property that the sum of the smaller plus the larger is 11? Why or why not?
Explain clearly. (You will not receive credit for this problem unless you explain your reasoning
clearly. Try to write an answer that would convince a good but skeptical student who missed
the last few weeks of this class.)

19. Prove that if f: X Y and 9: Y - Z are one-to-one, then g o f: X -* Z is also one-to-one.

20. Prove that if f: X Y and g: Y - Z are onto, then g o f: X -- Z is also onto.
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21. Is the set of all squares of positive integers countable? That is, is the set S = {m E Z I 7n = k2

for some positive integer k} a countable set. Justify your answer.

22. Prove that the set of all integers and the set of all odd integers have the same cardinality.

Chapter 8

1. In a Double Tower of Hanoi with Adjacency Requirement there are three poles in a row and
2n disks, two of each of n different sizes, where n is any positive integer. Initially pole A (at
one end of the row) contains all the disks, placed on top of each other in pairs of decreasing
size. Disks may only be transferred one-by-one from one pole to an adjacent pole and at no
time may a larger disk be placed on top of a smaller one. However a disk may be placed on
top of another one of the same size. Let C be the pole at the other end of the row and let

the minimum number of moves
sn needed to transfer a tower of 2n

disks from pole A to pole C

(a) Find SI and S2.

(b) Find a recurrence relation expressing Sk in terms of Sk-1 for all integers k > 2. Justify
your answer carefully.

2. In a Triple Tower of Hanoi, there are three poles in a row and 3n disks, three of each of n
different sizes, where n is any positive integer. Initially, one of the poles contains all the disks
placed on top of each other in triples of decreasing size. Disks are transferred one by one from
one pole to another, but at no time may a larger disk be placed on top of a smaller disk.
However, a disk may be placed on top of one of the same size. Let t, be the minimum number
of moves needed to transfer a tower of 3n disks from one pole to another. Find a recurrence
relation for t1 , t 2 , t3 ..... Justify your answer carefully.

3. A single pair of rabbits (male and female) is born at the beginning of a year. Assume the
following conditions: (a) Rabbit pairs are not fertile during their first two months of life, but
thereafter they give birth to four new male/female pairs at the end of every month; (b) No
deaths occur. Let sn = the number of pairs of rabbits alive at the end of month n, for each
integer n > 1, and let so = 1. Find a recurrence relation for So, 81, S2, Justify your answer
carefully.

4. Suppose a certain amount of money is deposited into an account paying 4% annual interest,
compounded quarterly. For each positive integer n, let Sn = the amount on deposit at the end
of the nth quarter, and let So be the initial amount deposited.

(a) Find a recurrence relation for 5 O, S1, 52 ... , assuming no additional deposits or with-
drawals for a 4-year period.

(b) If SO = $5000, find the amount of money on deposit at the end of 4 years.

(c) Find the APR for the account.

5. Consider the set S of all strings of a's and b's. For each integer n > 0, let

Ian = the number of strings of length n that do not contain the pattern bb.|

Find a recurrence relation for a1, a2 , a3 ,.... Explain your answer carefully.

6. A sequence ai,a2,a3,... is defined as follows:

a, = 3, and ak = 4
ak-1 + 2 for all integers k > 2.
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(a) Find a1,a 2 , and a3 .
(b) Supposing that a 5 = 44 .3 + 43 2 + 42 . 2 + 4 2 + 2, find a similar numerical expression

for a6 by substituting the right-hand side of this equation in place of a5 in the equation

a6 = 4 a5 + 2.

(c) Guess an explicit formula for an.

7. A sequence co, c1 , c2 ,... is defined as follows:

c- = 1 and Ck = 7
Ck-I + 2 for each integer k > 1.

(a) Find c1 and c2 .

(b) Use one of the reference formulas given at the end of this exam to simplify the expression

77" + 2 7`1 + .. . + 2 . 72 + 2 7 + 2.

(c) Use iteration to guess an explicit formula for the sequence cO, cC2,.-..

8. Use iteration to find an explicit formula for the sequence bo, bl, b2 .... defined recursively as
follows:

bk = 2bk-1 + 3 for all integers k > 1
bo = 1.

If appropriate, simplify your answer using one of the following reference formulas:

(a) 1+2+3 n+ +1+n =) for all integers n > 1.
2

rtnl+l -1
(b) 1 +±r + r2 + . . m +rr= 1 for all integers m > O and all real numbers r 1.

r 1

9. A sequence is defined recursively as follows:

ao = 2 and ak = 4
ak-1 + ± for all k > 1.

It is proposed that an explicit formula for this sequence is

7 4n - 1
a7, =

Use mathematical induction to check whether this proposed formula is correct.

10. A sequence is defined recursively as follows:

Sk = 5Sk-1 + 1 for all integers k > 1
SO = 1.

Use mathematical induction to verify that this sequence satisfies the explicit formula

5n-5-1 1 for all integers n > 0.

11. A sequence a(, a,, a2 ,... satisfies the recurrence relation ak 4 ak-1 - 3 ak-2 with initial
conditions ao 1 and a1 = 2. Find an explicit formula for the sequence.

12. A sequence bl, b2, b3 ,... satisfies the recurrence relation bk = 2bk-1 + 8bk-2 with initial condi-
tions b1 = 1 and b2 = 0. Find an explicit formula for the sequence.
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13. A sequence c0 , c1, c2 , ... satisfies the recurrence relation Ck = 6ck-1 - 9ck-2 with initial condi-
tions c0 = 1 and c1 = 6. Find an explicit formula for the sequence.

14. A sequence d1 ,d 2 ,d 3 ,... satisfies the recurrence relation dk = 8dk-1 -6dk-2 with initial
conditions d1 = 0 and d2 = 1. Find an explicit formula for the sequence.

15. Define a set S recursively as follows:

I. BASIS: 11 E S

II. RECURSION:

a. If s E S, then Os E S and sO E S

b. If x is any string (including the null string) such that IxI E S, then 10xl e S and 1xO1 E S

III. RESTRICTION: No strings other than those derived from I and II are in S.

a. Is 00100010 E S? b. Is 011011 e S?

16. Define a set S recursively as follows:

I. BASIS: e C S

II. RECURSION: If s and t are in S, then

a. Os C S b. sO c S c. 1s1t C S d. sltl E S

III. RESTRICTION: No strings other than those derived from I and II are in S.

Use structural induction to prove that every string in S contains an even number of 1's.

1]7. Use the recursive definition of summation together with mathematical induction to prove that
for all positive integers n, if a,, a2 ,. .., a. and bi, b2 , .. ., b, are real numbers, then

n n n

Z(2ak -3bk) = 2 ak -3 bk.
k=1 k=1 kil

Chapter 9

1. Draw a careful graph of the function f defined by the formula f (n) = [L] for all integers n.

2. Let h be the function whose graph is shown below. Carefully sketch the graph of 2h.

3. If x is a real number and x > 1, is x 2 > x? Why? Is 5x3 > 5? Why?

4. Consider the statement:

3 Ix
2

1 < 13X2 + 17x + 51 for all x > 1.

Express this statement using Q-notation.

. EA
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5. Consider the statement:

13x2 + 17x + 51 < 25 1X2I for all x > 1.

Express this statement using O-notation.

6. Consider the statement:

3 X21 < 13X2+17x+51 <25lX21 for all x > 1.

Express this statement using 0-notation.

7. Express the following statement using Q-notation.:

_ 12x5(3x + 4)
_x +2

for all real numbers x > 2.

8. Express the following statement using O-notation:

12x5(3x + 4) < 36 Jx5
x +2

for all real numbers x > 2.

9. Express the following statement using <3-notation:

< | 12x5(3x +4) 1 < 36 5

x +2
for all real numbers x > 2.

10. Use the definition of 0-notation to prove that 2x2 + 31 + 4 is O(X2). (Do not use the theorem
on polynomial orders.)

11. Use the definition of 0-notation to prove that 15x3 + 8x + 4 is O(x 3 ).(Do not use the theorem
on polynomial orders.)

12. Explain why the following statement is true. (You may use the theorem on polynomial orders.)

3+6+9+ +3n is O(n 2
).

13. Use the definition of 0-notation to show that 5x3 + 3X2 + 4 is O(x3 ). Be sure to justify each
step of your answer.

(a) Find the total number of additions and multiplications that must be performed when the
following algorithm is executed. Show your work carefully.

for i := 1 to n

for j = i to n

a := 2 (5. i +j + 1)

next j

next i

(b) Find an order for the algorithm segment of part (a) from among the following: log2 n, n,
n log2 n, n2, n3, and n4 . Give a reason for your answer.

http://pakimonda.blog.com 
paki.monda@gmail.com 
paki.monda@yahoo.com



450 Supplementary Exercises and Exam Questions

14.

(a) Consider the following algorithm segment:
for i := 1 to n

for : ltoi

x: 5 i+8*j

next j
next i

(b) How many additions and multiplications are performed when the inner loop of this algo-
rithm segment is executed? How many additions and multiplications are performed when
the entire algorithm segment is executed?

(c) Find an order for this algorithm segment from among the following: lg 2 n, n, n 1log 2 n,
n2 , n3 , and n4. Give a reason for your answer.

15. Describe the operation of the sequential search algorithm.

16. Describe the operation of the insertion sort algorithm.

17. Sketch the graph of y = log 3 X.

18. Define a function F: R+ - R by the formula F(x) = log2 (X) for all positive real numbers
X.

(a) Graph F, marking units carefully on your axes.

(b) What is F(1)? Why?

(c) Write the equation 220 = 1, 048, 576 in logarithmic form.

19. If n and k are positive integers and 2 k < n < 2 what is 1log2 (n)J? Be sure to justify each
step of your answer.

20. Use O-notation to express the following statement:

I 5x +X10og 2z |< 6 | X2log 2X I for all x > 2.

21. Describe the operation of the binary search algorithm.

22. Describe the operation of the merge sort algorithm.

Chapter 10

1. Define a binary relation R from {a, b, c} to {u, v} as follows: R = {(a, v), (b, u), (b, v), (c. u)}.

(a) Draw an arrow diagram for R.

(b) Is R a function? Why or why not?

2. Define a binary relation R from {a, b, c} to {u, v} as follows: R = {(a, u), (b, u), (c, v)}.

(a) Draw an arrow diagram for R.

(b) Is R a function? Why or why not?

3. Define a binary relation R from {a, b, c} to {u, v} as follows: R = {(a, v), (b, u)}.

(a) Draw an arrow diagram for R.

(b) Is R a function? Why or why not?
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4. Define a binary relation T from R to R as follows: for all (x, y) e R x R, x T y X' y > x + 1.

(a) Is (1,0) e T? Is (0,1) E T? Is (- 2,5) E T? Is (- 3, -4) E T?

(b) Sketch the graph of T in the Cartesian plane.

5. Let A = {0, 1, 2, 3} and define a binary relation R on A as follows:
R = {(0, 2), (0, 3), (2, 0), (2, 1)}.

(a) Draw the directed graph of R.

(b) Is R reflexive? Explain.

(c) Is R transitive? Explain.

6. Let A {2, 3, 4, 5, 6, 7, 8} and define a binary relation R on A as follows: for all x, y G A,

x R y X 3 1 (x - Y).

(a) Is 7 R 2? Is 7 R 4? Is 2 R 5? Is 8 R 8?

(b) Draw the directed graph of R.

7. Let A = {3, 4, 5, 6, 7} and define a binary relation R on A as follows: for all x, y E A,

xRy>21 (x y).

(a) Is 6 R 3? Is 4 R 6?

(b) Draw the directed graph of R.

8. Let B = {0, 1, 2, 3} and define a binary relation U on B by

U = {(0, 2), (0, 3), (2, 0), (2, 1)}.

Is U transitive? Justify your answer.

9. Define a binary relation R on the set {1, 2, 3, 4} as follows:

T = {(1, 4), (2,3),(2,4),(4,1), (2,1), (1,2), (3,2)}

(a) Is R symmetric? Justify your answer.

(b) Is R transitive? Justify your answer.

10. Define a binary relation S on the set of all positive integers as follows: for all positive integers
m and n,

m S n X m I n.

Is S reflexive? Justify your answer.

11. Let B = {0, 1, 2, 3} and define a binary relation U on B by

U {(0, 2), (O, 3), (1, 2)}.

Is U transitive? Justify your answer.

12. Let R be the binary relation defined on the set of all integers Z as follows: for all integers m
and n,

m R n # m - n is divisible by 5.

(a) Is R reflexive? Prove or give a counterexample.

(b) Is R symmetric? Prove or give a counterexample.
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(c) Is R transitive? Prove or give a counterexample.

13. Let A = {1, 2,3, 4}. The following relation R is an equivalence relation on A:

R = {(1,1), (1, 3), (1, 4), (2, 2), (3,1), (3, 3), (3, 4), (4,1), (4, 3), (4, 4)}.

(a) Draw the directed graph of R.

(b) Find the distinct equivalence classes of R.

14. Let S be the set of all strings of O's and 1's of length 3. Define a binary relation R on S as
follows: for all strings s and t in S,

the two left-most characters
s R t 4==> of s are the same as the two

left-most characters of t.

(a) Prove that R is an equivalence relation on S.

(b) Find the distinct equivalence classes of R.

15. Define a binary relation T on R as follows: for all x and y in , x T y if and only if x2 
= y 2 .

Then T is an equivalence relation on R.

(a) Prove that T is an equivalence relation on R.

(b) Find the distinct equivalence classes of T.

16. Prove that if a, b, c, d and n are integers, n > 1, a - c (mod n), and b - d (mod n), then
ab - cd (mod n).

17. Use the fact that 29 = 16 + 8 + 4 + 1 to compute 1829 mod 65.

18. Find a positive inverse for 7 modulo 48. (That is, find a positive integer n such that 7n - I
(mod 48).)

19. An RSA cipher has public key pq = 65 and e = 7.

(a) Translate the message YES into its numeric equivalent, and use the formula C = Me
(mod pq) to encrypt the message.

(b) Decrypt the ciphertext 50 41 and translate the result into letters of the alphabet to
discover the message.

Chapter 11

1. If a graph has vertices of degrees 1, 1, 2, 3, and 3, how many edges does it have? Why?

2. For each of (a)-(c) below, either draw a graph with the specified properties or else explain why
no such graph exists.

(a) Graph with six vertices of degrees 1, 1, 2, 2, 2, and 3.

(b) Graph with four vertices of degrees 1, 2, 2, and 5.

(c) Simple graph with five vertices of degrees 1, 1, 1, 1, and 5.
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3. Determine whether each of the following graphs has an Euler circuit. If it does have an Euler
circuit, find such a circuit. If it does not have an Euler circuit, explain why you can be 100%
sure that it does not.

I. , ,

a

4. Determine whether each of the following graphs has a Hamiltonian circuit. If it does have an
Hamiltonian circuit, find such a circuit. If it does not have an Hamiltonian circuit, explain
why you can be 100% sure that it does not.

a

5. Draw a directed graph with the following adjacency matrix:

V1 V2 V3 V4

v0 1 2 0 0
V20 0 0 ° 1

V3 2 20 1 0
V4 0 1 0 0

6. Find the following matrix product:

20°][ 1 3 0]

7. Consider the adjacency matrix for a graph that is shown below. Answer the following questions
by examining the matrix and its powers only, not by drawing the graph. Show your work in a
way that makes your reasoning clear.

VI V2 V3 V4

VI 0 1 0 1

V2 E 0 2 0
V3 0 2 0 0
V4 I 0 0 0

(a) How many walks of length 2 are there from vl to v2?

(b) How many walks of length 2 are there from Vl to V3?

(c) How many walks of length 2 are there from V2 to V2?

11

a

I i i h 9

-
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8. Determine whether any two of G0, G2, and G3 are isomorphic. If they are, give vertex and
edge functions that define the isomorphism. If they are not, give an isomorphic invariant that
they do not share.

-4

U9

9. Determine whether any two of the simple graphs G1, G2, and G3 are isomorphic. If they
are, give a vertex function that defines the isomorphism. If they are not, give an isomorphic
invariant that they do not share.

up vet w

U

U6

V3v3

V
4

3

"5

3

U'

10. Prove that having a vertex of degree 3 is an invariant for graph isomorphism.

11. A certain graph is 19 vertices, 19 edges, and no nontrivial circuits. Is it connected? Explain.

12. A certain connected graph has 68 vertices and 72 edges. Does it have a nontrivial circuit?
Explain.

13. Either draw a graph with the given specification or explain why no such graph exists.

(a) full binary tree with 16 vertices of which 6 are internal vertices

(b) binary tree, height 3, 9 vertices

(c) binary tree, height 4, 18 terminal vertices

14. Consider the following weighted graph:

b

I

6
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(a) Use Kruskal's algorithm to find a minimum spanning tree for the graph, and indicate the
order in which edges are added to form the tree.

(b) Use Prim's algorithm starting with vertex a to find a minimum spanning tree for the
graph, and indicate the order in which edges are added to form the tree.

Chapter 12

1. Let E = {0, 1}, and let L be the language over E consisting of all strings of O's and l's of
length 4 with an equal number of O's and I's. List the elements of L.

2. Let L be the language defined by the regular expression 0(0 1)*1(O 1)*.

(a) Write 3 strings that belong to L

(b) Use words to describe L.

3. Let L be the language defined by the regular expression (x [ y)*x(x y).

(a) Write 3 strings that belong to L

(b) Use words to describe L.

4. Consider the language that consists of all strings of a's and b's in which the second character
from the beginning is a b. Find a regular expression that defines this language.

5. Consider the language that consists of all strings of O's and l's in which the number of l's is
evenly divisible by 4. Find a regular expression that defines this language.

6. Consider the finite-state automaton given by the following transition diagram:

ma

b

(a) What is N(s2 ,a)?

(b) To what state does the automaton go if the string babaa is input to it?

(c) Indicate which of the following strings are accepted by the automaton:

abab bbab abbbaa a

(d) Describe the language accepted by this automaton.

(e) Find a regular expression that defines the same language.
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7. Consider the finite-state automaton given by the following transition diagram:

0 0 0, 1

(a) To what state does the automaton go if the string 10010010 is input to it? Is this string
accepted by the automaton?

(b) Indicate which of the following strings are accepted by the automaton:

000101 0100010 000100 110001

(c) Describe the language accepted by the automaton.

(d) Find a regular expression that defines the same language.

8. Consider the finite-state automaton given by the following next-state table:

input
a b

UO U2  UI
Ui U3  U2

states U2  U2  U2

®U3  U3  U3

(a) Draw the transition diagram for this automaton.

(b) Indicate which of the following strings are accepted by the automaton:

abba babb ba bbababa

(c) Describe the language accepted by the automaton.

(d) Find a regular expression that defines the same language.

9. Consider the finite-state automaton given by the following next-state table:

input symbols
0 1

80 SO S1
states 1 82 S

@ s2  SO si

(a) Draw the transition diagram for this automaton.

(b) Indicate which of the following strings are accepted by the automaton:

0100 1001 0110 101010

(c) Describe the language accepted by the automaton.

(d) Find a regular expression that defines the same language.
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10. Consider the finite-state automaton given by the following next-state table:

input
0 1

ry 82 SI

states s1 82 83
S2 S2 S2

S83 8383

(a) Draw the transition diagram for the automaton.

(b) Indicate which of the following strings are accepted by the automaton:

0100 101 1110 00101

(c) Describe the language accepted by this automaton.

(d) Find a regular expression that defines the same language.

11. Consider the regular expression 0*10* I 0*10*10*.

(a) Describe the language defined by this expression.

(b) Design a finite-state automaton to accept the language defined by the expression.

12. Consider the regular expression a(a I b)*b.

(a) Describe the language defined by this expression.

(b) Design a finite-state automaton to accept the language defined by the expression.

13. Prove that there is no finite-state automaton that accepts the language L consisting of all
strings of x's and y's of the form xnyn where n is a positive integer.

14. Finite-state automata A and A' are defined by the transition diagrams shown below.

D

(a) Find the quotient automaton for A.

(b) Find the quotient automaton for A'.

(c) Are A and A' equivalent? Explain.
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Ideas for Projects

1. Look up some of the arguments in Lewis Carroll's Symbolic Logic, and analyze them using the
techniques discussed in the textbook.

2. Find out about "fuzzy logic." What is its relation to the logic discussed in the textbook? What
is fuzzy logic used for?

3. Jerry Loder from the University of New Mexico has created a number of discrete mathematical
projects based on historical sources, which are described at www.math.nmsu.edu/hist projects/.
Visit the website and choose one of the projects to explore and write up. (Additional projects
by others are being planned.)

4. To help prepare for doing your taxes, your tax advisor asks you to answer the following yes-
or-no questions:

(i) If you report business expenses, are all meals and entertainment expresses properly doc-
umented?

(ii) If you report automobile expenses, do you have written documentation of the business
miles claimed?

Suppose you do report business expenses but you neither have business expenses for meals or
entertainment nor do you use an automobile in your business.

(a) How should you answer the questions?

(b) Analyze your response to part (a) in light of the discussion about conditional statements
in Section 1.2 and universally quantified statements in Section 2.2.

5. In logic the words "valid" and "true" have different meanings. Explain the difference between
these words as they are used in logic.

6. Valid forms of argument are closely related to certain kinds of tautologies. Let A be the
argument form

Pi
P2

Pn
..q

and let S be the statement form p, A i A ... A pa -4 q. Explain why if A is valid, then S is a
tautology, and, conversely, if S is a tautology, then A is valid.

7. Once a Boolean expression has been written in disjunctive normal form, a Karnaugh map
can be used to simplify it. Find out how Karnaugh maps work, and write a summary of the
method. Include a few examples.

8. The Quine-McCluskey algorithm is another method that can be used to simplify Boolean ex-
pressions. Find out how this method works, and compare it to the method that uses Karnaugh
maps.
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9. Here is a description of the game "Use It Or Lose It": A person is told that they can spend
$100, but only on items costing exactly $64, $32, $16, $8, $4, $2, and $1 and they may purchase
at most one item at any given price. Any money that is unspent is lost. How should the person
allocate the money if they want to spend all of the $100? Suppose instead of $100, the person
was allowed to spend $99, $98, $97, and so forth. How should the person allocate the money?
Explain the connection between this game and binary notation. Explore whether it is possible
to find two different ways for allocating any particular amount of money if the aim is to spend
it all.

10. Find out about the game WFF 'N PROOF: The Game of Modern Logic. Work a few of the
problems and compare and contrast the approach of the game to the presentation about logic
in the textbook.

11. A solution to exercise 59 of Section 3.1 shows that the expression 22" + 1 is not prime when
n = 5. Write a computer program to test the primality of the number when n = 6. Discuss
the question of using a computer to determine whether the number is prime for n > 6.

12. The winning strategy for the game of Nim involves knowing properties of odd and even integers.
Find out about this game, and explain why the winning strategy works.

13. Explore the following questions, and write up your findings: Which integers can be written as
a sum of 2 or more consecutive integers? Are there any integers that cannot be expressed in
this way?

14. Find out about the Beal conjecture. What is its relation to Fermat's last theorem? Hlow did
it come to be conjectured? What is the current status of the conjecture? Report on your
findings.

15. Find out about Lagrange's four-square theorem. How is it proved?

16. What is the largest prime number now known? What is a Mersenne prime, and what role do
these numbers play in the search for large prime numbers?

17. What is the Encyclopedia of Integer Sequences? What are some ways it is used?

18. Exercise 11 in Section 4.5 introduces a kind of multiplication used by the ancient Egyptians.
This algorithm is also known as Russian peasant multiplication. Report on the history of both
techniques, and explain how and why they work.

19. Find out about the issues involved in drawing Venn diagrams when the number of sets is greater
than 3, and report on your findings. (Two helpful websites are www.combinatorics.org/Surveys/ds5/
VennSymmEJC .html and www.siam.org/siamnews/01-04/venn.pdf.)

20. What are Gray codes? How are they related to Venn diagrams?

21. Find out about Markov chains, and give some examples of how they are used.

22. What are the binomial and hypergeometric probability distributions and how are they used?

23. What are generating functions, and how are they used to solve problems?

24. Find statistics about the prevalence of false positives and false negatives for various medical
tests, and report on your findings.

25. Find out about Pick's theorem. How is it proved?

26. Find out about the Catalan conjecture. How did it come to be conjectured? What is the
current status of the conjecture? Report on your findings.

27. Find out about Ramsey numbers, and report on your findings.
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28. Report on the computer algorithms that are used to generate all the partitions of a set.

29. Find out about the evolution in the mathematical meaning of the word "function."

30. Write a computer program to calculate the number of one-to-one functions from a set with m
elements to a set with n elements, where m and n are positive integers and m < n.

31. Write a computer program to calculate the number of onto functions from a set with m elements
to a set with n elements, where m and n are positive integers and m > n.

32. What are the transfinite cardinal numbers: 1%, N1, N2, and so forth? How is arithmetic
performed with these numbers?

33. Report on some of the occurrences of Fibonacci numbers in nature and some of the applications
of Fibonacci numbers.

34. Report on the current status of knowledge about the 4-pole tower of Hanoi problem.

35. Find out about the bubble sort and the quick sort algorithms, and describe their operation.
Discuss the efficiency of these algorithms compared to the efficiency of the insertion sort, the
selection sort, and the merge sort algorithms.

36. Describe the construction and uses of a relational database.

37. Describe Warshall's algorithm for computing the transitive closure of a relation. What are
some practical uses of Warshall's algorithm?

38. Report on the way the set of all rational numbers can be constructed using logic and set theory
(including the definitions of ordered pair, Cartesian product, and equivalence relation) alone.
What techniques are used to extend the construction to the set of all real numbers?

39. How is multiplication actually performed in modern computers? Are the same algorithms used
for large integers as for small ones? Research this topic and describe your findings.

40. What other cryptographic systems are currently used for the electronic transmission of data?
What kinds of mathematics are they based on?

41. What is a knight's tour? What is the history of the knight's tour problems, and how are some
of them solved?

42. Describe the Instant Insanity puzzle, and discuss the way that graph theory can be used to
solve it.

43. Report on the current state of knowledge about the traveling salesman problem.

44. Describe Dijkstra's shortest path algorithm, and discuss its efficiency and the proof of its
correctness.

45. What is Euler's formula for the relationship among the number of edges, faces, and vertices
of a convex polygon? How is it proved? What are planar graphs, and what is the relation
between Euler's formula and planar graphs?

46. What is Kuratowski's theorem, how is it proved, and what are some of its practical applica-
tions?

47. In what way is graph coloring related to graph theory? State the 4-color theorem, and discuss
the history of its proof

48. Describe the n-queens problem, and discuss its solution.

49. What is a Huffman code, and what are some of its practical applications?
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50. Report on some of the applications of graph theory to fields like economics, chemistry, psy-
chology, sociology, management, and biology.

51. Find out about Turing machines, and describe their operation. Include a few examples.

52. What is a nondeterministic finite-state automaton? What kind of language is accepted by
such an automaton? Include a few examples.

53. Discuss the way that the Backus-Naur form is used to describe grammars of computer pro-
gramming languages, command sets, and communication protocols.
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